l‘)

Check for
updates

TaaS Service Selection Revisited

Kyriakos Kritikos'®™) and Geir Horn?

1 ICS-FORTH, Crete, Greece
kritikos@ics.forth.gr
2 University of Oslo, Oslo, Norway
geir.horn@mn.uio.no

Abstract. Cloud computing is a paradigm that has revolutionized the
way service-based applications are developed and provisioned due to the
main benefits that it introduces, including more flexible pricing and
resource management. The most widely used kind of cloud service is
the Infrastructure-as-a-Service (IaaS) one. In this service kind, an infras-
tructure in the form of a VM is offered over which users can create the
suitable environment for provisioning their application components. By
following the micro-service paradigm, not just one but multiple cloud
services are required to provision an application. This leads to requir-
ing to solve an optimisation problem for selecting the right IaaS services
according to the user requirements. The current techniques employed to
solve this problem are either exhaustive, so not scalable, or adopt heuris-
tics, sacrificing optimality with a reduced solving time. In this respect,
this paper proposes a novel technique which involves the modelling of an
optimisation problem in a different form than the most common one. In
particular, this form enables the use of exhaustive techniques, like con-
straint programming (CP), such that both an optimal solution is deliv-
ered in a much more scalable manner. The main benefits of this technique
are highlighted through conducting an experimental evaluation against
a classical CP-based exhaustive approach.

1 Introduction

Cloud computing is a new computing paradigm that has revolutionized the way
applications can be built and provisioned. Its high adoption is due to the main
benefits that it delivers, which include flexible pricing and resource management
as well as reduction of costs due to the outsourcing of infrastructure management.
This computing paradigm includes the potential delivery and exploitation
of different service models, which include Infrastructure-as-a-Service (IaaS),
Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS), with a gradual
release of management control from the requester to the provider. The most widely
used and researched model is the IaaS one. In this model, an infrastructure in the
form of a Virtual Machine (VM) is offered to requesters to enable them to create an
execution environment for their application components. Apart from this infras-
tructure, suitable tools are also supplied to requesters to enable them to better
exploit this cloud service kind, including suitable restful management APIs.
© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved

K. Kritikos et al. (Eds.): ESOCC 2018, LNCS 11116, pp. 170-184, 2018.
https://doi.org/10.1007/978-3-319-99819-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_13&domain=pdf

TaaS Service Selection Revisited 171

Once cloud computing has been set and evolved, it has also led to the rise of
a new application design and provisioning model based on micro-services. This
model caters for a better separation and reuse of business functionalities while
enables a more flexible adaptation of the micro-service application. In this model,
an application is functionally split into a set of services, which are deployed
individually in containers in different VMs. As such, to better manage such an
application’s provisioning, there is a need to cover the selection and adaptation of
the underlying TaaS services. This means that an initial set of IaaS services needs
to be selected according to the application requirements, while the application
can be reconfigured at runtime by either migrating micro-services from one IaaS
service to another or creating new instances of the micro-services, e.g., to handle
the additional, unexpected workload that might arrive.

Focusing on TaaS selection, various approaches have been proposed [1] which
differ along the optimisation solving techniques that they adopt and the opti-
misation objective kinds that they can handle. This differentiation also impacts
the capabilities of each approach with respect to the well-known solving time-
to-optimality trade-off. For example, exhaustive approaches, like those adopting
techniques like Constraint Programming (CP), are more suitable for delivering
optimal results but in the expense of increased solving time. On the other hand,
heuristic approaches more rapidly deliver near-optimal results.

In any case, current approaches follow a classical way to model the optimisa-
tion problem, where variables are mainly used to denote decisions that need to be
taken with respect to which service component should be mapped to which TaaS
offerings from those that satisfy its local (e.g., hardware or location) require-
ments. However, this classical way cannot scale in sight of the plethora of IaaS
services available on the market. Just focusing on one big cloud provider like
Amazon, one has to select among tens of thousands of IaaS offerings. Even if
multiple local constraints are being supplied per service component, this can
reduce the offering number to hundreds just for one cloud provider. However,
by considering the combinational nature of the optimisation problem to solve,
this can lead to a huge solution space that cannot be handled by any exhaustive
approach, while the results provided by any heuristic approach would be just
non-optimal, as a very small part of the solution space can be examined.

In our opinion, this inherent difficulty in the IaaS service selection problem
has not been well and appropriately addressed in the literature. In this respect,
this paper goes one step forward by proposing a novel technique which can enable
the use of an exhaustive approach to a modified modelling of the optimisation
problem in such a way that the main benefits of optimality are supplied in a
much more scalable manner. In particular, in this modelling, the decision space
is regulated by variables which map the service components to respective VM
attributes. As the number of VM attributes is usually quite limited while the size
of their value domain is small, this leads to the production of an optimisation
problem which is less complex and leads to a quite reduced solution space.

While this modelling is more suitable, it comes also with a certain flaw. In
particular, a solution mapping to a value for all these variables might not be

172 K. Kritikos and G. Horn

associated with a real IaaS offering. This then required our approach to adopt
a smart method to alleviate this. This method involves three main parts: (a)
the derivation of the dependencies between the offering cost with respect to the
values of the other VM variables in the form of a linear function; (b) the supply
of if-then-else conditional statements which enable to reflect other dependencies
between the different VM variables so as to further filter irrelevant combinations;
(c) the post-processing of the produced solution to map it to a real one which
has the least distance to the current, possibly virtual one.

The main benefits of our work are highlighted via an experimental evaluation
assessing how well the TaaS selection problem is solved in the context of the
Amazon cloud provider. The evaluation results show that our approach scales
much better than a classical, exhaustive one and can deliver results of almost the
same quality. Once the scalability limits are reached for the classical approach,
the proposed one is also able to deliver results of even better quality.

The rest of the paper is structured as follows. The next section reviews the
related work and provides important background knowledge. Section 3 analy-
ses the proposed IaaS selection technique. Section4 reports and discusses the
main evaluation results. Finally, the last section concludes the paper and draws
directions for further research.

2 Background

2.1 Related Work Analysis

Many approaches [2-4] have been proposed for VM consolidation in data centres.
Such approaches tend to solve a similar problem, where instead of mapping
application components to VMs, they associate VMs to respective hosts. As such,
such approaches could be utilised only in the context of resource management
internally within a cloud provider’s data centre. However, their techniques are
similar or equivalent to those used for solving the TaaS selection problem.

The TaaS selection approaches [1] either focus on local TaaS selection
restricted to the context of one application component or on global TaaS selec-
tion where the selection concerns all components of a respective application. As
this paper focuses over the second and more advanced form of the IaaS selection
problem, the analysis is restrained over this form.

The global TaaS selection approaches differ [1] with respect to the solving
technique adopted as well as in the number and kind of objectives optimised.
Classically, depending on the solving technique used, there can be a trade-off
between solving time and optimality. Exhaustive techniques like CP [5] or Linear
Programming (LP) [6] attempt to explore the whole solution space so as to derive
the most optimal solution. However, this exploration is costly with respect to
solving time. In this respect, heuristic approaches have been adopted [7], such
as nature-inspired ones, which tend to produce rapidly a sub-optimal solution.

Cost [8] is the dominant optimisation objective that is usually optimised [1].
However, there exist other approaches that also attempt to optimise resource-
specific metrics [9], like the number of cores (mapping to the computational

TaaS Service Selection Revisited 173

power to be devoted to a micro-service component). Others focus on reducing
network latency [10] to guarantee a more suitable service execution time. There
is also an approach which attempts to cover multiple levels [11] by being able to
map resource-specific metrics to service-specific ones. Such an approach is then
able to optimise metrics which reside at the service/application level.

To reduce the solving time by still adopting an exhaustive technique, some
approaches attempt to learn from the application execution history. Such a learn-
ing enables then to fix some parts of the problem and thus accelerate its solving.
Learning-based approaches adopt different ways to conduct this learning. In [12],
a combined stochastic programming and learning approach is proposed which
attempts to remember bad solutions and to discard them when re-solving the
same optimisation problem. On the other hand, the approach in [13] employs a
rule-based method to derive the best deployments for both the current applica-
tion and its components from the application execution history.

The latter kind of approaches is complementary to our work. Such approaches
could be employed for further reducing the solving time. However, the main
advancement of the state-of-the-art lies on the capability to not require any
prior knowledge about the application execution but rely on smart techniques
that better and more rapidly explore the solution space by still employing an
exhaustive technique to guarantee optimality. In this respect, a better trade-off
between optimality and solving time is reached with respect to the state-of-the-
art which is the main subject of research here. Further, our work is more scalable
with respect to the others due to its capability to rely on a constant solution
space when then number of VM offerings is increased.

2.2 IaaS Allocation Problem

The classical TaaS allocation problem attempts to optimise one or more objec-
tives at the IaaS resource level. Let x; ; € {0,1} be a binary decision variable
indicating that application component type 7 € I can be hosted on TaaS offering
j € J. It is noted that there are |I| - |J| binary decision variables regarding the
assignment of all application component types. Furthermore, there are |I| deci-
sion variables n; € m; C Ny representing the number of instances of application
component type i.

The allocation problem has given Q “quality” dimensions for which the good-
ness of an allocation is measured; e.g., cost- or performance-related dimensions.
Let

vy (X,n|0) : {0, 1} 1] — D, (1)
be the value function in dimension ¢ € {1,...,Q} given the matrix of the binary
allocations X = [z; ;] and the vector of instance counts n = [ng,...,[I|]T.

The vector 0 represents the context parameters for the allocation. The con-
text parameters can be related to cost, performance or any other value that can
be considered constant for the allocation problem. As an example, consider the
situation where a quality dimension d represents the overall cost of an alloca-
tion and ¢; is the cost of IaaS offer j. Then, the value function takes the form

Vd (X,n\@) = Zizjni c T4 9]

174 K. Kritikos and G. Horn

For each quality dimension value there is a utility function indicating how
good this value is on a normalised scale, i.e. uq (vq (X,n|0)) : D, — [0,1]. The
utility function is defined as the normalised value with respect to the extreme
values of the domain.

supDg — vy (X,n|0)

uq (vg (X, 0] 0)) = supD, — inf D
q q

(2)

Two kind of constraints are involved in the problem modelling. The first kind
involves component specific constraints that restrict the domain of respective
decision variables. For each service component only one IaaS offering must be
selected, which implies the following set of constraints

me- =1 for alli (3)

J

The second kind of constraints attempts to reflect user requirements posed at
the global level. For instance, if we consider the resource level, then we could have
constraints for, e.g., VM offering characteristics like the cost and the number of
cores. In general, the constraints of this kind can take the following form

g(X;n|0)<a (4)

Additional constraints might also be posed to express further user requirements,
like component co-location constraints. The interested reader can find more
details about such constraints in [11].

Given that the utility is normalised in all dimensions, each of them is a simple
unit less number in the interval [0,1], and the overall allocation utility can be
computed as an affine combination of the utility dimensions, also known as the
Simple Additive Weighting (SAW) [14] technique. The weights w, € [0,1] can
be usually calculated by following the Analytic Hierarchy Process (AHP) [15].
The overall utility to be maximised is then given as

Q
U(X,n[6) =2 w,-uy(v,(X,n]0)) ()

q=1

subject to the constraints (3)—(4).

The main issue with the above problem formulation lies on the huge solution
space as can be seen from the Cartesian product in (1). By considering just
one cloud provider (Amazon) and that common hardware constraints (over core
number, memory, and storage size) are imposed at the local level which lead to
around 400 Amazon cloud offerings matching each application component, this
means that for an application with just 3 components, the number of combina-
tions could be at least 3°°. Thus, such a solution space is already quite large.
So, imagine what would be the case for applications with a greater size. The use
of an exhaustive solver would be out of the question, while heuristic techniques
would just supply non-optimal solutions as it will be impossible for them to

TaaS Service Selection Revisited 175

check a great part of the solution space. This actually requires the proposal of a
technique that more smartly explores or even filters the solution space. Such a
technique is actually proposed in this paper and will be analysed in the following
section.

3 Technique

In order to find a better trade-off between solving time and optimality, our
technique attempts to modify the way the IaaS selection problem is modelled.
The main rationale is that by changing the solution space and making it much
smaller, we could still have the ability to exploit an exhaustive technique.

Indeed, this was the main idea that has been followed. Instead of mapping
each service component to all the TaaS offerings that match it, we now associate
it with the respective features of an IaaS offering, like the number of cores, the
main memory size and so on. This new mapping has the advantage that the
number of TaaS offering features is small and the value domain for that features
is also small. Further, the problem now becomes independent on the number of
TaaS offerings and thus more scalable.

However, this mapping comes with the penalty that the solution that is
produced, mapping each service component to a value from the domain of each
TaaS offering feature, might be virtual. This is actually quite probable as the
offering space of any single provider is smaller than the solution space formulated
by the cartesian product of the value domains of its IaaS offering features. In
order to cope with this major issue, we have employed two main measures.

First, on the modelling side, we have introduced smart constraints that enable
to further reduce the solution space, as it might be initially big, as well as guide
the solution process towards picking more suitable combinations of values for
the TaaS features.

Second, once a solution has been produced, we employ a post-processing logic
aiming at making all TaaS offerings that have been mapped to the application
components real. Such logic will be shown to employ a distance measure in order
to guide the exploration for the finding of the most suitable, real IaaS offerings.

Both measures are now analysed in the following two sub-sections while the
last one attempts to provide the complete modelling of the optimisation problem.

3.1 Smart Constraints

To reduce the solution space of a problem, one kind of measure would be to
introduce special constraints which attempt to formulate dependencies between
the main problem variables. Such constraints through the respective constraint
propagation mechanism enable to restrict the solution space in a great extent.
As indicated in Sect.2.1, one of the major factors always attempted to be
optimised is cost. As such, we got the idea that we could introduce a respec-
tive constraint in the optimisation problem which correlates application com-
ponent cost with the rest of the IaaS feature-based parameters. Such a con-
straint could be easily formulated if the exact cost model of an IaaS provider

176 K. Kritikos and G. Horn

was known. However, even if such a cost model was available, it could be quite
complex and might require formulating a great number of logical constraints of
the form: if (fo ==wvy, A fs ==vp ... A fr, == vy,,) then (fi = 0.1), where
fr represents TaaS feature k£ and f; is the feature representing the cost. Unfor-
tunately, logical constraints are difficult to handle in any kind of mathematical
programming paradigm. They also create major scalability issues when their
number is large.

In this respect, another idea came to our mind. Instead of attempting to
formulate all possible logical constraint combinations, we could introduce just
a single function enabling to model the needed correlation. This then led us
to resort to linear regression techniques which have exactly this goal: to map
one parameter or variable to a set of other variables. Thus, in the end, we could
express cost as a function of the IaaS features for each cloud provider. This could
then take the following constraint form: f1 = R, (f2, f3,... fm), where R,(-) is
the regression function for IaaS provider p.

We could employ non-linear regression techniques instead but this did not
seem to be actually needed as we were able to produce a relative accurate linear
cost function for two of the most major IaaS providers, i.e., Amazon and Google.

However, the derived function does not exactly and completely solve the
current issue. It provides a mapping that enables us to become independent
of cost and be able to derive it through the rest of the variables. However, as
TaaS offering cost maps to a quite large value domain, this action enabled us to
significantly reduce the initial solution space.

To still follow the idea of formulating dependencies, the next clever devel-
opment that has been performed was to introduce a restricted form of logical
constraints for a widely used feature with a quite small domain. Such logical
constraints will not thus be great in number and could be still easily handled by
an exhaustive technique like Constraint Programming (CP).

This led us to focus on the number of cores feature which happens to have the
smallest value domain among the most widely used IaaS features while also plays
an important role in influencing IaaS offering cost. As such, we just processed
the whole TaaS offering space of each cloud provider and attempted to create
mappings from each value of the number of cores feature to the respective mini-
mum and maximum value that has been anticipated for the rest of the features,
including cost. This led to the definition of the following form of constraints:

if (fo ==vy, Ap==1) then
(minvy, < fi <maxwvg) A (minvy, < f3 < maxvy,)
... A (minvy,, < fr, < maxwvy,,)

where f5 is the number of cores feature and p is a variable that denotes a certain
TaaS provider.

By combining the above two constraint forms, the solution space is reduced
as cost feature is automatically calculated by a function while the different values
of the core number feature guide the solution process and enable us to pick more

TaaS Service Selection Revisited 177

correct values for the remaining IaaS features. This leads to a smarter solution
space exploration that can rapidly diverge to the optimal solution.

3.2 Solution Post-processing

The produced solution may not be a valid one. The combination of TaaS feature
values in the context of a certain IaaS provider does not guarantee that exactly
a real laaS offering can be designated. The introduction of smart constraints
remedies slightly this but there is still a need for correcting this derived solution.

Such a correction or alignment is performed by examining the IaaS offering
space of all providers to find a real offering which is as much as possible close to
the derived virtual one. This involves first finding only the most relevant offerings
from all providers via a normal matchmaking step, which can be performed
ultra rapidly by employing unary matchmakers like the one in [16], and then
performing the local search over them to find the most appropriate real TaaS
offering.

The distance between the virtual and a real IaaS offering is calculated
according to the following definition: D (real, virtual) = Aty (real, virtual) 4+
Aposition (real, virtual), where A is a difference function. The first factor attempts
to penalise the real TaaS offering based on the actual parameters that participate
in the optimisation objectives of the TaaS selection problem. While the second
factor attempts to penalise the real TaaS offering based on the distance of the
position of the respective IaaS offering feature value within the (ordered) value
domain of that feature.

By considering that the respective optimisation objective is only cost, the
first term of the distance function could take the following form:

COStreal

Aygitigy (real, virtual) = - 100000

COStvirtual
where costyea; and costyirtual represent the cost of the two offerings. On the other
hand, the second term of the distance function can be expressed as:

Aposition (reaL Virtual) = Z ‘Ib (fb,virtual) - Ib (fb,real) } - 1000
b

where Ij,(-) represents the index function of the feature numbered as b which
returns the position in the feature’s (ordered) value domain for a specific value
of that feature. The feature value is represented by fp virtual @nd fpreal in the
case of the virtual and real offering, respectively.

As it can be seen, the distance formula attempts to penalise more when we
move far away from the expected utility of the solution and less when we pick
more distant values for each feature with respect to its ordered value domain.
This leads to imposing two levels of penalisation. As it will be shown in the
evaluation section, this distance measure was enough for finding the right real
solution out of a virtual one.

178 K. Kritikos and G. Horn

3.3 Optimisation Problem Formulation

The general process for solving the IaaS selection problem according to our
approach follows three main steps: (a) problem formulation; (b) problem solving;
(c) solution alignment, where the last step applies the respective distance-based
search (see Sect. 3.2) for each application component with respect to the virtual
TaaS offering derived for it.

In this subsection, we focus on the first process step by attempting to modify
the formulation of the classical IaaS selection problem (see Sect. 2.2). Please note,
though, that the same principles are followed which regard the use of the AHP
and SAW techniques as well as linear utility functions.

The classical IaaS selection problem is, first of all, relaxed by replacing the
binary decision variables with variables based on the smart constraints. The
main decision variables of the relaxed optimisation problem comprise:

(a) component-to-feature variables of the form x;; indicating that a certain
value from the domain of feature b has been selected with respect to appli-
cation component ¢. Thus, in contrast to the original problem, the domain
of such variables now is a certain value set and not the boolean domain with
just two possible values; and

(b) instance number variables for components as in the case of the original/class
problem formulation; and

(c) variable p which denotes the IaaS provider.

This means that we have the introduction of one new decision variable, the
modification of the first variable kind and the maintenance of the second with
respect to the original problem.

The original constraints of the problem, (3)—(4) remain the same, and we are
still maximising the overall utility (5). However, we do have a differentiation on
the concrete level with respect to (4). In particular, the value of the different
parameters at the global level can be actually easily computed from the sum of
these parameters at the local level for each application component multiplied
by the number of instances of that component (as we are considering mainly
resource characteristics). For instance, the overall cost could be computed by
the following formula: v; = Zi 231 - ny if we consider that vy is the value of cost
parameter which is indexed as 1 while z; ; maps to the local cost of the virtual
TaaS offering for component i.

However, we do have now the introduction of new constraints, the smart
ones, as indicated in Sect. 3.1.

if (p == P) thenz,; =R, (iU,L"Q,SCi’g, .. .:vMJP|) for alli, P (6)

if (l‘i’2 == V2, /\p == P) then (7)
minvg, , < ;1 < Maxvg, , Aminvg, , < ;3 < Max vy, ,
A mimvmi’upI < T gp) < max vz, . | for alll, P

Constraint (6) indicates that if a certain IaaS provider P is selected, the cost
for each application component should be computed by applying the regression

TaaS Service Selection Revisited 179

function for that provider over the remaining VM features. While Constraint (7)
introduces the smart constraints reflecting the dependencies between the number
of cores and the rest of TaaS offerings for IaaS provider P.

Discussion and Implementation Details. As it can be seen from the above
formulation, the optimisation problem does include a greater number of con-
straints which, however, enable to better explore as well as filter the solution
space.

Such a problem is not linear so it cannot be solved by employing different
exhaustive technique kinds. On the contrary, CP seems to be the most suitable
candidate as it can handle both non-linear and logic-based constraints, while it is
also able to cater for the introduction of both integer- and float-based variables.

Based on this analysis, our implementation has relied on using the MiniZinc
language for specifying the constraint optimisation problem as well as different
kinds of CP solvers which can be deemed as best for the new IaaS selection prob-
lem formulation depending on the number of optimisation objectives involved.
The use of MiniZinc enabled us to easily evaluate a great set of CP solvers and
find those that have the best possible performance.

4 FEvaluation

The goal of the experimental evaluation was to assess whether the performance
and optimality of our proposed approach does advance the state-of-the-art. To
conduct such evaluation we have relied on a certain experimental framework able
to control the way the optimisation problem is formulated according to certain
configuration parameters. The experiments were performed in a laptop with the
following characteristics: (CPU: Inter Core i5-2430M with 2 cores and 2.4 GHz
frequency, RAM: 6 GB, Disk: 500 GB SSD).

4.1 Experiment Configuration
Three main evaluation parameters were considered:

— cost as a parameter for evaluating the optimality of the examined approaches
for only single objective optimisation problems;

— the solution utility as the parameter for evaluating the optimality of the
examined approaches for multi-objective optimisation problems

— the solving time, i.e., the time required for solving a certain model of an
optimisation problem, including any kind of solution post-processing time.

Each experiment was conducted in a series of steps by step-wisely varying
one configuration parameter while leaving the rest stable. Each experiment step
was computed (30) times and average values from the raw data were calculated
for each approach considered and each from the above evaluation parameters.

The examined approaches were the following: (a) a classical problem formu-
lation approach denoted as OLD; (b) a new problem formulation approach based

180 K. Kritikos and G. Horn

on our work without the solution post-processing denoted as NEW'; (c) the same
approach as the previous one along with the solution post-processing denoted
as NEW_FIXED. Each approach was implemented in Java and relied on the use
of the best possible solver according to the actual problem at hand (variation
point is the number of objectives as indicated in the previous section). To not
make each solver run forever, a certain time limit was introduced (100s) for the
solving process in order to also reduce the execution time of the experiments.

The experimental framework involves using different configuration parame-
ters to control the way the optimisation problem is generated: (a) the number of
application components; (b) the number of cloud providers; (¢) the number and
kind of TaaS features; (d) the number of optimisation objectives. To keep the
problem complexity low so as to also evaluate in an error-free manner the OLD
approach, the cloud provider number was kept to the minimum (1, the Ama-
zon provider) while the kind of TaaS features considered were the most common
(core number, memory & disk size). Thus, to conduct the experiments, we varied
mainly the component and optimisation objective number. We should also note
that we have taken as a base all the actual real IaaS offerings available at the
time of the experiments for Amazon AWS.

As there is no actual benchmark for evaluating IaaS selection approaches,
we have relied on randomly creating IaaS service requests for each application
component in each experiment step execution. Each such request attempts to
randomly select a specific value from the value domain of each IaaS feature
considered (out of the 3 ones in the current experiment configuration). This looks
like a more correct way to produce the respective requests as we can consider
that there is already widespread knowledge about which are the most suitable
values for each TaaS feature across the whole developer community.

4.2 Experiment Analysis

Two main experiments have been conducted, which are now analysed below,
having as their main variation point the number of optimisation objectives.

First Experiment. In this experiment, we consider only cost as the main
optimisation objective and attempt to vary the number of application compo-
nents from 1 to 6. The respective experiment results are depicted in Fig. 1.

The solving time results are quite expected. The two variants of the proposed
approach seem to scale much better than the classical approach. Further, the
classical approach already reaches the time limit when the component number
equals to 5. The performance of the two proposed approach variants is similar.
This means that the post-processing step does not occupy a great proportion
of the overall approach execution time. In fact, the respective search time is
mainly proportional to the number of matched IaaS offerings and application
components. So, as the application component number linearly increases and
the match number remains more or less stable, the post-processing time also
increases linearly. So, the exponential behaviour in the two variants’ performance
is mainly due to the exponential increase of the solution space.

AVERAGE COST PROGRESS
=NEW<NEW_FIXED+OLD

TaaS Service Selection Revisited

AVERAGE SOLVING TIME PROGRESS
=NEWNEW_FIXED+OLD

181

100,000

@ 35.00

AVERAGE COST

nnnnnn

10 15 20 25 30 35 40 45 50 55 60 00 s 2

25 30 35 40 45 50
Component Num Component Num

(a) Cost results (b) Solving time results

Fig. 1. 1st experiment results

Concerning cost, i.e., the current optimality parameter, we can see that the
non-aligned approach variant does not perform so well with respect to the rest
of the approaches. This is mainly related to the precision of the linear regression
function. As this precision is imperfect, we expect that the difference between the
utility derived by this approach variant and the utility of the other approaches
will be increased when the application component number increases. This is the
actual case in the experiment results. With the sole exception that the utility
difference between NEW and OLD gets reduced at some time point, mainly due
to the deterioration of the utility on the side of the OLD approach.

Such a deterioration is mainly due to the fact that the OLD approach is
starting to have a hard time in better exploring the solution space. Such that
when the time limit is eventually reached, the quality of the solution deteriorates
significantly. This gives the opportunity for the overall proposed approach, the
NEW_FIXED to surpass the OLD one when the component number becomes 4.

Second Experiment. In the second experiment, the same control parameter
is varied (from 1 to 3) but the number of optimisation objectives is now 2. These
objectives include cost and total number of cores. The combination of these
objectives make sense as there is usually a trade-off between computation power
and cost. The respective results from this experiment are shown in Fig. 2.

As it can be seen, the OLD approach already reaches its time limit when
the component number is two. This signifies that the increase in the number of
objectives makes the exploration of the solution space more time consuming such
that the exponential increase in that space’s size makes the respective solver to
more rapidly exceed the time limit posed. On the other hand, the two variants of
the proposed approach are much more scalable while their solving time is always
below 2 seconds. The time difference is again quite small between these variants,
mainly due to the post-processing time penalty. This time penalty seems to be
increased quite slightly with the increase in the component number.

182 K. Kritikos and G. Horn

AVERAGE UTILITY PROGRESS AVERAGE SOLVING TIME PROGRESS
=NEW<NEW_FIXED+OLD =NEW+NEW_FIXED+OLD
s e

sa7s a
5850 £
o582
e Y 000
i IS
Ele 5
(= -~ z
2 57.00. >
W 5e7s]
gassn @
.
b ¢
L ss7s 4
g
&
55.25 <
Component Num Component Num
(a) Overall Utility results (b) Solving time results

Fig. 2. 2nd experiment results

The overall utility results seem a little bit surprising. As we can see, the best
approach is now NEW followed by NEW_FIXED and OLD. This looks more
correct as NEW has more freedom to find the virtual solution exhibiting the best
possible trade-off while NEW_FIXED is restrained over the capabilities of the
current offerings locally matching each application component. Such capabilities
might thus be less performant than those of the virtual solution found. The bad
utility result of OLD is mainly due to its hard time to explore the solution space.
Which is rather immediate than in the case of single-objective problems. While
not shown here, due to page restriction reasons, the only case where OLD is
better than the rest of the approaches is with respect to the overall cost (i.e., a
part of the objective set) and only when the component number equals to 1.

4.3 Discussion

As it can be observed from the experiment results, our novel approach is much
scalable and performant than the classical TaaS selection approach. Further,
it is able to find a better solution in most of the cases, due to the solution
space restrictions that the classical approach is facing. Only when the solution
space is quite small, the classical approach could be considered as slightly better
in optimality but such a case is not so frequent in reality. This validates the
superiority of our approach which opens up new opportunities for solving TaaS
and service selection problems in general in a much more optimal and rapid way.

5 Conclusions

This paper has presented a novel approach which exhibits a better trade-off
between optimality and solving time for the IaaS selection problem. In particular,
this approach models differently this optimisation problem and enables as such

TaaS Service Selection Revisited 183

the scalable use of state-of-the-art exhaustive solvers for optimally solving it. The
approach involves changing the decision variables as well as introducing smart
constraints in the model of the optimisation problem. This enables to reduce the
solution space significantly as well as have a better way to explore it. Due to a
side-effect of the modified problem modelling, the proposed approach involves a
solution post-processing step which attempts to guarantee that the components
of the application at hand are mapped to real IaaS offerings.

The following future work directions will be pursued. First, we plan to sup-
port more cloud providers apart from Amazon and Google in our implementation
as well as more thoroughly evaluate our approach in the increased solution space
that will be formulated. Second, we plan to expand the modelling of the optimi-
sation problem to cover multiple levels of abstraction. Third, we will explore
whether a learning-based method could be additionally employed to further
reduce the solving time of our approach. Finally, we will investigate whether
additional smart constraints can be incorporated into the optimisation problem
model such that the solution post-processing can be avoided.

Acknowledgements. The research leading to these results has received funding from
European Union’s Horizon 2020 programme under grant agreement No 731664 (con-
cerning the Melodic EU project).

References

1. Sun, L., Dong, H., Hussain, F.K., Hussain, O.K., Chang, E.: Cloud service selection:
state-of-the-art and future research directions. J. Netw. Comput. Appl. 45, 134—
150 (2014)

2. Dong, J., Jin, X., Wang, H., Li, Y., Zhang, P., Cheng, S.: Energy-saving virtual
machine placement in cloud data centers. In: CCGrid, pp. 618-624. IEEE/ACM
(2013)

3. Casalicchio, E., Menascé, D.A.; Aldhalaan, A.: Autonomic resource provisioning in
cloud systems with availability goals. In: CAC, Miami, Florida, USA, vol. 1(1-1),
p. 10. ACM (2013)

4. Jayasinghe, D., Pu, C., Eilam, T., Steinder, M., Whally, 1., Snible, E.: Improv-
ing performance and availability of services hosted on TaaS clouds with structural
constraint-aware virtual machine placement. In: SCC, Washington, DC, USA, pp.
72-79. IEEE Computer Society (2011)

5. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier
Science Inc., New York (2006)

6. Van Hentenryck, P., Saraswat, V.: Strategic directions in constraint programming.
ACM Comput. Surv. 28(4), 701-726 (1996)

7. Dastjerdi, A.V., Buyya, R.: Compatibility-aware cloud service composition under
fuzzy preferences of users. IEEE Trans. Cloud Comput. 2(1), 1-13 (2014)

8. Chaisiri, S., Lee, B.S., Niyato, D.: Optimization of resource provisioning cost in
cloud computing. IEEE Trans. Serv. Comput. 5(2), 164-177 (2012)

9. Soltani, S., Elgazzar, K., Martin, P.: QuARAM service recommender: a platform
for Taa$S service selection. In: UCC, Shanghai, China, pp. 422-425. ACM (2016)

10. Klein, A., Ishikawa, F., Honiden, S.: Towards network-aware service composition
in the cloud. In: WWW (2012)

184

11.

12.

13.

14.

15.
16.

K. Kritikos and G. Horn

Kritikos, K., Plexousakis, D.: Multi-cloud application design through cloud service
composition. In: Cloud, pp. 686-693. IEEE Computer Society, June 2015

Horn, G.: A vision for a stochastic reasoner for autonomic cloud deployment. In:
Second Nordic Symposium on Cloud Computing & Internet Technologies (Nordi-
Cloud 2013), pp. 46-53. ACM, September 2013

Kritikos, K., Magoutis, K., Plexousakis, D.: Towards knowledge-based assisted IaaS
selection. In: CloudCom, pp. 431-439. IEEE Computer Society, December 2016
Hwang, C., Yoon, K.: Multiple Criteria Decision Making. Lecture Notes in Eco-
nomics and Mathematical Systems. Springer, Heidelberg (1981). https://doi.org/
10.1007/978-3-642-48318-9

Saati, T.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)
Kritikos, K., Plexousakis, D.: Novel optimal and scalable nonfunctional service
matchmaking techniques. IEEE Trans. Serv. Comput. 7(4), 614-627 (2014)

https://doi.org/10.1007/978-3-642-48318-9
https://doi.org/10.1007/978-3-642-48318-9

	IaaS Service Selection Revisited
	1 Introduction
	2 Background
	2.1 Related Work Analysis
	2.2 IaaS Allocation Problem

	3 Technique
	3.1 Smart Constraints
	3.2 Solution Post-processing
	3.3 Optimisation Problem Formulation

	4 Evaluation
	4.1 Experiment Configuration
	4.2 Experiment Analysis
	4.3 Discussion

	5 Conclusions
	References

