®

Check for
updates

An Innovative MapReduce-Based

Approach of Dijkstra’s Algorithm

for SDN Routing in Hybrid Cloud,
Edge and IoT Scenarios

Alina Buzachis, Antonino Galletta, Antonio Celesti®™, and Massimo Villari

MIFT Department, University of Messina, Messina, Italy
{abuzachis,angalletta,acelesti,mvillari}@unime.it

Abstract. Nowadays, with the advent of Cloud/Edge Computing and
Internet of Things (IoT) technologies, we are facing with a tremendous
increase of network connections required by different new cutting-edge
distributed applications spread over a wide geographical area. Specif-
ically, the proliferation of IoT devices used by such applications and
associated data streams require a highly dynamic network ecosystem,;
the traditional network technologies are not adequate to efficiently sup-
port them in terms of routing strategies. In order to deploy such appli-
cations, providers need an advanced awareness of the Cloud/Edge and
IoT networks in terms of flexible packets routing that can compute the
paths according to different parameters including, e.g., hops, latency, and
energy efficiency policies. In this context, Software Defined Networking
(SDN) has emerged as the answer to these needs decoupling control and
data planes, using a logically centralized controller able to manage the
underlying networking resources. In this paper, we focus on the adop-
tion of Dijkstra’s algorithm in SDN environments to support applica-
tions deployed in Cloud/Edge and IoT scenarios. Specifically, considering
a highly scalable network topology that includes thousands of network
devices, in order to reduce the path computation, we propose a revised
MapReduce approach of Dijkstra’s algorithm. Experiments show that,
compared to the sequential implementation, the MapReduce approach
drastically reduces the shortest path computation performance when
considering a complex Cloud/Edge and IoT network topology including
thousands of virtual network devices.

Keywords: SDN - MapReduce - Dijkstra - Cloud computing
Edge computing - Internet of Things

A. Celesti—On behalf of Gruppo Nazionale Per il Calcolo Scientifico (GNCS) -
INdAM.

© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
K. Kritikos et al. (Eds.): ESOCC 2018, LNCS 11116, pp. 185-198, 2018.
https://doi.org/10.1007/978-3-319-99819-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_14&domain=pdf

186 A. Buzachis et al.

1 Introduction

Nowadays, in the era of Internet of Things (IoT), we are observing a prolif-
eration of new cutting-edge pervasive applications. In this panorama, Gartner
[1] predicts that there will be 26 billion of IoT devices by 2020 representing an
almost 30-fold increase from 900 million in 2009. Despite the rapid advances
of IoT technologies, due to hardware limitations, applications deployed on IoT
devices (e.g. Single Board Computers (SBCs), mobile phones, tablets, etc.) have
to interact with the microservice architecture hosted by the central Cloud Com-
puting [2,3] data centers and, in order to reduce network latency, also by devices
distributed in an intermediate layer called Edge Computing [4].

The microservice architecture is a variant of the traditional Service-Oriented
Architecture (SOA) that structures an application as a collection of loosely cou-
pled fine-grained services (i.e., microservices) based on lightweight protocols. The
decomposition of applications into different smaller services allows to improve
modularity, making them simpler and more resilient. Specifically, applications
require the interaction of different smaller services or microservices generally
spread in the Cloud, Edge and IoT layers over a wide geographical network.
This introduces an important issue: ICT operators must flexibly manage the
network in order to meet the requirements of today’s emerging applications. In
fact, network awareness [5] is fundamental during the deployment of microser-
vices on Cloud, Edge and IoT devices. Unfortunately, ICT operators are not able
to have a view of the whole network topology and to think about quickly chang-
ing the setup of the physical network assets, if needed, in order to meet the
requirements of their hybrid Cloud/Edge/IoT applications [6-8], because net-
work connections are generally shared among different providers. Furthermore,
this would cause management problems for Internet Service Providers (ISPs).
Therefore, ICT operators need an alternative solution that allows them to gain
an advanced awareness of Cloud/Edge and IoT networks in terms of flexible
packets routing in order to compute paths according to different parameters
including, e.g., hops, latency, and energy efficiency policies.

Driving the need for a new networking solution, Network Function Virtu-
alization (NFV) was introduced with the purpose of building networks without
being dependent on ISPs. In particular, Software Defined Networking (SDN) has
emerged as the answer to these needs by decoupling control and data planes,
using a logically centralized controller able to manage the underlying physical
resources of the network, abstracting them to allow ICT operators to perform
rapid and automatic configuration of network routing. The ability to dynamically
define the behavior of a network via SDN gives ICT operators the flexibility to
adapt the network to applications’ requirements, without complex and expensive
reconfiguration tasks on physical network devices.

One of the main algorithms adopted for network routing is Dijkstra that
allows to find the shortest path between two nodes. This algorithm has been
recently adopted in SDN environments.

In this paper, unlike the scientific works available in the literature, in order to
address a Cloud/Edge and IoT scenario that includes a large number of network

An Innovative MapReduce-Based Approach of Dijkstra’s Algorithm 187

nodes, we propose a revised MapReduce version of Dijkstra’s algorithm to opti-
mize the connections required by applications whose microservices are deployed
over Cloud/Edge and IoT environments.

The experiments carried out haves shown that, with a minimal configuration
of the Hadoop cluster - 3 computational nodes and an input dataset describing a
complex Cloud/Edge and an IoT network topology with 10.000 virtual network
devices, since the number of devices present within the network increases the
path computation time performed with the MapReduce approach drastically
improves up to approximately 92% compared to the the sequential one.

The remainder of the paper is organized as follows. In Sect. 2, we present an
overview of related works and contributions. Motivation is discussed in Sect. 3.
In Sect. 4, we introduce some preliminary knowledge regarding the SDN concept.
Starting with a sequential implementation of Dijkstra’s algorithm for SDN envi-
ronments, a revised MapReduce version is presented in Sect. 5. Section 6 shows
the simulation results and observations. Finally, this paper is concluded with
Sect. 7.

2 Related Work

Recently, several initiatives have been proposed regarding the application of the
Dijkstra’s algorithm in SDN. The limits of traditional hierarchical architecture
design principles based on Dijkstra’s algorithm in the perspective of emerging
Cloud/Edge computing systems are highlighted in [9]. One of the major chal-
lenges is the mapping of virtual networks onto physical network infrastructures,
which is defined as a Virtual Network Embedding (VNE) problem. In this con-
text, a surviving virtual network mapping problem was formulated and solved
using an SVE Survivable Heuristic (GRC-SVNE) algorithm based on the Dijk-
stra’s algorithm proposed in [10]. Furthermore, an alternative GRC-M algorithm
in combination in combination with the Multicommodity Flow (MCF) algorithm
is discussed in [11].

The application of the Dijkstra’s algorithm in SDN raises numerous chal-
lenges in terms of reliability, capacity control and scalability. The application
of network virtualization in Fiber-wireless (FiWi) networks with the purpose to
alleviate bandwidth tension when a physical link serving different virtual net-
works fail is discussed in [12]. In particular, a shared protection mechanism is
embedded within the Dijkstra’s routing algorithm in order to improve its relia-
bility when a physical link fails. A reliable security-oriented SDN routing mech-
anism, named RouteGuardian, which considers the capabilities of SDN switch
nodes combined with a piece of Network Security Virtualization framework is
proposed in [13]. In particular, it overcomes the limits of the traditional routing
mechanisms in SDN, based on the Dijkstra’s shortest path, in terms of capac-
ity control in order to prevent network congestion. A self-adjusting architecture
based on Pairing heap to scale SDN network overcoming scalability issues due to
a centralized control plane is proposed in [14]. By using Network Virtualization
Function (NVF), the whole network is viewed as a huge heap and divide it into

188 A. Buzachis et al.

several sub heaps repeatedly until get the basic units of physical switches in the
network. In this context, the Dijkstra’s algorithm is applied and optimized based
on Pairing heap outperforming the original one when the network is dense.

Dijkstra’s Algorithm has been recently used in many emerging applications
based on SDN. In [15], an autonomous agent based shortest path load balancing
using the Dijkstra’s algorithm was proposed to find the shortest path to virtual
machines when a Cloud services saturates its processing capabilities. A piece
of framework to lightweight process the 3D shape based on Web Browser con-
sidering Web3D technology areas in the era of “Internet plus” is discussed in
[11]. This framework is based on Mesh Segmentation. Therefore, a new Dijkstra-
based mesh segmentation approach is presented. The application of SDN/Open-
Flow in an Internet Protocol Television (IPTV) multicasting implementation is
proposed in [16]. In this context, an important function of IPTV multicasting
is the Joint/Leave request of client in a multicast group. In order to obtain
an efficient IPTV service routing, Dijkstra’s and Prim’s algorithms were used
to comparatively calculate minimum total edge weight. Moreover, the Mininet
environment is used to emulate the system, that consists of Open vSwitch and
a POX controller. Experiments compare the transmission time of the first join-
t/receive packet to a client when using Dijkstra’s and Prim’s algorithms. In [17],
the Service Function Chaining (SFC) was used as a model of the Shortest Path
Tour Problem in order to find the minimum transmission cost path by exploiting
a constructed multistage graph. In particular, the minimum transmission cost
paths for multiple SFC classes is derived using the Dijkstra’s Shortest Path Algo-
rithm with resource constraints in a flexible way. Finally, some experiments are
carried out and the results show the effectiveness and efficiency of our proposed
method.

Differently from the scientific work available in literature, in this paper, we
focus on a Cloud scenario based on SDN in which the Dijkstra algorithm can
benefit from parallel processing in order process a huge amount of virtual network
nodes in order to assess best paths.

3 Motivation

With reference to those applications whose structure obeys the microservice
architecture in which microservices are deployed on devices across the Cloud,
Edge and IoT layers, there is the need to optimize certain network parameters
to align applications requirements in terms of latency and energy consumption
with network connections.

Figure 1 illustrates a scenario that includes two hosts, H; and Hs, that need
to communicate through a network topology including switches Sy, S, S3 and
Sy4. Moreover, we consider two applications App; and Appo that run on both
host H; and host Hsy. Appy consists of microservice M .Sy, while Apps consists
of microservice M Ss.

Suppose App; wants to take care of energy consumption, while Apps wants to
take care of latency minimization; applying the shortest path routing approach

An Innovative MapReduce-Based Approach of Dijkstra’s Algorithm 189

- =
’ i/ " . .
o Po, 1003 Py o,
Appy (B] = = 1 ——————— R Appy (2] ‘»,0 %
Eﬂ, Agf,.....,;,n..sn,-,/.;p.tz.;, H? ,,,,,,, . . g?_._....l.u..w;.o.@.z ’ %
AT = e = = - - - - 13.___) App; [LAT) 0‘3'
MS, - vg\\’ 10 ms MS; MSy /Ja . u'&\\' MSz
N ‘g? ~ CaN g7.\’
[s, | | s, |
(a) Shortest path (b) Latency/Energy aware

Fig. 1. Routing approaches

shown in Fig. 1(a), the connections between H; and Hs pass through the switches
S1 and S3. This approach is not the best in terms of energy consumption and
latency minimization because we obtain 100J of energy for App; and 10ms of
latency for Appo.

Figure 1(b) shows an alternative latency/energy aware routing approach that
allows to better optimize network resources and paths according to different
application requirements. In fact, although they share the same source and des-
tination hosts, App; and Apps are routed separately according to their require-
ments. In particular, with regard to App;, the connections between H; and Hs
pass through S, Sy and S35 with 2J of energy consumption, while as regards
Appo, connections between H; and Hs pass through S7, Sy and S3 with 2ms of
latency. Furthermore, it is possible to organize customized network connections
between H; and Hs for each application such as:

— Simplex. Transmission is allowed in only one direction: H; always acts as a
transmitter, while Hy acts as receiver.

— Half Duplex. Transmission is allowed in both directions, but not simulta-
neously: when H; acts as a transmitter, Hs acts as a receiver.

— Full Duplex. Transmission is allowed in both directions at the same time:
both H; and Hs act, at the same time, as transmitter and receiver.

The objective of this paper is to combine shortest path and latency/en-
ergy aware routing approaches for SDN environments supporting Cloud, Edge
and IoT scenarios. In order to achieve this, we adopt the Dijkstra’s algorithm.
Although several scientific works have been recently proposed focusing on the
adoption of Dijkstra’s algorithm in SDN, in this paper, we focus on a revised
MapReduce approach of this algorithm that can improve processing times when
thousands of Cloud, Edge and IoT devices are considered.

4 SDN Overview

SDN technology is an emerging network architecture in which network control is
decoupled from forwarding and directly programmable. The migration of control
logic, closely linked to individual network devices, to accessible Cloud, Edge and

190 A. Buzachis et al.

ToT devices, allows to abstract the underlying networking infrastructure giving,
to applications, a virtual vision of the network. Management is centralized in a
purely software SDN controller that has a global view of the network. As a result,
the network appears to applications as a single logical switch. With SDN;, it is
possible to achieve the control of the network, from a single point, regardless
of ISPs and network assets, simplifying network design and usage. Moreover,
SDN abstraction also simplifies the operation of the network devices, as they
no longer need to understand and process thousands of standard protocols, but
they simply have to accept instructions from the SDN controller.

Basic SDN operations are performed by a standard protocol that allows the
SDN controller to send instructions to the various switches. OpenFlow is one of
main open protocols that allows an intermediate communication plane between
the SDN controller, i.e., the control plane device, and routers/switches, i.e., data
plane devices, that enforces network policies. In particular, OpenFlow routers
and/or switches include one or more flow tables and/or group tables updated
by an OpenFlow controller that can add or delete flow entries responsively or
proactively. Several OpenFlow controller solutions are OpenDaylight, Floodlight,
POX, Pyretic, and so on.

Figure 2 shows the general architecture of latency/energy aware applications
over OpenFlow. Looking up at the top of Fig. 2, different applications with spe-
cific network requirements interact with the OpenFlow controller that monitors
their network latency and energy consumption by receiving information from
OpenFlow network devices. If a particular network latency and energy consump-
tion parameter does not meet the requirements of an application, the OpenFlow
controller enforces network changes to OpenFlow devices.

I

App

=t

OpenFlow troller

Fig. 2. Architecture of latency/energy aware applications.

An Innovative MapReduce-Based Approach of Dijkstra’s Algorithm 191

5 Dijkstra’s Algorithm

Dijkstra’s algorithm is very useful in deriving the best routing path for sending
packets from a specific source node to a destination node in an SDN environ-
ment where different parameters (such as hops, latency and energy consumption)
associated to each link in the network must be considered in order to meet the
application requirements deployed in Cloud/Edge and IoT scenarios. Suppose
we can derive from the SDN topology a graph G = (V, E), which is weighted,
directed and connected. Figure3 shows an example of a real/virtual network
through a weighted, directed and connected graph. Therefore, V' represent the
set of network devices and FE the set of network links, while to each link is
associated a weight wle] quantifying different network parameters.

i/

4 ,,x'iaie.“»

“=7)
s |

Fig. 3. Representation of an SDN topology through a weighted, directed and connected
graph.

A full duplex connection between two network devices can be arranged as a
pair of simplex connections each represented as a directed edge. Given that, we
suppose there is at least a path between a network device to each other. Consid-
ering the latency minimization as an application preference, we assume that wle]
quantify the latency associated to the edge that connects two nodes. A latency-
oriented application will be provided with a path with lowest latency between
the source and intended destination microservice deployed in the Cloud, Edge
or IoT layers. Allocated virtual paths will be periodically updated as underlying
physical network changes to ensure a given latency requirement.

Considering that there are many factors that affect the properties of the con-
nections, network changes are more and more varied and unpredictable because
the Cloud/Edge and IoT networking scenarios are very complex. This complex-
ity is due to the fact that virtual paths that directly connect two nodes, actually
pass through tunnels and/or overlay networks, built on different physical net-
work devices distributed in the Cloud, Edge and IoT layers, that can frequently
change.

192 A. Buzachis et al.

5.1 Sequential Approach

One of the most common problems in graph theory is represented by the single-
source shortest path problem. Moreover, the task deals to find the shortest paths
from a source node to all other nodes in the graph. In particular, edges are
associated with costs or weights, in which case the task is to compute lowest-
cost or lowest-weight paths.

Given a weighted, directed and connected graph G = (V, E), with V the
set of vertexes and E the set of edges, the Dijkstra’s algorithm uses a Greedy
strategy to solve the problem of minimum paths with single source s of the graph
G = (V, E) if all the weights are non-negative.

Algorithm 1 shows the sequential Dijkstra’s algorithm pseudo-code, whose
input is a given connected graph G = (V, E) represented with adjacency lists
and w(u,v) > 0 representing the edge weight from a vertex u to a vertex v, and
the single source node s.

Algorithm 1. Dijkstra’s Algorithm
INPUT G = (V,E), s
OUTPUT d|V|
d[s] < 0
for allv e V — {S} do
d[v] < oo, for each v # s, v €V
end for
S—0
while ¢ # 0 do
u — Extract — Min(Q, d)
S — SuU{u}
for all v € neighbours[u] do
if dv] > d[u] + w(u,v) then
d[v] — du] + w(u,v)
end if
end for
end while
return d

The algorithm maintains a set S that contains the vertexes whose minimum
path weight from the source s has already been determined, i.e., for each vertex
v € S it is worth d[v] = d(s,v). The algorithm repeatedly selects the vertexes
uw € V — S with the minimum shortest path estimation, inserts v into S, and
releases all the edges outgoing from u. Moreover, a queue with priority @ that
contains all the nodes V' — S is kept, using the respective values d as key.

An Innovative MapReduce-Based Approach of Dijkstra’s Algorithm 193

5.2 MapReduce Approach

The MapReduce approach of the Dijkstra’s algorithm is implemented in Hadoop.
From an architectural point of view, there are two types of nodes that control
the job execution: one JobTracker and several TaskTrackers. The first acts as
master node and coordinates all job executions by scheduling all tasks to different
TaskTrakers that act as workers. TaskTrackers perform the assigned tasks and
send back to the JobTracker reports on the processing status. If a task fails, the
JobTracker reschedules it on another TaskTracker. When a MapReduce job is
invoked by an user, the JobTracker divides the job into a set of tasks that are
assigned to TaskTrackers to process the job in parallel.

As previously discussed, in the sequential approach the key element is rep-
resented by the priority queue @ that keeps a globally-sorted list of vertexes
by current distance. This is not possible in MapReduce, as the programming
model does not provide a mechanism for exchanging global data. Therefore, we
adopted a brute force approach known as parallel breadth-first search. First of
all, as a simplification, we assumed that all edges have associated unit weights.
This assumption allows us to make the algorithm easier to be understood. The
basic idea of the MapReduce Dijkstra’s algorithm is that iteratively the distance
of all vertexes directly connected to the source vertexes is one; the distance of
all vertexes directly connected to those is two; and so on.

Suppose we want to compute the shortest path to vertex n. The shortest
path must go through one of the vertexes in M that contains an outgoing edge
to n. Therefore, we need to examine all m € M to find my, the vertex with the
shortest distance. The shortest distance to n is the distance to ms + 1.

The pseudo-code of the parallel breadth-first search algorithm is provided in
the Algorithms 2 and 3. As already assumed for the sequential approach of the
Dijkstra’s algorithm, we consider a connected, directed graph represented with
adjacency lists. Distance to each vertex is directly stored alongside the adjacency
list of that vertex, and initialized with distance d[v], v € V to oo, except for the
source vertex, whose distance to itself is zero. Therefore, in the pseudo-code, n
denotes the nodeid (i.e., an integer) and N denoted the node’s corresponding to
the adjacency list. Substantially, the algorithm works by mapping over all ver-
texes and emitting a key-value pair for each neighbor on the vertex’s adjacency
list. Therefore, the key will contain the nodeid of the neighbor, and the value
will be the current distance plus one.

To achieve the implementation of the Dijkstra’s algorithm using the MapRe-
duce programming model it has been necessary to implement the Map() and
Reduce() functions as follows.

— Map() is invoked in the Mapper task for each available vertex within the
graph. The output of the Mapper produces different key-value pairs - a key
value pair having as key the source vertex, and as value the adjacent vertexes
and another key-value pair where the key is given by the source vertex and
the value represents the minimum distance value.

194 A. Buzachis et al.

— Reduce() for each key vertex all distances are gathered together and the
minimum between them is chosen. Gathering of distances is performed by the
Hadoop framework while the choice of the minimum distance is implemented
by the user. The output of the Reducer produces another key-value pair where
the key is represented by the respective selected vertex and the value is the
minimum distance.

Parallel breadth-first search is an iterative algorithm, in which each iteration
corresponds to a MapReduce job. At the first iteration, the algorithm discovers
all vertexes that are connected to the source. At the second iteration, all vertexes
connected to those are discovered, and so on. With each iteration, the algorithm
expands the search frontier by one hop.

A crucial aspect of the algorithm, is the determination of the number of
iterations that it needs in order to finish the computation. Typically, there are
siz degrees of separation suggesting that everyone on the planet is connected
to everyone else by at most six steps (the people a person knows are one step
away, people that they know are two steps away, etc.). In practical terms, we
will iterate our algorithm until there are no more vertex distances that are oo.

The execution of an iterative MapReduce algorithm requires a non-
MapReduce “driver” program, which submits a MapReduce job in order to
iterate the algorithm, checks to see if a termination condition has been met,
and if not, repeats. The iterative approach is realized using the Hadoop API to
construct “counters”, which, can be used for counting events that occur during
the execution, e.g., number of corrupt records, number of times a certain condi-
tion is met, or anything that the programmer desires. Counters can be defined
to count the number of vertexes that have distances of co: at the end of the job,
the final counter value is checked in order to see if another iteration is necessary.
The counter values of each worker are periodically propagated to the master.
It brings together the values from the completion of the mapping operations
and reducing and subsequently returned to the user. The Mapper and Reducer
through the use of Reporter can communicate the progress.

Algorithm 2. Mapper Class Pseudo-code
Class MAPPER
method MAP(nid n, node N)

d — N.Distance

EMIT(nid n,N)

for all nodeid m € NADJACENCY LIST do

EMIT (nid m, d + 1)
end for

An Innovative MapReduce-Based Approach of Dijkstra’s Algorithm 195

Algorithm 3. Reducer Class Pseudo-code
Class REDUCER
method REDUCE(nid m, [d1,dz,...])
d«— oo
M—0
for all d € counts [d1,ds,...] do
if ISNODE(d) then
M —d
else
if d < dmin then
drn'in — d
end if
end if
end for
M.DISTANCE « dmin
EMIT (nid m,node M)

6 Experiments

We carried out a scalability analysis in order to investigate the performance of
our sequential and MapReduce implementations of Dijkstra’s algorithm. In par-
ticular, the scalability analysis is based on the input dataset size to evaluate the
average execution time of both implemented approaches. Specifically, we gener-
ated several input datasets representing network topologies describing different
hybrid Cloud, Edge and IoT scenarios, and of different size (i) 10, (ii) 100, (iii)
1000, and (iv) 10000 vertexes respectively. We remark that in each proposed
scenario the vertexes are randomly connected to each other in order to create
a weighted, directed and connected graph. In order to have truthful results we
performed 30 subsequent iterations of the algorithm for both distributed and
sequential approaches and calculated mean values and 95% confidence intervals
respectively

6.1 Experimental Setup

We use three server nodes to deploy the Hadoop MapReduce cluster. Each node
has 4 vCPUs at 2.9 GHz, 8 GB of RAM and Ubuntu Server 16.04 LTS, all servers
install Apache Hadoop 2.6.1 and JDK version 1.8. The sequential approach of
Dijkstra’s algorithm, implemented in Java, runs on another server node having
the same software and hardware features.

Figure 4(a) illustrates the trend of both distributed and sequential approaches
using an input dataset that describes a topology composed of 10 network devices.
The execution times of the distributed approach are very large respect to those
obtained with the sequential one. This behavior is due to the overhead intro-
duced by the intra-cluster nodes communications. In fact, the MapReduce app-
roach requires roughly 77s respect to the sequential one which requires only few
milliseconds.

196 A. Buzachis et al.

Average Execution Time [s]

Average Execution Time [s]

0001 ke

= Distributed # Sequential =Distrbuted = Sequential

(a) Network topology with 10 devices (b) Network topology with 100 devices

850745 10000

1000

Average Execution Time [s]

Average Execution Time [s]

1

= Distributed ® Sequential =Distrbuted Heap Memory

(c) Network topology with 1000 devices (d) Network topology with 10000 devices

Fig. 4. Execution Times [s] of the Sequential/MapReduce Approach of Dijkstra’s Algo-
rithm (Color figure online)

Figure4(b) illustrates the mean execution time of both distributed and
sequential approaches using an input dataset that describes a topology com-
posed of 100 network devices. The trend is very similar to that obtained in the
Fig. 4(a), with the difference that there is a slight variation of execution times.
In particular, the execution time of the distributed approach ranges around 79s,
while for the sequential one increases by a couple of milliseconds

Figure4(c) illustrates the mean execution time of both distributed and
sequential approach using an input dataset that describes a topology composed
of 1000 network devices. The trend is similar to that illustrated previous two
figures. In fact, the execution time registered with the distributed approach
increases sligthly by 10s, the sequential one still be more efficient.

Figure4(d) illustrates the mean execution time of both distributed and
sequential approaches using an input dataset describing a network topology with
10000 network devices. In this configuration, the trend is different. In particular,
the execution times collected using the distributed approach are slower - circa
170, compared to those obtained through the sequential one.

This behavior is evident also performing a vertical scalability by increasing
the heap memory of the JVM from 2GB to 3GB. Indeed, with reference to
orange and green bars of Fig. 4(d) representing the mean response times of the
sequential approach of Dijkstra’s algorithm with respectively 2 GB and 3 GB
of heap memory reserved for the JVM, the mean processing times are roughly
constant and greater than 1000 s. In conclusion, the distributed approach of Dijk-
stra’s algorithm is suitable for huge network topologies (10000 network devices)

An Innovative MapReduce-Based Approach of Dijkstra’s Algorithm 197

being 95% and 92% faster than the sequential one configured with 2GB and
3 GB of heap memory reserved for the JVM.

7 Conclusion and Future Work

In this paper, we considered a scalable SDN scenario, where Cloud, Edge and
IoT devices must communicate efficiently to met the application requirements
to minimize different network parameters such as hops number, latency, energy
consumption, produced COsy and so on.

In this complex scenario, a single centralized routing policy can not meet all
application requirements at the same time. To achieve this, we considered an
SDN environment running a Dijkstra’s algorithm to produce routing tables that
minimize application network latency.

To address a scalable scenario that includes a huge amount of Cloud, Edge
and IoT network devices, in addition to considering a sequential implementa-
tion of Dijkstra’s algorithm, we also considered a MapReduce implementation
to minimize processing times. Specifically, considering small network topologies
(up to 1000 network devices), such as that of an intra-building scenario, the
sequential Dijkstra’s algorithm presents a better mean processing time than the
MapReduce one, whereas in a more complex network topology, such as that of
an intra-campus or smart cities scenario, in which roughly 10000 network devices
are considered, the MapReduce approach represents the optimal solution.

Our future work involves the improvement of our distributed Dijkstra’s algo-
rithm implementation to address reliability issues when physical links fail, net-
work capability control, and scalability due to a single control plane.

Acknowledgment. This work has been supported by FP7 Project the Cloud for
Europe, grant agreement number FP7-610650.

References

1. Gartner Says the Internet of Things Installed Base Will Grow to 26 Billion Units
By 2020. https://www.gartner.com/newsroom/id/2636073

2. Celesti, A., Galletta, A., Carnevale, L., Fazio, M., Lay-Ekuakille, A., Villari, M.: An
IoT cloud system for traffic monitoring and vehicular accidents prevention based
on mobile sensor data processing. IEEE Sens. J. 18, 4795-4802 (2018)

3. Galletta, A., Carnevale, L., Celesti, A., Fazio, M., Villari, M.: A cloud-based system
for improving retention marketing loyalty programs in industry 4.0: a study on big
data storage implications. IEEE Access 6, 5485-5492 (2017)

4. Ahmed, E., Ahmed, A., Yaqoob, I., Shuja, J., Gani, A., Imran, M., Shoaib, M.:

Bringing computation closer toward the user network: is edge computing the solu-

tion? IEEE Commun. Mag. 55, 138-144 (2017)

Liotta, A.: The cognitive net is coming. IEEE Spectr. 50, 26-31 (2013)

6. Celesti, A., Tusa, F., Villari, M., Puliafito, A.: How the dataweb can support cloud
federation: service representation and secure data exchange. In: Proceedings - IEEE
2nd Symposium on Network Cloud Computing and Applications, NCCA 2012, pp.
73-79 (2012)

o

https://www.gartner.com/newsroom/id/2636073

198

7.

10.

11.

12.

13.

14.

15.

16.

17.

A. Buzachis et al.

Fazio, M., Celesti, A., Marquez, F., Glikson, A., Villari, M.: Exploiting the fiware
cloud platform to develop a remote patient monitoring system. In: Proceedings
- IEEE Symposium on Computers and Communications, vol. 2016, pp. 264—270
(2016)

Mulfari, D., Celesti, A., Villari, M., Puliafito, A.: How cloud computing can sup-
port on-demand assistive services. In: W4A 2013 - International Cross-Disciplinary
Conference on Web Accessibility (2013)

Lin, C., Xue, C., Hu, J., Li, W.Z.: Hierarchical architecture design of computer
system. Jisuanji Xuebao/Chin. J. Comput. 40, 1996-2017 (2017)

Zheng, X., Tian, J., Xiao, X., Cui, X., Yu, X.: A heuristic survivable virtual network
mapping algorithm. Soft Comput. 1-11 (2018)

Zhou, W., Jia, J.: Lightweight Web3D visualization framework using Dijkstra-
based mesh segmentation. In: Tian, F., Gatzidis, C., El Rhalibi, A., Tang, W.,
Charles, F. (eds.) Edutainment 2017. LNCS, vol. 10345, pp. 138-151. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-65849-0_15

Liu, Z., Yang, H., Kou, S.: Shared Protection Algorithm Based on Virtual Network
Embedding Framework In Fiber-wireless Access Network (2017)

Wang, M., Liu, J., Mao, J., Cheng, H., Chen, J., Qi, C.: Routeguardian: Construct-
ing. Tsinghua Sci. Technol. 22, 400-412 (2017)

Wang, C., Yan, S.: Scaling SDN Network With Self-adjusting Architecture, pp.
116-120 (2017)

Vig, A., Kushwah, R., Tomar, R., Kushwah, S.: Autonomous Agent Based Shortest
Path Load Balancing in Cloud, pp. 33—-37 (2017)

Rattanawadee, P., Ruengsakulrach, N., Saivichit, C.: The Transmission Time Anal-
ysis of IPTV Multicast Service in SDN/OpenFlow Environments (2015)

Liu, F., Chen, X., An, W., Peng, Y., Cao, J., Zhang, Y.: Minimizing Transmission
Cost for Multiple Service Function Chains in SDN/NFV Networks, vol. 2017, pp.
1-6 (2018)

https://doi.org/10.1007/978-3-319-65849-0_15

	An Innovative MapReduce-Based Approach of Dijkstra's Algorithm for SDN Routing in Hybrid Cloud, Edge and IoT Scenarios
	1 Introduction
	2 Related Work
	3 Motivation
	4 SDN Overview
	5 Dijkstra's Algorithm
	5.1 Sequential Approach
	5.2 MapReduce Approach

	6 Experiments
	6.1 Experimental Setup

	7 Conclusion and Future Work
	References

