
A Practical Approach to Services
Composition Through Light

Semantic Descriptions

Marco Cremaschi(B) and Flavio De Paoli

Department of Informatics, Systems and Communication,
University of Milan - Bicocca, Viale Sarca 336/14, Milan, Italy

{cremaschi,depaoli}@disco.unimib.it

Abstract. Services composition has been much investigated over the
last decade without reaching shared and consolidated results mainly for
the lack of interoperable descriptions of services and the consequent need
of extensive user intervention. In this paper, we propose a light and prac-
tical approach to create machine-readable descriptions of output data
that can be merged or used (as-is or adapted) as input data to other ser-
vices. The solution relies on the popular and standard OpenAPI descrip-
tions augmented with annotations based on JSON-LD format. Services
descriptions are created by table annotations techniques applied on sets
of given or retrieved output values. The approach has been implemented
in a tool and validated with a set of real services.

1 Introduction

In the last decade, we have witnessed the evolution of web services models from
the WSDL/SOAP to the REST. This change is tangibly visible, for example,
by searching ProgrammableWeb1, perhaps the largest repository of web descrip-
tions. One of the reasons for this evolution is the need to simplify the service
reference model to enhance comprehensibility and standardisation, and therefore
provide the bases for automatic management of descriptions and composition.
A similar evolution is needed in the realm of semantic web services. As a matter
of facts, well-defined proposals that deliver machine-readable descriptions, such
as OWL-S: Semantic Markup for Web Services [10], Semantic Annotation for
WSDL and XML Schema (SA-WSDL) [7], Micro Web Service Model Ontology
(MicroWSMO) [6] and Semantic Annotations for REST (SA-REST) [5], failed
to become widely used mainly for their complexity that requires the involvement
of experts.

The work presented in this paper has been partially supported by the EU H2020
project EW-Shopp - Supporting Event and Weather-based Data Analytics and Mar-
keting along the Shopper Journey - Grant n. 732590.

1 https://www.programmableweb.com/apis/directory.

c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
K. Kritikos et al. (Eds.): ESOCC 2018, LNCS 11116, pp. 130–145, 2018.
https://doi.org/10.1007/978-3-319-99819-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_10&domain=pdf
https://www.programmableweb.com/apis/directory

A Practical Approach to Services Composition 131

Current description models address services accessible through API REST,
and provide meta-languages to describe services as documents based on property-
value pairs. OpenAPI Specification2, also known as Swagger3, API Blueprint4

and RAML5 are the most representative. However, these models do not support
semantic annotations to make property-value pairs interoperable. In this paper,
we discuss an extension of the popular OpenAPI model to add semantic anno-
tations on input parameters and output properties of services. Such annotations
are compliant with the JSON-LD6 format to follow the REST philosophy in
order to minimise the user involvement in many practical situations.

The availability of semantic descriptions of APIs enables the development of
automatic techniques and tools to support services composition [13]. A general
definition states that a process of composition is defined as the aggregation of
different Web services into a single compound service to perform more complex
functions [14]. In this context, we refer to information services and the mash-
up of results got from independent services to deliver comprehensive answers to
users’ requests, or to prepare data coming from a set of services to invoke another
service. We call the former merge composition and the latter sequence composi-
tion. Merge composition involves more services that are invoked in parallel with
the same input data, whose answers are then composed. Sequence composition
involves a service which is invoked with input data coming from the composi-
tion of answers from one (adaptation) or more (mash-up) services. This work
roots and extends the one presented in [3,8] by proposing a formalised model to
create semantic descriptions for Web APIs, and a set of composition rules based
on semantic annotations inside the descriptions. Moreover, we implemented the
AutomAPIc tool to support users in the creation and composition of semantic
descriptions.

Services composition may occur at design time or at runtime. At design
time, the ability of automatic processing of descriptions enables actors (users
or machines) to discover, select and compose services. If semantic descriptions
are not available, actors can rely on techniques, such as table interpretation and
NLP techniques, to build such missing descriptions. At runtime, composition
supports adaptation and substitution of services to ensure contextualization and
accomplishment of tasks.

In the next section, we discuss services description and composition to moti-
vate the work. Then, Sect. 3 describes the proposed extension of the OpenAPI
model to include semantic annotations. Section 4 discusses the composition tech-
niques in the split and sequence cases. Section 5 presents the tool that provides
full support to users to manage the process of building descriptions and compos-
ing services. Section 6 validates the approach by addressing a set of real services.
Finally, Sect. 7 draws some conclusions.

2 https://www.openapis.org.
3 http://swagger.io.
4 https://apiblueprint.org.
5 http://raml.org.
6 https://json-ld.org.

https://www.openapis.org
http://swagger.io
https://apiblueprint.org
http://raml.org
https://json-ld.org

132 M. Cremaschi and F. De Paoli

2 Services Description and Composition

In the last decade, the composition of services has been widely investigated
without getting to effective results for many reasons. Among others, the most
relevant are the use of different architectural styles, the unexpected evolution of
services, and the use of different description languages and different conceptual
models [12]. Moreover, composition may occur at the design stage, leading to
static compositions, or at runtime, leading to dynamic composition. The latter is
best suited to address the issues in real environments that change continuously
and requires automatic tools to search for, select and compose Web services
automatically. The main issue affecting automatic composition is the limited
number of available machine-readable descriptions associated with services.

A traditional way to compose services is the use of orchestration languages,
such as BPEL (Business Process Execution Language) [16] or OWL-S (Ontol-
ogy Web Language for Services) [10], which support the manual definition of
abstract processes that can be implemented by actual services. On the other
side, dynamic composition in automatic way can be achieved by exploiting the
semantic Web and the planning techniques. However, the realisation of a com-
pletely automatic composition process is complex and presents several issues
[14]. The main problems are the missing of semantics associated with services,
and the capability of understanding the semantics even when present.

The most popular syntactic description model is WSDL 2.0 (Web Services
Description Language) [1], which defines an XML format for describing Web
services by separating the abstract functionality offered by a service from con-
crete details such as how and where that functionality is offered. Although it
supports descriptions of both SOAP-based services, and REST/API services, it
is the de-facto standard for the former but is rarely adopted for the latter. The
Web Application Description Language (WADL) is a machine-readable XML
format that was explicitly proposed for API services. WADL was also proposed
for standardisation, but there was no follow-up.

Recently, user-friendly and easy-to-use metadata formats have been intro-
duced, along with editors to support developers in the creation of descriptions
for REST APIs. Among others, popular description formats are the Open API
Specification, which provides human-readable API descriptions based on YAML
and JSON. RAML is a YAML-based language for describing RESTful APIs.
API Blueprint is a documentation-oriented web API description language, which
provides a set of semantic assumptions laid on top of the Markdown syntax.
The Hydra specification, which is currently under massive development, aims to
enrich current web APIs with tools and techniques from the semantic web area.

Table 1 is an extension of the one presented in [15] to compare the number of
questions posed in Stack Overflow and the number of Git stars (showing appre-
ciation to a project) received by the four description models under study. The
increasing number of available descriptions highlights the growing popularity
of descriptions, and the relevance of tools that support the creation, publica-
tion, use and maintenance of service descriptions. The common limitation of
such models is the lack of semantic descriptions, which motivated our previous

A Practical Approach to Services Composition 133

Table 1. Comparison of API description models (at May 27, 2018).

Detail/Model API Blueprint RAML WADL OpenAPI Spec

Format Markdown YAML XML YAML, JSON

Licence MIT ASL2.0 Sun ASL 2.0

Version Format 1A revision 9 1.0.1 31 August 2009 3.0.1

Initial commit Apr 2013 Sep 2013 Nov 2006 Jul 2011

Pricing plan Yes Yes No No

StackOverflow Questions 2015 88 153 86 13

2016 61 168 84 166

2017 40 174 74 319

2018 15 56 33 218

Github Starsub Stars 2015 1,819 1,058 N/A 2,459

2016 X X X

2017 5,390 2,735 6,360

2018 6566 3060 9836

Google Search 985K 1M 486K 8M

paper [3]. In order to be effective, we extended the most popular model, Ope-
nAPI, to support semantic-enabled tools for describing, discovering, and then
compose APIs.

3 A Light Semantic Web API Description Model

The OpenAPI is the most promising description model since it defines a simple
format to specify descriptions supported by a broad set of vendor-neutral API
tools, whose development involves a massive community of active users. Such
tools provide significant support to almost every modern programming languages
to create and test APIs. Moreover, the OpenAPI Initiative is an open source
project sustained by relevant stakeholders, including Google, IBM, Microsoft
and PayPal. There are several repositories collecting API REST described using
OpenAPI, such as SmartAPI 7 and APIs.guru8.

An OpenAPI description is a YAML or JSON document that contains a list
of resources and a list of operations that can be applied to those resources. An
example is provided in Listing 1.1, which describes the Google Books API. Notice
that the API is described by name:value pairs of strings without any semantics.

We propose to extend such descriptions by inserting annotations (i.e., links
to ontology classes and ontology properties) through the use of the JSON-LD9

format. JSON-LD provides (i) a universal identification mechanism for JSON
objects through the use of Internationalized Resource Identifiers (IRIs); (ii) a way
to disambiguate shared keys between different JSON documents through IRIs
mapping and context; (iii) the possibility to annotate the strings with indications

7 http://smart-api.info/registry.
8 https://apis.guru/openapi-directory/.
9 https://json-ld.org/spec/latest/json-ld/#basic-concepts.

http://smart-api.info/registry
https://apis.guru/openapi-directory/
https://json-ld.org/spec/latest/json-ld/#basic-concepts

134 M. Cremaschi and F. De Paoli

on the used language; and (iv) a way to associate data types with values (e.g.,
dates, times, etc.).

Listing 1.1. OpenAPI description of the Google Books API.

1 "paths": {
2 "/volumes": {
3 "get": {
4 "parameters": [{
5 "name": "title", [...]
6 }],
7 },
8 "responses": {
9 "200": {

10 "schema": {
11 "title": "result",
12 "type": "object",
13 "properties": {
14 "isbn": { "type": "string"},
15 "author": { "type": "string" },
16 "title": { "type": "string" }, [...]

The marriage between JSON-LD and OpenAPI descriptions occurs through
the introduction of the semanticAnnotations property (e.g., Listing 1.2, line 8
and 27), which is composed of two parts: the definition of a context, by the
keyword @context (e.g., line 9 and 28), to set short names for the reference
ontologies used throughout the description; and a list of annotations for param-
eters (input values) and responses (output values). Each annotation is a pair to
annotate the name, introduced by the keyword @id (e.g., line 14 and 33), and
the value, introduced by the keyword @type (e.g., line 15 and 34). Annotations
are IRIs that uniquely identify elements.

Listing 1.2. Semantic OpenAPI description of the Google Books API.

1 "basePath": "/books/v1",
2 "paths": {
3 "/volumes": {
4 "get": {
5 "parameters": [{
6 "name": "title", [...]
7 }],
8 "semanticAnnotations": { /** Input semantics **/
9 "@context": {{

10 "dbp": "http :// dbpedia.org/property/",
11 "xsd": "http ://www.w3.org /2001/ XMLSchema #"
12 },
13 "title": {
14 "@id": "dbp:title",
15 "@type": "xsd:string"
16 }
17 },
18 "responses": {
19 "200": {
20 "schema": {
21 "type": "object",
22 "properties": {
23 "isbn": { "type": "string" },
24 "author": { "type": "string" },
25 "title": { "type": "string" }
26 },
27 "semanticAnnotations":{ /** Output semantics **/
28 "@context": {
29 "dbp": "http :// dbpedia.org/property/",
30 "xsd": "http ://www.w3.org /2001/ XMLSchema #"
31 },
32 "isbn": {
33 "@id": "dbp:isbn",
34 "@type": "xsd:integer"
35 },
36 "author": {
37 "@id": "dbp:author",
38 "@type": "xsd:string"

A Practical Approach to Services Composition 135

39 },
40 "title": {
41 "@id": "dbp:title",
42 "@type": "xsd:string"
43 }, [...]

4 Composition Types and Rules

In this context, we consider the composition of information services and inter-
ested in mashing up results from independent services to deliver a comprehen-
sive answer to users’ requests, or to prepare data coming from a set of services
to invoke another service. We call the former merge composition and the latter
sequence composition. Merge composition involves more services that are invoked
in parallel with the same input data, and the results are composed [11]; while
sequence composition involves a service which is invoked with input data that
are coming from one (data adaptation) or more (data mash-up) services.

Dealing with automatic sequence composition, semantic compatibility needs
to be verified. In this context, semantic compatibility occurs when a semantic
relationship holds between the semantic classes10 of output properties of an API
and input parameters of another API. In such cases, output properties can be
used as input parameters, possibly after some transformations (Fig. 1).

Fig. 1. Schema of sequence composition.

To evaluate semantic compatibility, we can define four rules:

Rule 1: single ontology, same concepts. If annotations refer to the same
ontology, and name/value pairs refer to the same concept, or two concepts in
relation owl:sameAs, then the composition is straightforward since they are
compatible (see Fig. 2(1)).

Rule 2: different ontologies, same concepts. If annotations refer to differ-
ent ontologies (see Fig. 2(2)), we need to verify if the annotations of involved
name/value pairs are equivalent (i.e., they refer to the same ontology concepts
or property). For example, some ontologies such as DBPedia11 and Wiki-
data12 provide the properties owl:equivalentProperty and owl:equivalentClass
to address the issue. These properties, however, are not supported by all
ontologies, therefore some Ontology matching [4] techniques may need to be
exploited to check for compatibility.

10 https://www.w3.org/TR/owl2-syntax/#Classes.
11 https://dbpedia.org.
12 https://www.wikidata.org.

https://www.w3.org/TR/owl2-syntax/#Classes
https://dbpedia.org
https://www.wikidata.org

136 M. Cremaschi and F. De Paoli

Rule 3: single ontology, different concepts in relation to each other.
If annotations refer to the same ontology, and name/value pairs refer to dif-
ferent ontology concepts or properties, then values’ compatibility need to be
checked. If between the involved concepts relations such as subclass and sub-
property hold, then they may be compatible and the composition may occur.
An example is shown in Figure see Fig. 2(3), where the annotation @type:
dbp:zipCode refers to a subproperty of dbp:postalCode. Therefore, API 1 and
API 2 are compatible.

Rule 4: different concepts not related to each other. If annotations of
the name/value pairs refer to different ontology concepts or properties in the
same ontology or different ontologies, and among these elements none of the
above rules apply, compatibility may occur after a transformation (e.g., by
invoking a third-party service). For example (see Fig. 2(4)), if API 1 returns
a mail address, and API 2 requires latitude and longitude values as input
parameters, then a third API is needed to perform the conversion.

Fig. 2. Sequence composition: examples of the four compatibility cases.

Let’s consider a use case to discuss the composition rules described above.
Assume we seek an application that helps students to retrieve information to
access textbooks. The application should provide information about different
options: bookshops or e-commerce purchase, library consultation, or free down-
load. The composition related to this use case is shown in Fig. 3: we consider
a process that starts with Google Books API, which gets a title in input and
delivers a full report about accessing the requested book in output.

A Practical Approach to Services Composition 137

Fig. 3. Example of a process of composition of the use case.

A first example of sequence composition type, is the service that collects
information about a book from Google Books API13 and calls Amazon Market
API14 to check if it is available. The Semantic OpenAPI Description of Amazon
Market API is in Listing 1.3. The semantic annotation in line 6 finds a corre-
spondence in the description of the Google Books API, in line 33 of Listing 1.2;
in both descriptions the concept of ISBN is described with the same semantic
annotation. Therefore, the services can be composed (rule 1).

Listing 1.3. The input part of the description of the Amazon Market API.

1 "get": {
2 "parameters": [{
3 "name": "IsbnItem", [...]
4 }],
5 "semanticAnnotations": {
6 "IsbnItem": {
7 "@id": "dbp:isbn",
8 "@type": "xsd:integer"
9 }, [...]

A second example is the sequence composition of the Google Books API, the
Library API, and the Google Transit API: first the Library API is invoked to
check the presence and availability of the book, and then the Google Transit
API is invoked to check the existence of public transport to reach the library.

The composition of Google Books API and the Library API can be performed
according to rule 1, and rule 3. The annotations on line 8 and line 16 of Listing 1.4
are compatible with the annotations in line 8 and 16 of Listing 1.2 (rule 1). The
parameter on line 12 of Listing 1.4 is compatible with the property present in
line 36 of Listing 1.2 since the relation rdfs:SubPropertyOf holds between them
(rule 3).

Listing 1.4. Extract from the description of the Library API.

1 "get": {
2 "parameters": [
3 { "name": "Isbn" },
4 { "name": "author" },
5 { "name": "title" }
6],
7 "semanticAnnotations": {
8 "Isbn": {
9 "@id": "dbp:isbn",

10 "@type": "xsd:integer"
11 },
12 "author": {
13 "@id": "dbp:writen",
14 "@type": "xsd:string"
15 },

13 https://developers.google.com/books/.
14 https://developer.amazonservices.it/gp/mws/docs.html.

https://developers.google.com/books/
https://developer.amazonservices.it/gp/mws/docs.html

138 M. Cremaschi and F. De Paoli

16 "title": {
17 "@id": "dbp:title",
18 "@type": "xsd:string"
19 }, [...]

The composition between the Library API and the Google Transit API can-
not be performed directly because the first API returns the mail address of
a library in text format, while the Google Transit API gets geographic coor-
dinates as input. For this reason, between the two compositions a third API
(Google Maps geocoding API) is used to perform geocoding (rule 4). Listing 1.5
shows the annotations of the Google geocoding API.

Listing 1.5. Extract from the description of Google geocoding API.

1 "get": {
2 "parameters": [
3 { "name": "address" }
4],
5 "semanticAnnotations": {
6 "address": {
7 "@id": "dbp:address",
8 "@type": "xsd:string"
9 },

10 }
11 },
12 "responses": {
13 "200": {
14 "location": {
15 "properties": {
16 "lat": { "type": "number" },
17 "long": { "type": "number" }
18 },
19 "semanticAnnotations": {
20 "lat": {
21 "@id": "dbp:latitude",
22 "@type": "xsd:float"
23 },
24 "long": {
25 "@id": "dbp:longitude",
26 "@type": "xsd:float"
27 }, [...]

Now that all the information on the different ways to get access to the text-
book have been collected, we can compose the results to deliver the requested
report to the user.

Dealing with merge composition, we need to verify the semantic compatibility
of at least two different outputs (Fig. 4).

Fig. 4. Schema of merge composition.

To evaluate semantic compatibility in the merge composition, we can define
an additional rule:

A Practical Approach to Services Composition 139

Rule 5: concepts as unique identifiers. If two or more descriptions share
compatible concepts (i.e., they are linked by properties like owl:sameAs,
owl:equivalentClass, rdfs:subClassOf, or rdfs:subPropertyOf), and these con-
cepts uniquely identify the represented resources (e.g., ISBN for a book, VAT
ID for a company, BARCODE for a products), then the outputs of the APIs
can be merged.

The Listing 1.6 is a fragment of the Archive.org API15 description; as shown
in line 10, 14, 18, respectively the annotation of the output properties, ISBN,
title, author; it is possible to observe how these properties are compatible with
the response of Google Books API (Listing 1.1). According to rule 5, the merge
composition can occur if compatible properties allow us to conclude that out-
puts refer to the same resources. In the use case, the ISBN can be adopted as
unique identifier for books, thus allowing composition of outputs into the final
comprehensive report.

Listing 1.6. Extract from the output part of the description of the Archive API.

1 "200": {
2 "Book": {
3 "type": "object",
4 "properties": {
5 "ISBN": { "type": "string" },
6 "title": { "type": "string" },
7 "author": { "type": "string" }, [...]
8 },
9 "semanticAnnotations": {

10 "ISBN": {
11 "@id": "dbp:isbn",
12 "@type": "xsd:integer"
13 },
14 "title": {
15 "@id": "dbp:title",
16 "@type": "xsd:string"
17 },
18 "author": {
19 "@id": "dbp:author",
20 "@type": "xsd:string"
21 }, [...]

5 AutomAPIc: Composition of REST APIs

AutomAPIc is a comprehensive tool to manage semantic descriptions and
input/output composition of services. In this paper, we concentrate on the
the description editor, which supports semi-automatic creation of semantic
descriptions, and automatic composer, which supports compatibility matching.
AutomAPIc is available via Git repository16. The Fig. 5 shows the architecture
of the tool.

It is possible to identify 6 main components: (i) Description Editor, for the
definition and management of API descriptions in OpenAPI format; (ii) Descrip-
tion Annotator, for adding semantic annotations; (iii) Composition Editor, which
allows for the selection of a set of composable APIs by the user; (iv) API Connec-
tor, component for automatic identification of the composable APIs in relation
15 http://blog.archive.org/developers/.
16 https://bitbucket.org/disco unimib/automapic-tool/.

http://blog.archive.org/developers/
https://bitbucket.org/disco_unimib/automapic-tool/

140 M. Cremaschi and F. De Paoli

Fig. 5. Architecture of AutomAPIc tool.

to the composition rules described above; (v) Ontology Connector, component to
extract semantic relations by queries to the LOD Cloud17 with SPARQL query;
(vi) Composer API, for the execution of the composition previously defined by
the user.

5.1 Getting OpenAPI Descriptions

The description process is semi-automatically managed by augmenting exist-
ing API descriptions, which can be retrieved from existing repositories (e.g.,
ApisGuru, SmartAPI), or created manually using the Description Editor. These
descriptions are represented in JSON or YAML format, and include all relevant
information such as available HTTP operations, the list of input parameters
and output responses for each operation. The process of creating a description
is detailed in Algorithm 1.

Algorithm 1. Retrieve or create API description.
Result: API description

1 if description is available then
2 retrieve description from existing repositories and registries of services;
3 else
4 create it manually using the Description Editor;

5.2 Adding Semantic Annotation

If semantic annotations are missing, we need to annotate input and output data.
To annotate output data, AutomAPIc provides users with a service that collects
a set of output values of GET calls into a table and applie Semantic Table Inter-
pretation [17] techniques to understand such values and identify the annotations
to be added.

Table interpretation consists of associating data with semantic concepts in an
ontological structure, within the LOD Cloud, which aims to represent the knowl-
edge of a certain domain through the connections that exist between these same
elements. The GET method is mainly considered since it is the most frequent.
17 http://lod-cloud.net.

http://lod-cloud.net

A Practical Approach to Services Composition 141

In this way API’s parameters and properties can be managed by a computer.
The code related to the Table Interpretation technique used in this proposal is
available through a Git repository18.

The input parameters are annotated differently because it is not possible to
transform the parameters into a table. AutomAPIc provides a service based on
Natural Language Processing [2] techniques. In particular the Stanford CoreNLP
tools19 [9] has been adopted. These tools provide several libraries that allow for
the extraction of entities from API descriptions, which will then be associated
with concepts. The application of these techniques on hundred descriptions from
the repository APIs.guru led to the correct identification of entities and prop-
erties for 93% of the cases. Algorithm 2 defines the process to insert semantic
annotations in API descriptions. This algorithm revises and extends the one
presented in [3].

Algorithm 2. Create and add semantic annotation to API descriptions.
Data: API description
Result: API description with semantic annotations

1 Detect all resources’ end-point;
2 foreach end-point do

// collect data
3 repeat
4 generate input parameters following the API description;
5 generate semantic annotation of the input parameters using NLP technique;
6 insert semantic annotation of the input parameters in API description;
7 if input parameters cannot be generated then
8 take input parameters from the user

9 invoke API with input parameters;
10 collect results;

11 until at least N results are collected; /* default N=10 */
// create tables

12 foreach results do
13 create a header row with API properties;
14 fill content-cells with values from inputs and responses;

// add semantic annotations
15 foreach tables do
16 apply table interpretation technique;
17 show table to the user;
18 if table annotation is not complete then
19 show related vocabularies and/or alternatives to the user;
20 ask the user to manually add links;

21 if the user wants to review the annotations then
22 show related vocabularies to the user;
23 let the user confirm or modify the links;

24 insert semantic annotation of properties in API description;

5.3 Performing Automatic Composition

The presence of semantic annotations allows the automatic identification of the
composable APIs given a starting API. The API composer component auto-
matically shows the compatible APIs. The possible combinations have been

18 https://bitbucket.org/disco unimib/mantistable-tool/.
19 https://stanfordnlp.github.io/CoreNLP/index.html.

https://bitbucket.org/disco_unimib/mantistable-tool/
https://stanfordnlp.github.io/CoreNLP/index.html

142 M. Cremaschi and F. De Paoli

previously calculated by the API connector, through the use of SPARQL queries,
in order to apply the compatibility rules (Algorithm3).

Algorithm 3. Identification of compatibility between the APIs.
Result: Composed APIs

1 inserting a new API into the system;
2 parsing of the description;
3 extraction of semantic annotations;
4 foreach APIs do
5 creation and execution of SPARQL queries to identify the relationships between the

annotations of the APIs;
6 update the graph of possible compositions;

6 Validation

To verify the validity of the proposed composition approach, we collected a set of
APIs (Table 2) for the creation of a benchmark with characteristics that cover all
possible cases. The chosen APIs comes from various domains, including public
transport, films, books, music and events.

In a second phase the descriptions and their annotations were analyzed, to
identify the possible compositions. Through the combinatorial calculation it is
possible to calculate the maximum number of combinations. In particular, given
20 APIS, using provisions without repetitions (since an API cannot be composed
with itself), the maximum number of compositions is 380.

Fig. 6. List of the possible compositions.

As shown in Fig. 6, depending on parameters and annotations, the actual
combinations are twenty four. AutomAPIc was able to identify the 85% of them.
Table 3 reports the confusion matrix of the results, where attributes are: (i) TP:
number of correctly composed APIs, (ii) FP: number of APIs that were com-
posed but which should not be composed, (iii) FN: number of APIs that were
not composed but that had to be composed, (iv) TN: number of APIs that
were not to be composed and were not composed. The accuracy of the system is
(TP+TN)/Total = 0.99. Going into detail, the combinations that led to compo-
sition failures are mainly three: weak support to manage concepts connected by
the owl:subProperty relation, incomplete relationships between ontologies (e.g.,
DBpedia and KBpedia), and inaccurate semantic annotations of parameters
returned by table interpretation techniques. A discussion on the quality of results
of table interpretation techniques is out of scope of this paper, however interested
readers can refer to [17] for details.

A Practical Approach to Services Composition 143

Table 2. Validation dataset.

API Description Source

GEOCODING Converts an address into
latitude and longitude

Google Maps

MARINE CONDITION Forecast of marine
conditions

World Weather Online

WEATHER FORECAST Weather forecasts Weather Underground

PHOTOS Photos geolocated in a
specific position

Flickr

NEWS List of news NewsAPI

BOOK List of information about
a book

Google

MOVIE List of information about
a film

OMDb API

POI Points of interest of a city Sygic API

LIBRARY List of information about
the availability of a book

Opac Unimib

E-COMMERCE Information regarding the
price of a product

Amazon Market

FREE EBOOK Information on the
presence of a free eBook

Archive.org

PLAYLIST List of songs contained in
a playlist

Spotify

LYRICS Text of a song Musixmatch API

FLIGHTS Airport information Ryanair API

BIKE SHARING List of bicycles available City Bike

EVENTS List of events in a city EventiFul

HOTEL BOOKING List of hotels available on
a specific date on a certain
day

HotelsCombined API

REVIEWS List of reviews of places
and events

TripAdvisor Content API

PUBLIC TRANSPORT List of information about
public transport in a
particular place

Google Transit

RESTAURANTS List of restaurants in a
specific city

Zomato API

Table 3. Confusion matrix.

Tot.= 380 Composed Not - Composed

Composed TP=17 FP=0

Not - Composed FN=3 TN=360

144 M. Cremaschi and F. De Paoli

7 Conclusions and Future Work

The work presented in this paper aims to propose an extension of the OpenAPI
specification to support the semantic annotations of services descriptions and the
automatic composition of services. The goal is to support users without specific
skills to manage semantics annotations, thus encouraging the delivery of seman-
tically annotated descriptions. For this reason, two solutions have been proposed.
For the annotation of input parameters, the use of Natural Language Process-
ing (NLP) techniques has been proposed, while for the annotation of output
properties, a reviewed Table Interpretation approach has been developed. The
validation of the proposal through a subset of real APIs has underlined how the
use of semantic annotations and the definition of a set of composition rules lead
to an effective support to the composition of APIs, even if further development
is necessary to improve both precision and recall. Future work will go in that
direction to consolidate the AutomAPIC tool, along with fully integration with
the Swagger interface. Moreover, further investigations will be conducted to ver-
ify the quality of the table interpretation outputs, which play an important role
in our composition approach. In addition, a user-centric evaluation is planned in
order to verify the ability of users to manage this new type of descriptions with
semantic annotations. Finally, to enhance the automation of the entire process,
we will study how to capture and model the user requirements.

References

1. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S.: Web services description
language (WSDL) version 2.0 Part 1: Core language. W3C Recommendation 26,
19 (2007)

2. Chowdhury, G.G.: Natural language processing. Ann. Rev. Inf. Sci. Technol. 37(1),
51–89 (2003)

3. Cremaschi, M., De Paoli, F.: Toward automatic semantic API descriptions to sup-
port services composition. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.)
ESOCC 2017. LNCS, vol. 10465, pp. 159–167. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67262-5 12

4. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-49612-0

5. Gomadam, K., Ranabahu, A., Sheth, A.: SA-REST: semantic annotation of web
resources. W3C Member Submission 5, 52 (2010)

6. Kopeckỳ, J., Vitvar, T., Fensel, D., Gomadam, K.: hRESTS & MicroWSMO. Tech-
nical report, STI International (2009)

7. Lausen, H., Farrell, J.: Semantic annotations for WSDL and XML schema. W3C
Recommendation, W3C 69 (2007)

8. Lucky, M.N., Cremaschi, M., Lodigiani, B., Menolascina, A., De Paoli, F.: Enrich-
ing API descriptions by adding API profiles through semantic annotation. In:
Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936,
pp. 780–794. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46295-
0 55

https://doi.org/10.1007/978-3-319-67262-5_12
https://doi.org/10.1007/978-3-319-67262-5_12
https://doi.org/10.1007/978-3-540-49612-0
https://doi.org/10.1007/978-3-540-49612-0
https://doi.org/10.1007/978-3-319-46295-0_55
https://doi.org/10.1007/978-3-319-46295-0_55

A Practical Approach to Services Composition 145

9. Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The
Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd
Annual Meeting of the Association for Computational Linguistics: System Demon-
strations, pp. 55–60. Association for Computational Linguistics (2014)

10. Martin, D., et al.: OWL-S: semantic markup for web services. W3C Member Sub-
mission 22, 2007–04 (2004)

11. Paulraj, D., Swamynathan, S., Madhaiyan, M.: Process model-based atomic service
discovery and composition of composite semantic web services using web ontology
language for services (OWL-S). Enterp. Inf. Syst. 6(4), 445–471 (2012)

12. Rao, J., Su, X.: A survey of automated web service composition methods. In:
Cardoso, J., Sheth, A. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30581-1 5

13. Roman, D., Kopeck, J., Vitvar, T., Domingue, J., Fensel, D.: WSMO-lite and
hRESTS: lightweight semantic annotations for web services and restful APIs. Web
Semant. Sci. Serv. Agents World Wide Web 31, 39–58 (2015)

14. Sheng, Q.Z., Qiao, X., Vasilakos, A.V., Szabo, C., Bourne, S., Xu, X.: Web services
composition: a decades overview. Inf. Sci. 280, 218–238 (2014)

15. Tsouroplis, R., Petychakis, M., Alvertis, I., Biliri, E., Lampathaki, F., Askounis,
D.: Community-based API builder to manage APIs and their connections with
cloud-based services. In: CAiSE Forum (2015)

16. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web
Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-
BPEL, WS-Reliable Messaging and More. Prentice Hall PTR, Upper Saddle River
(2005)

17. Zhang, Z.: Effective and efficient semantic table interpretation using TableMiner+.
Semant. Web 8(6), 921–957 (2017)

https://doi.org/10.1007/978-3-540-30581-1_5

	A Practical Approach to Services Composition Through Light Semantic Descriptions
	1 Introduction
	2 Services Description and Composition
	3 A Light Semantic Web API Description Model
	4 Composition Types and Rules
	5 AutomAPIc: Composition of REST APIs
	5.1 Getting OpenAPI Descriptions
	5.2 Adding Semantic Annotation
	5.3 Performing Automatic Composition

	6 Validation
	7 Conclusions and Future Work
	References

