l‘)

Check for
updates

Using a Microbenchmark to Compare
Function as a Service Solutions

Timon Back and Vasilios Andrikopoulos®)

University of Groningen, Groningen, The Netherlands
t.back@student.rug.nl, v.andrikopoulos@rug.nl

Abstract. The Function as a Service (FaaS) subtype of serverless com-
puting provides the means for abstracting away from servers on which
developed software is meant to be executed. It essentially offers an event-
driven and scalable environment in which billing is based on the invoca-
tion of functions and not on the provisioning of resources. This makes
it very attractive for many classes of applications with bursty workload.
However, the terms under which FaaS services are structured and offered
to consumers uses mechanisms like GB-seconds (that is, X GigaBytes
of memory used for Y seconds of execution) that differ from the usual
models for compute resources in cloud computing. Aiming to clarify these
terms, in this work we develop a microbenchmark that we use to evalu-
ate the performance and cost model of popular FaaS solutions using well
known algorithmic tasks. The results of this process show a field still
very much under development, and justify the need for further extensive
benchmarking of these services.

Keywords: Function as a Service (FaaS) - Microbenchmark
Performance evaluation - Cost evaluation

1 Introduction

The wide adoption of cloud-native enabling technologies and architectural con-
cepts like containers and microservices in the recent years has created an increas-
ing interest in serverless computing as a programming model and architecture.
In this model, code is executed in the cloud without any control of the resources
on which the code runs [1]. Serverless encompasses a wide range of technologies,
that following the discussion in [13] can be grouped into two areas: Back-end as
a Service (BaaS) and Function as a Service (FaaS). BaaS$ is especially relevant
for mobile application development and is closely related to the SaaS delivery
model, allowing the replacement of server-side components with third party ser-
vices. Google’s Firebase! is an example of such a service. FaaS, on the other
hand is closer to the PaaS model, allowing individual business operations to be
built and deployed on a FaaS platform. The key difference between FaaS and

! Firebase https://firebase.google.com/.

© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
K. Kritikos et al. (Eds.): ESOCC 2018, LNCS 11116, pp. 146-160, 2018.
https://doi.org/10.1007/978-3-319-99819-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_11&domain=pdf
http://orcid.org/0000-0001-7937-0247
https://firebase.google.com/

Using a Microbenchmark to Compare Function as a Service Solutions 147

PaaS$ is the scaling scope as discussed by Mike Roberts?: in PaaS the developer
is still concerned with scaling an application up and down as a whole, while FaaS
provides complete transparency to the scaling of functions, since this is handled
by the platform itself.

There are a number of claimed benefits of serverless computing, and by
extension also of FaaS, identified for example by [13]. More importantly, scaling
becomes the responsibility of the platform provider and the application owner
is charged only for how long a function is running as a response to its invo-
cation (within a billable time unit—BTU). This is a big departure from the
“traditional” model of cloud computing so far, at least when compared to other
compute—oriented solutions like VM- and Container as a Service, where the
owner is charged for provisioning these resources irrespective of their utilization.
As a result, FaaS is perceived as the means to achieve significant cost savings,
especially in the case of bursty, compute-intensive workloads [1] such as the ones
generated by IoT applications.

At the same time, however, the pricing model of FaaS solutions can be diffi-
cult to decipher and surprisingly complex to model [2]. FaaS users are typically
charged based on two components: number of function invocations across all
functions belonging to the user, and function execution duration measured, con-
fusingly enough, in GB-seconds per billing cycle. The first metric is relatively
straightforward but potentially extremely dangerous in the case of decomposing
application functionality into too many fine—grained functions that result into
ever expanding cumulative costs. The second one is based on the practice of
most FaaS providers, as discussed in the following section, of requiring the user
to define a fixed memory amount to be allocated for each function execution.
Users are then charged for the BTUs (in seconds) for which a function executed,
multiplied by the allocated (or peak in the case of one provider) amount of mem-
ory in GB, times the per GB—seconds cost defined by the provider. FaaS adoption
essentially also means loss of control over the performance of the functions them-
selves, since their execution is hidden under multiple layers of virtualization and
abstraction by the platform providers, resulting into inconsistent performance
results even for the same service and configuration [13].

With the aim of investigating and clarifying these two phenomena and their
impact on FaaS adopters, this paper discusses the use of a microbenchmark in
order to study how different FaaS solutions, and especially ones in the public
cloud deployment model, behave in terms of performance and cost. More specifi-
cally, Sect. 2 presents the FaaS solutions that we will consider for the rest of this
work and discusses related work. Section 3 incorporates a small set of algorithmic
tasks with known computational and memory requirements in a microbenchmark
of our design and implementation. Section 4 presents the results of executing the
benchmark in a time window and discusses our findings while evaluating the
selected FaaS solutions. Based on these findings we provide a series of lessons
that we learned and that we believe are relevant for FaaS adopters in Sect. 5.
Finally, Sect. 6 concludes this work with a short summary and future work.

2 For more on the subject, see https://martinfowler.com/articles/serverless.html.

https://martinfowler.com/articles/serverless.html

148 T. Back and V. Andrikopoulos

2 Background and Related Work

Since the introduction of Amazon Web Services Lambda® back in 2014 all major
cloud providers have developed their own FaaS solution. Table 1 summarizes and
compares the offerings of the most popular public Cloud providers [12]. More
specifically, and in alphabetical order:

— AWS Lambda was the first FaaS public offering. At the time of writing, it offers
memory usage to be specified in the [128,3008] MB interval in increments of
64 MB. It offers the most flexibility in terms of configuration options, and is
the more mature of implementations from the offerings investigated by this
work.

— Google Cloud Functions* is in beta status since its launch in February 2016.
While the least flexible in terms of configuration options, Cloud Functions is
the only of the FaaS solutions that clearly defines the amount of allocated
CPU cycles per memory allocation option in its documentation.

— IBM Cloud (formerly known as IBM Bluemix) Functions® is based on the
Apache OpenWhisk® Faa$S platform implementation, allowing for easy hybrid
deployment. It requires all functions to run as Docker containers, which allows
for function development in any language.

— Microsoft Azure Functions”, also launched in 2016, differs significantly from
the other solutions in the sense that it does not expect the user to specify a
fixed amount of memory to be used by the function in advance. The service
bills only for the used memory per invocation, rounded up to the nearest
128 MB step, using at the same time the smallest billable time unit (1 ms).

In terms of related work, and considering how recently serverless computing
was introduced, existing literature on the subject is relatively limited. Van Eyk
et al. [3] for example identify the need for community consensus on what con-
stitutes FaaS, and set the goal of developing an objective benchmark of FaaS
platforms as a target for future work. The approaches presented by [8,15] inves-
tigate the cost of FaaS solutions as an infrastructural platform for the hosting
of microservices. Their interest is in evaluating alternative deployment scenarios
involving FaaS services and not with the performance of FaaS solutions them-
selves. The Costradamus approach [6] aims to measure the computation waste in
FaaS usage accrued by monitoring function calls duration and contrasting them
to billed BTUs. Both [5,14] use microbenchmarking of FaaS solutions in order
to compare providers and calibrate their proposed systems, but for these works
the comparison of providers is incidental and not the main focus. These works
are therefore relevant but not directly related to the goals set for this work.

From more related works, [7,10] set out to explicitly benchmark and compare
Faa$S solutions in terms of performance and cost. While useful and insightful in

3 AWS Lambda: https://aws.amazon.com/lambda/.

4 Google Cloud Functions: https://cloud.google.com /functions,/.

® IBM Cloud: https://console.bluemix.net/openwhisk//.

5 Apache OpenWhisk: https://openwhisk.apache.org/.

" Microsoft Azure Functions: https://azure.microsoft.com /services/functions,.

https://aws.amazon.com/lambda/
https://cloud.google.com/functions/
https://console.bluemix.net/openwhisk/
https://openwhisk.apache.org/
https://azure.microsoft.com/services/functions/

Using a Microbenchmark to Compare Function as a Service Solutions 149

Table 1. Comparison of the offerings by the major Cloud Service Providers (May 2018)

Amazon WS Google Cloud IBM Cloud Microsoft Azure
Lambda Functions Functions/Apache Functions
Open-Whisk
Memory Min 128 MB 128 MB 128 MB 128 MB
Memory Max 3008 MB 2048 MB 512 MB 1536 MB
Timeout Max 5 min 9 min 5 min 10 min
Billing Interval 100 ms 100 ms 100 ms 1ms
Memory Allocation Fixed Fixed Fixed Dynamic
Natively Supported C# Node.js Java C#
Languages Go Node.js F#
Java PHP Node.js
Node.js Python
Python Swift
HTTP Invocation v v v v
HTTP plus v — v '
Authentication
Free Tier (One v /v v /v v /v v /v
time/Periodical)

their own right, both works use much more coarse—grained tasks for their evalu-
ation, focusing on concurrency and latency, respectively. The work by Malawski
et al. [11] provides similar conclusions to ones discussed by this work, and in some
ways supplements our findings with further insights; however it only discusses
performance issues with FaaS solutions and does not investigate their impact on
cost.

With this work, we focus on investigating the differences between the FaaS
solutions presented above with respect to their compute/memory allocation poli-
cies, and their consequent effect on the cost model of cloud functions running
on them.

3 Microbenchmark Design

As discussed in the previous section, and given the current lack of a FaaS bench-
mark, it becomes a common and necessary practice to use a microbenchmark
for performance evaluation purposes. We chose a microbenchmark for this pur-
pose since we aim to measure a basic feature of FaaS services (compute/memory
allocation) for which a simple program should suffice, and because microbench-
marking is quite popular for cloud services evaluation [9]. The faas-ubenchmark
is available online® and it actually contains more functions than the ones we
explain in the following. In the interest of space, we limit the presentation of
results to only three major functions from the microbenchmark.

8 faas-pbenchmark: https://github.com/timonback/faas-mubenchmark.

https://github.com/timonback/faas-mubenchmark

150 T. Back and V. Andrikopoulos

Functions

The following functions were selected for inclusion in the faas-pbenchmark based
on their characteristics with respect to their computational and memory require-
ments:

— Fast Fourier Transformation (FFT): performs an FFT computation using the
Cooley-Tukey method as implemented by the £ft-js library of Node.js (ver-
sion 0.0.11)° for an increasing amount of discrete signals k = 2%, € N*.
The Cooley-Tukey method has computational complexity O(NlogN) and is
therefore representative of a moderate load to the system.

— Matrix Multiplication (MM): multiply square matrices of increasing size with-
out any optimization (i.e. with complexity O(n?)); the length of the matrices
is defined as n = i x 100, € NT, i.e. it increases by a step of 100 starting
from 100.

— Sleep (S): sleep for t = 2¢,4 € N* ms. This function is selected for evaluating
the sensitivity of the FaaS offering to its invocation. Measured execution
durations should in principle be equal to the specified parameter ¢, plus some
initialization time.

Table 2 summarizes the characterization of the selected functions:

Table 2. Relative resource requirements for the benchmarking functions

Function Computational | Memory
Fast Fourier Transformation (FFT) | Moderate Moderate
Matrix Multiplication (MM) High High
Sleep (S) Minimum Minimum

The microbenchmark itself is highly configurable, allowing for subsetting or
extending the parameter values for each function as desired by the user. All
functions are implemented on top of the Node.js JavaScript runtime, since it is
the execution environment that is common across all FaaS offerings (see Table 1).

Instrumentation

In order to reduce the complexity of the deployment process of the defined
functions across different providers we decided to use the Serverless framework!?,
as also adopted by [11]. This framework allows for the deployment of code to the
majority of FaaS/serverless solutions by a simple command, assuming of course
that an account has been created with the respective provider and the necessary
authentication credentials have been provided to it. Since FaaS providers expect

9 https://www.npmjs.com/package/fft-js.
10 Serverless: https://serverless.com/.

https://www.npmjs.com/package/fft-js
https://serverless.com/

Using a Microbenchmark to Compare Function as a Service Solutions 151

different bindings for functions executed in their platform we created a custom
minimal wrapper for each provider which reads the passed-in parameters, calls
the appropriate function, and returns the result. The called algorithm is the
same for every provider. The wrapper function is provided together with the
rest of the microbenchmark as discussed above.

4 Services Evaluation

In the following we discuss how we use the faas-ubenchmark to compare the
Faa$S solutions presented in Sect. 2.

4.1 Evaluation Setup

Apache OpenWhisk is used as the baseline for the comparison between solu-
tions. The February 2018 version from the OpenWhisk GitHub repository was
deployed inside a VirtualBox machine (version 5.2.8) running Ubuntu Linux
14.04 LTS with 4 GB of memory allocated to it, on a notebook with a quad—core
Intel i7-6700HQ (@2.6 GHz) and 8 GB of memory in total. The three functions
discussed in the previous section (i.e. FFT, MM and S) are deployed on it, and
on the FaaS solutions offered in the public cloud deployment model using the
Serverless framework. Five configurations for each FaaS service are selected for
comparison purposes by setting the allocated memory to 128,256,512,1024 and
2048 MB, and the functions are deployed in all of these configurations.

Looking at the comparison in Table 1, we need to clarify that IBM Cloud
Functions/Apache OpenWhisk has a maximum allocation limit of 512 MB per
function. However by building on Docker’s memory management, more memory
is addressable for function execution without terminating due to insufficient
memory. As we will show in the following, this works quite well for most of the
experiments we performed.

Moving on, in order to avoid potential differences among regions we try
to keep the location of the deployments comparable (more specifically, AWS
Lambda: us-east-1, Google Cloud Functions: us-central-1, Microsoft Azure
Functions: Central US) with the exception of IBM Cloud Functions that were
deployed in the United Kingdom region since this could not be changed for the
free tier version that we are using for all experiments. The functions are invoked
by a local machine at the University of Groningen using simply the curl command
on the Linux OS; as we will discuss in the following, the location of the invoker
does not affect any measurements, and it can therefore be placed anywhere it is
deemed more convenient. Timeout is set for all solutions and configurations at
300s (i.e. 5min) except in the case of Google Cloud Functions where it is set to
540s (9 min).

The microbenchmark was executed across 3 consecutive working days in the
end of April 2018, resulting in three measurements per function and parameter
for each service configuration. For each microbenchmark run we execute all three
functions in Table 2 sequentially with their parameters ranging over the following
intervals (i € N* in all cases):

152 T. Back and V. Andrikopoulos

1. S:t=2i€e[1,13]
2. MM: n =i x 100,47 € [1, 10]
3. FFT: k= 2% i € [13;21]

For each invocation we are measuring the execution duration as reported by
the FaaS provider (i.e. without network latency affecting the measurements),
the execution status (i.e. success or reported type of error), the billed duration,
and the incurred cost for the function execution. All measurements are collected
from the respective logs of each service and are aggregated as CSV files for each
function for further processing. The measurements we report and analyze in the
following are also available in the faas-pubenchmark repository under /results/.

4.2 Microbenchmark Results and Findings

Note: for the rest of this discussion we will be using the convention FunM, as
a shorthand for function Fun € {FFT,MM,S} executed on a service configura-
tion with M MBs of allocated memory, where M € {128,256, 512, 1024, 2048},
across all providers of interest. MM1024, for example, refers to the execution
of the matrix multiplication function in configurations with 1024 MB of allo-
cated memory in all providers, for all parameter values n = [100, 1000] with step
100. For purposes of space saving, in the following we are also using only the
provider’s name instead of the full name of the FaaS solution, with the exception
of Apache OpenWhisk which is simply shortened to OpenWhisk.

provider -+ Amazon - Google - IBM ~+ Microsoft < openWhisk

10000

100

Duration (ms)

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Sleep time (ms)

Fig. 1. Measured durations for S128 across all providers (log2-log plot). The straight
lines show the fitted linear models to the observed data per provider.

Using a Microbenchmark to Compare Function as a Service Solutions 153

Table 3. Mean Square Error (M SE) for linear regression to the observed data of S
per provider for the different memory configurations.

Configuration | Provider

Amazon | Google | IBM | Microsoft | OpenWhisk
S128 265.82 | 2597.61| 1.63|22.4 6.18
5256 62.46 |1589.33|12.4 |57.72 24.1
S512 41.96 726.93 | 1.79]20.04 12.06
51024 31.62 757.52 | 2.03|14.63 15.96
52048 12.31 851.3 2.4 |18.75 5.72
mean (MSE) | 81.03 |1304.54| 4.05|26.71 12.8

Sleep: With respect to function S, Fig. 1 shows the measured execution durations
for $128. As it can be seen in the figure, the benchmarked FaaS solutions behave
for the most part as expected, with a linear relation between execution time
and sleep parameter ¢t. This holds true however only after a sufficient large value
of t—64 ms in our measurements—which is also around half of the BTU for all
providers (except Microsoft, see Table1). The solution that delays the most to
converge into a linear relation with ¢, and at the same time exhibits the most
variance, is actually the one by Google. This phenomenon appears also in the
rest of the memory allocation configurations of this provider, as summarized
by Table3 which presents the mean square error (MSE) for the fitting of the
measurements to a linear model with parameter ¢. The 1m function of the R
programming language (version 3.4.3) is used for the model fitting in Table 3.
While the error in most configurations can be deemed acceptable, in the case of
5128 as illustrated in Fig. 1 it is roughly 451 ms for the 128 MB configuration of
Google Cloud Functions—that is, 50% of the service’s BT U—and still an order
or two magnitudes larger than the other ones in Table 3.

Matriz Multiplication: For MM we discuss our findings for the largest configura-
tions (i.e. 1024 and 2048 MB), since we know that this function is the heaviest, at
least in theory, of the functions that we include in the microbenchmark. Similar
findings, but with the observed phenomena proportionally exaggerated are also
concluded from the measurements in smaller configurations.

Figure 2 illustrates the collected measurements for progressively increasing
matrix size n. Since we are in the normal-normal scale and we expect O(n?)
complexity, we use the loess method of R for local polynomial regression fitting
instead of the linear one. Looking at the measurements, it appears that the policy
of Microsoft Azure Functions to assign memory dynamically instead of allocating
it in advance is resulting in the relative worse among providers performance
for this function as n grows. Further investigations in the effect of memory
allocation in such calculations is necessary. On the other end of the spectrum,
the OpenWhisk and consequently the IBM Cloud Functions solutions appear to
be better able to handle the memory and computational requirements of this task

154

30000

20000

10000

Duration (ms)

30000

20000

10000

T. Back and V. Andrikopoulos

provider -+ Amazon - Google - IBM ~+ Microsoft > openWhisk

1024

100

200 300 400 500 600 700 800 900 1000
Matrix Dimension

Fig. 2. Execution of MM1024 & MM2048 across all providers (norm-norm plots).

when compared to the other providers. It also seems that adding more memory
to Amazon and Google’s solutions results in better performance. Using only n =
1000 as a reference, the average execution times in these two solutions improve by
31.5% and 17.4%, respectively, when comparing the two configurations. We are
going to use FFT to investigate this improvement in more depth in the following.

1e+05

1e+04

1e+03

Duration (ms)

1e+05

1e+04

1e+03

2M3

2M4

provider -+ Amazon = Google + IBM ~+ Microsoft + openWhisk

2M5 2M6 2M7 2M8 2M9 220 2021 2M3 2M4 2M5 2M6 2M7 2M8 2M9 2%20 2%21
#Samples

Fig. 3. Measured durations of successful executions of FFT128-FFT1024 across all
providers (log2-log plots).

Using a Microbenchmark to Compare Function as a Service Solutions 155

Table 4. Successful executions of FFT across all configurations per parameter k value.

k Provider
Amazon | Google | IBM Microsoft | OpenWhisk

8192;131072] | 15 15 15 15 15

262144 15 15 12 15 15

524288 12 12 9 15 15

1048576 9 9 0 15 15

2097152 6 6 0 15 13

Total ~86.7% | ~86.7% | ~71.1% | 100% ~98.5%

FFT: Figure3 shows the reported execution durations of FFT across the
first four memory configurations for comparison purposes, omitting any error
responses. As it can be seen better in Table4, only the dynamic memory allo-
cation scheme of Microsoft Azure Functions allows for all values of parameter k
to be calculated successfully. OpenWhisk is able to get additional memory from
the local VM in order to calculate the FFT for k in most of the higher values,
at the clear expense of speed however, as shown in Fig. 3. The figure also shows
that for the rest of the providers, allocating more memory to the function results
in more successful executions as k grows.

Zooming in on the interval of k values for which all FaaS solutions are able
to successfully execute FFT, that is k € [8192;131072] as shown in Table4, we
can study better the effect of memory allocation to the overall performance of
each solution.

More specifically, as shown in Fig.4, the solutions are separated into
two groups. In the first group, the FaaS implementations by Microsoft and
IBM/Apache do not meaningfully benefit from faster execution times by allo-
cating more memory—in the former case because memory is actually allocated
dynamically anyway, and in the latter because of the way OpenWhisk allows for
partially dynamic memory allocation through its interaction with Docker. As
shown in Table 4, however, the latter case can only cope with additional load so
far before it starts producing error responses. In the second group, Amazon and
Google’s implementations clearly benefit from additional allocated memory, not
only in terms of more successful executions, but also in terms of performance.

Focusing now on the cost incurred by the execution of FFT, Table5 sum-
marizes the cost calculation for all studied solutions'! as cumulative total (sum)
cost including all function invocations and consequent executions, and mean
cumulative cost across configurations of 128 to 1024 MB per provider. While
normalizing the cost per invocation may seem a more attractive option, the use

1 OpenWhisk is deployed in a local VM, and therefore execution costs are not directly
relevant; however for illustrative purposes we use the GB—seconds cost of IBM Cloud
Functions for cost calculations. This makes the comparison between the private and
public, in essence, deployment of OpenWhisk particularly interesting.

156 T. Back and V. Andrikopoulos

provider + Amazon -* Google -+ IBM ~+ Microsoft > openWhisk

o
=]

Total Execution Time (s)

128 256 512 1024
Configuration

Fig. 4. Total duration per configuration and provider for FFT in seconds using only
successful executions, i.e. k € [8192;131072] (log2-log plot).

Table 5. Cumulative total and average costs per provider across all configurations
for FFT in USD cents (April 2018 prices), respectively. See Footnote 11 for the cost
calculation of OpenWhisk.

Provider

Amazon | Google | IBM | Microsoft | OpenWhisk*
sum (cost) |2.832 1.941 | 0.2583.305 2.228
mean (cost) | 0.708 0.485 |0.065|0.826 0.557

of cumulative costs fits better the interest of the consumer on the total cost of
the FaaS service usage, especially given the observed variance we discussed in
the previous.

As it can be seen from Table 5 and further reinforced by Fig. 5, when consid-
ering only successful function executions, IBM Cloud Functions is the most cost
effective solution. Its high error rate due to its inability to deal with larger values
of k has, however, to be taken seriously into consideration. Following on, Google’s
solution produces the next best solution in terms of cost, at the expense of high
variability in its performance. Microsoft’s solution on the other hand seems to be
the most expensive and slow option, but at the time the one being able to scale
better with k. Given the above, AWS Lambda seems to offer a good trade—off
between performance, cost, and ability to cope with the requirements of the FFT
function—Dbut only if enough memory has been allocated per function.

Using a Microbenchmark to Compare Function as a Service Solutions 157

y=-0.031+0.0011-x, r*=0.998 g
15 /

y=-0.021+0.00018-x, #=0.993

provider
Amazon

- Google

-+ 1BM

-+ Microsoft

~ openWhisk

0 y=0.058+0.001-x, r*=0.991

Cumulative Cost (USD cents)

128 256 512 1024
Configuration

Fig. 5. Cumulative cost per provider and configuration for FFT in USD cents (April
2018 prices) with regression formulas (norm—norm scale).

5 Discussion and Lessons Learned

Before proceeding further, we have to identify the main threats to the validity
of this work:

1. Not sufficient data points were collected during the microbenchmark execu-
tion to ensure the robustness of the findings. This is a known issue with this
work and we plan to run it again for a longer period. Nevertheless, we can
claim that anecdotally, the reported behavior of the FaaS solutions is consis-
tent with any measurements we took outside of the reported ones in different
days of April and May 2018. We are therefore confident in their validity, at
least at this point in time.

2. Function implementation was done exclusively on Node.js; in principle, result
replication is necessary in other programming languages but in the interest
of time this is left as future work. In any case, as shown in Table 1, Node.js is
the only common platform across all examined solutions. Comparing across
programming languages could potentially only dilute the findings.

3. All measurements reported in the previous were taken on the free tier model
offered by platform providers. We do not expect significant deviations when
using the paid model, as the free tier seems to be a discount to have people try
out (new) products. However, further experimentation is necessary in order
to test this hypothesis.

4. The effect of the use of the Serverless framework for cross-provider deployment
was not controlled; however we have no evidence of it affecting the validity
of our measurements.

158 T. Back and V. Andrikopoulos

With respect to the lessons learned by the comparison of the various FaaS
solutions, they can be summarized by the following:

1. The maturity of the examined FaaS solutions varies significantly when consid-
ering their observed performance. Especially Google’s Cloud Functions seems
to justify its label of beta state based on our measurements (see both Figs. 1
and 2).

2. There is a three—way trade—off between performance, cost, and ability to
gracefully scale with each function’s load before running out of memory or
maximum execution time (see Figs.2 and 3). Notice that there was no mea-
surement with concurrent requests, so it is not possible to comment on the
scaling of each solution with the overall load.

3. Adding more allocated memory only has a significant effect for some of the
providers in terms of performance improvement (Fig.4) and this has also
been shown by [11]; however if the reliability of a function is important to
the application developer then more memory is definitely recommended.

4. However, in addition to the above, it needs to be taken into account that
while the relation between memory and cost appears to be linear, there is a
significant difference between the coefficients of the cost functions per solution
(see Fig.5).

5. More extensive benchmarking of FaaS solutions is necessary in order to get a
clearer picture of the state of play in FaaS solutions. As with the related works
discussed in Sect. 2, this can extend beyond compute/memory evaluation to
e.g. network and I/O parameters.

6 Conclusions and Future Work

In the previous sections we developed and used a microbenchmark in order to
investigate two aspects of the Function as a Service (FaaS) sub—type of server-
less computing: the differences in observable behavior with respect to the com-
puter/memory relation of each FaaS implementation by the providers, and the
complex pricing models currently being in use. For this purpose, we chose to
include to our faas-pubenchmark three very common algorithmic tasks (Fast
Fourier Transformation, matrix multiplication, and a simple sleep as a baseline),
and implement them on top of the Node.js environment as the common denomi-
nator across the FaaS solutions under consideration. Executing the microbench-
mark itself produced some unforeseen results with respect to the maturity of the
offered solutions, and provided insights into the relation between performance
and cost for software that is running in this cloud delivery model.

Future work is aimed at addressing the concerns discussed in the previous
section. This entails proceeding with extensive benchmarking of the FaaS solu-
tions across a longer period, considering also additional functions that impose
different computational or memory constraints, and endeavor to clarify further
the relation between memory and CPU cycle allocation. Potential differences
between the perceived performance when functions are being executed in a free

Using a Microbenchmark to Compare Function as a Service Solutions 159

tier or not are also to be investigated. Furthermore, we also plan to expand
the evaluation to OpenLambda [4], which is explicitly positioned as a research—
oriented, non production-ready environment. The comparison with OpenWhisk
as the only other open source solution would be particularly interesting. Finally,
we aim to take the lessons learned by this work and put them into practice
by developing instrumentation that allows application developers to route load
across serverless or “traditional” TaaS resources in order to maximize their cost
efficiency based on the characteristics of the application load.

References

10.

11.

12.

. Baldini, I., et al.: Serverless computing: current trends and open problems. In:

Chaudhary, S., Somani, G., Buyya, R. (eds.) Research Advances in Cloud Com-
puting, pp. 1-20. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-
5026-8_1

Eivy, A.: Be wary of the economics of “serverless” cloud computing. IEEE Cloud
Comput. 4(2), 6-12 (2017)

van Eyk, E., Tosup, A., Seif, S., Thommes, M.: The SPEC cloud group’s research
vision on FaaS and serverless architectures. In: Proceedings of the 2nd International
Workshop on Serverless Computing, pp. 1-4. ACM (2017)

Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V., Arpaci-Dusseau,
A.C., Arpaci-Dusseau, R.H.: Serverless computation with OpenLambda. Elastic
60, 80 (2016)

Jonas, E., Pu, Q., Venkataraman, S., Stoica, I., Recht, B.: Occupy the cloud:
distributed computing for the 99%. In: Proceedings of the 2017 Symposium on
Cloud Computing, pp. 445-451. ACM (2017)

Kuhlenkamp, J.,; Klems, M.: Costradamus: a cost-tracing system for cloud-based
software services. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.)
ICSOC 2017. LNCS, vol. 10601, pp. 657-672. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-69035-3_48

Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing envi-
ronments. Technical report, April 2018. https://doi.org/10.13140/RG.2.2.28642.
84165

Leitner, P., Cito, J., Stckli, E.: Modelling and managing deployment costs of
microservice-based cloud applications. In: Proceedings of IEEE/ACM 9th Interna-
tional Conference on Utility and Cloud Computing (UCC), pp. 165-174, December
2016

Li, Z., Zhang, H., O’Brien, L., Cai, R., Flint, S.: On evaluating commercial cloud
services: a systematic review. J. Syst. Softw. 86(9), 2371-2393 (2013)

Lloyd, W., Ramesh, S.; Chinthalapati, S., Ly, L., Pallickara, S.: Serverless com-
puting: an investigation of factors influencing microservice performance. In: Pro-
ceedings of the IEEE International Conference on Cloud Engineering (IC2E 2018).
IEEE (2018)

Malawski, M., Figiela, K., Gajek, A., Zima, A.: Benchmarking heterogeneous cloud
functions. In: Heras, D.B., Bougé, L. (eds.) Euro-Par 2017. LNCS, vol. 10659, pp.
415-426. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75178-8_34
RightScale: RightScale 2018 State of the Cloud Report (2018). https://www.
rightscale.com/lp/state-of-the-cloud

https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-3-319-69035-3_48
https://doi.org/10.1007/978-3-319-69035-3_48
https://doi.org/10.13140/RG.2.2.28642.84165
https://doi.org/10.13140/RG.2.2.28642.84165
https://doi.org/10.1007/978-3-319-75178-8_34
https://www.rightscale.com/lp/state-of-the-cloud
https://www.rightscale.com/lp/state-of-the-cloud

160 T. Back and V. Andrikopoulos

13. Roberts, M., Chapin, J.: What is Serverless? O’'Reilly Media, Sebastopol (2017)

14. Spillner, J.: Exploiting the cloud control plane for fun and profit. arXiv preprint
arXiv:1701.05945 (2017)

15. Villamizar, M., et al.: Infrastructure cost comparison of running web applications
in the cloud using aws lambda and monolithic and microservice architectures. In:
Proceedings of 16th IEEE/ACM International Symposium on Cluster Cloud and
Grid Computing (CCGrid 2016), pp. 179-182, May 2016. https://doi.org/10.1109/
CCGrid.2016.37

http://arxiv.org/abs/1701.05945
https://doi.org/10.1109/CCGrid.2016.37
https://doi.org/10.1109/CCGrid.2016.37

	Using a Microbenchmark to Compare Function as a Service Solutions
	1 Introduction
	2 Background and Related Work
	3 Microbenchmark Design
	4 Services Evaluation
	4.1 Evaluation Setup
	4.2 Microbenchmark Results and Findings

	5 Discussion and Lessons Learned
	6 Conclusions and Future Work
	References

