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Abstract. According to complexity science, the essence of a complex
system is the emergence of unpredictable behavior from interaction
among components. Loosely inspired by this idea, a diagnosis technique
of a class of discrete-event systems, called complex active systems, is
presented. A complex active system is a hierarchical graph, where each
node is a network of communicating automata, called an active unit.
Specific interaction patterns among automata within an active unit give
rise to the occurrence of emergent events, which may affect the behavior
of superior active units. This results in the stratification of the behavior
of the complex active system, where each different stratum corresponds
to a different abstraction level of the emergent behavior. As such, emer-
gence is a peculiar property of a complex active system. To speed up the
diagnosis task, model-based knowledge is compiled offline and exploited
online by the diagnosis engine. The technique is sound and complete.
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1 Introduction

In an interview in January 2000, the physicist Stephen Hawking was asked the
following question [32]: Some say that while the 20th century was the century
of physics, we are now entering the century of biology. What do you think of
this? Professor Hawking replied: I think the next century will be the century of
complexity. Colloquially, we use the qualifier “complex” to indicate something
that is complicated in nature. In this perspective, a complex system is compli-
cated in structure and behavior, such as an aircraft or a nuclear power plant.
However, according to complexity science [1,2,8,24], although it is likely to be
complicated, a complex system does not equate to a complicated system. In
this different perspective, a complex system is composed of several individual
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components that, once aggregated, assume collective characteristics that are not
manifested, and cannot be predicted from the properties of the individual com-
ponents. So, a human being is much more than the union of some 100 trillion
cells that make up her body. Likewise, a cell of a human body is much more
than the union of its molecules. What we think as a human being, in terms of
personality and character, is in fact a collective manifestation of the different
interactions among the neurons and synapses in the brain. On their turn, these
are in continuous interaction with the other cells of the body, possibly with
clusters of cells that constitute organs, which themselves are complex systems.
Locally, each cell is characterized by its specific behavior and interaction rules,
globally resulting in the collective manifestation of the human being.

Complexity science questions the traditional reductionist approach adopted
in the natural sciences, namely the reduction of complex natural phenomena to
several simple processes, and the application of a simple theory to each process.
More specifically, the principle of superimposition is no longer accepted, namely
that the comprehension of the whole phenomenon relies on the superimposition
of its parts. Based on this principle, for instance, if you understand the theory
of an elementary particle, then you will understand every natural phenomenon.
Likewise, if you understand DNA, then you will comprehend all biological phe-
nomena. By contrast, a significant aspect of complex systems is that a new col-
lective level emerges through interactions between autonomous elements. Hence,
in order to comprehend the complex system, additional knowledge is required
beyond the comprehension of the single elements. More generally, a complex
system is structured in a hierarchy of semi-autonomous subsystems, with the
behavior of a subsystem at level i of the hierarchy being affected, although not
completely determined, by the behavior of each subsystem at level i−1. As such,
the behavior of a complex system is stratified.

Loosely inspired by complexity science, this paper presents a method to
extract knowledge - above all, about emergent behavior - from the models of
individual clusters of (component) systems and to exploit this knowledge for
the lazy diagnosis of a class of discrete event systems (DESs) [5], called complex
active systems (CASs). A sort of CASs was first introduced in [20,21]; however,
the relevant model-based diagnosis task proved naive. Subsequently, a viable
diagnosis technique was presented in [17,23] and extended in [22]. To the best
of our knowledge, apart from the works cited above, no approach to diagno-
sis of DESs (much less to diagnosis of static systems) based on the complexity
paradigm has been proposed so far. Moreover, none of the complexity-inspired
approaches cited above is based on knowledge compilation. Still, several works
can be related to this paper in varying degree, as discussed below.

An approach is described in [14], where the notion of a supervision pattern
is introduced for flat DESs, which allows for a flexible specification of the diag-
nosis problem. However, the events associated with supervision patterns are not
exploited for defining any emergent behavior. Diagnosis of hierarchical finite
state machines (HFSMs), which are inspired by state-charts [9], provides a sort
of structural complexity. Diagnosis of HFSMs has been considered in [13,26].
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However, complexity is merely confined to structure, without emergent events
or behavior stratification. An algorithm for computing minimal diagnoses of tree-
structured systems is presented in [31]. Subdiagnoses are generated by traversing
top-down the tree, which are eventually combined to yield the candidate diag-
noses of the whole system. However, despite the fact that the considered systems
are static and the diagnosis method is consistency-based, neither complexity nor
emergent behavior is conceived, as the goal of the technique is efficiency of the
diagnosis task by exploitation of the structure of the system. An approach to
consistency-based diagnosis of static systems supported by structural abstrac-
tion (which aggregates components to represent the system at different levels of
structural detail) is described in [6] as a remedy of computational complexity
of model-based diagnosis. Evidence from experimental evaluation indicates that,
on average, the technique performs favorably with the algorithm of Mozetič [25].
Still, no emergent behavior is conceived. A technique for consistency-based diag-
nosis of multiple faults in combinational circuits is presented in [30]. To scale the
diagnosis to large circuits, a technique for hierarchical diagnosis is proposed. An
implementation on top of the tool presented in [12], which assumes that the sys-
tem model has been compiled into propositional formulas in decomposable nega-
tion normal form (DNNF), has demonstrated the effectiveness of the approach.
However, neither emergent behavior nor behavior stratification is conceived, and
the technique addresses static systems only. A scalable technique for diagnosabil-
ity checking of DESs is proposed in [28]. In contrast with the method presented in
[27], which suffers from exponential complexity, new algorithms with polynomial
complexity were proposed in [15,33], called the twin plant method. However, the
construction of a global twin plant, which corresponds to the synchronization
based on observable events of two identical instances of the automaton repre-
senting the whole DES behavior, is often impractical. The method proposed in
[28] exploits the distribution of a DES to build a local twin plant for each com-
ponent. Then, the DES components (and their relevant local twin plants) are
organized into a jointree, a classical tool adopted in various fields of Artificial
Intelligence, including probabilistic reasoning [11,29] and constraint processing
[7]. The transformation of the DES into a jointree is an artifice for reducing the
complexity of the diagnosability analysis task. Neither emergent behavior nor
behavior stratification is assumed for the DES, nor any knowledge extraction
is performed. A variant of the decentralized/distributed approach to diagnosis
of DESs is introduced in [16], with the aim of computing local diagnoses which
are globally consistent. To this end, as in [28] but in the different perspective
of diagnosis computation rather than diagnosability, a technique based on join-
trees (called junction trees in the paper) is proposed. The goal is to mitigate the
complexity of model-based diagnosis of DESs associated with abduction-based
elicitation of system trajectories. However, the goal of [16] is the efficiency of
the diagnosis task, which is performed online only, thereby without exploiting
any compiled knowledge. The transformation of the DES into a junction tree is
a technical stratagem for improving the decentralized/distributed approach to
diagnosis of DESs. The DES is plain, with no emergent behavior.
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The contribution of the present paper is threefold: (a) specification of a CAS
based on active units, (b) proposal of a process for extracting knowledge from
active units, and (c) specification of a diagnosis task for CASs exploiting com-
piled knowledge.

2 Complex Active Systems

A CAS can be defined bottom-up, starting from its atomic elements, the active
components (ACs). The behavior of an AC, which is equipped with input/output
terminals, is defined by a communicating automaton [3]. The transition function
moves the AC from one state to another when a specific input event is ready at
an input terminal. In so doing, the transition possibly generates a set of output
events at several output terminals. If specified so, an AC can perform a transition
without the need for a ready event; formally, the transition is triggered by the
“ε” empty event.1 ACs communicate with one another through links. A link is a
connection between an output terminal o of an AC c and an input terminal i′ of
another AC c′. When an event e is generated at o by a transition in c, e becomes
ready at terminal i′ of c′. At most one link can be connected with a terminal.

When several ACs are connected by links, the resulting network is an active
system (AS) [18,19]. A state of an AS is a pair (S,E), where S is the array of
states of the components in the AS and E is the array of (possibly empty) events
that are ready at the input terminals of the components. A state of the AS is
quiescent iff all elements in E are ε (no event is ready). A trajectory T of an AS is
a finite sequence of transitions of ACs in the AS, namely T = [t1(c1), . . . , tq(cq)],
which moves the AS from an initial quiescent state to a final quiescent state. In
an AS, a terminal that is not connected with any link is dangling.

An active unit (AU) is an AS extended by a set of input terminals, a set of
output terminals, and a set of emergent events, where the input terminals are
the dangling input terminals of the AS. Each emergent event is a pair (e(o), r),
where e is an event generated at the output terminal o of the AU and r is
a regular expression whose alphabet is a subset of the transitions of the ACs
involved in the AU. The event e(o) emerges from a trajectory2 of the AU when
a sequence of transitions in the trajectory matches r. The state of recognition of
an emergent event (e(o), r) is maintained by a matcher, namely a deterministic
finite automaton (DFA), derived from r, in which each final state corresponds
to the occurrence of e(o). Remarkably, the notion of a matcher of r differs from
that of a recognizer of r, as illustrated below.

Example 1. Let (e(o), r) be an emergent event in an AU U , with Σ = {t1, t2, t3}
being the alphabet of the regular expression

r = t1 t+2 t3 | t2 t+3 t1. (1)
1 Transitions triggered by empty events are typically used for modeling state changes

caused by external events (e.g. a lightning may cause the reaction of a sensor in a
protection system).

2 The notion of a trajectory defined for an AS is also valid for the AU incorporating
the AS.
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Fig. 1. The recognizer of r = t1 t+2 t3 | t2 t+3 t1, where Σ = {t1, t2, t3} (left); the NFA
obtained by the insertion of ε-transitions (center); and the matcher μ(e(o), r) (right).

Depicted on the left side of Fig. 1 is the recognizer of r, a DFA with the final
state being marked by the emergent event e(o). When the final state 5 is reached,
the emergent event e is generated at the output terminal o of U . Assume the
following trajectory T in U∗,

T = [ t3,
T ′

t1, t2, t3t1, , t1
T ′′

, t3 ]. (2)

T includes two overlapping subtrajectories matching r, namely T ′ = [ t1, t2, t3 ]
and T ′′ = [ t2, t3, t1 ], where the suffix [ t2, t3 ] of T ′ is a prefix of T ′′. Hence, the
emergent event e(o) is expected to occur twice in T , in correspondence of the
last transition of T ′ and T ′′, respectively.

Assume further to trace the occurrences of e(o) based on the recognizer of
r displayed on the left side of Fig. 1. The sequence of states of this recognizer
is outlined in the second row of Table 1, where each state is reached by the
corresponding transition of T listed in the first row of the table. As indicated
in the third row, the emergent event e(o) is correctly generated at the fourth
transition in T , which is the last transition of the subtrajectory T ′. At this
point, since no transition exits the final state 5, the recognizer starts again
from its initial state 0 in order to keep matching. It first changes state to 1 in
correspondence of t1, and with t3 (mismatch) it returns to 0. The result is that,
owing to the overlapping of T ′ and T ′′, the second e(o) is not produced.

Given the pair (e(o), r), in order to recognize all (possibly overlapping) instances
of r, we need to transform the recognizer of r into the matcher of r as follows:

1. An ε-transition is inserted into the recognizer from each non-initial state to
the initial state;

2. The nondeterministic finite automaton (NFA) obtained in step 1 is deter-
minized into an equivalent DFA;

3. The DFA generated in step 2 is minimized, thereby obtaining the matcher of r.
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The final states of the minimized DFA are marked by the emergent event e(o).

Table 1. Generation of emergent events with overlapping.

Transitions in T t3 t1 t2 t3 t1 t3

States of the recognizer of r 0 1 3 5 1 0

Emergent events e(o)

States of the matcher μ(e(o), r) m0 m1 m3 m5 m6 m0

Emergent events e(o) e(o)

Example 2. With reference to Example 1, consider the recognizer of the regular
expression r displayed on the left side of Fig. 1. Outlined on the center is the NFA
obtained by inserting five ε-transitions (dashed arrows) toward the initial state
(step 1). The DFA resulting from the determinization of the NFA is displayed
on the right side of the figure (step 2). Incidentally, this DFA is also minimal,
thus minimization (step 3) is not applied. In conclusion, the DFA on the right
side of Fig. 1 is the matcher μ(e(o), r), with the final states m5 and m6 being
marked by e(o). The dynamics of the matching performed by μ(e(o), r) on the
trajectory T is outlined in the last two rows of Table 1. In sharp contrast with
the matching performed by the recognizer of r, which produces only one e(o),
the matcher correctly generates the emergent event twice, based on the two
overlapping subtrajectories of T , namely T ′ = [ t1, t2, t3 ] and T ′′ = [ t2, t3, t1 ].
Unlike the recognizer of r, after reaching the state m5 and generating e(o),
the next transition t1 moves the matcher to the other final state m6, thereby
generating the second occurrence of e(o) correctly.

A CAS X is a directed tree, where each node is an AU and each arc (U ,U ′),
with U being a child of U ′ in the tree, is a set of links connecting all the output
terminals of U with some input terminals of U ′. A component/link is in X iff it
is in an AU of X .

Example 3. Outlined on the left side of Fig. 2 is a CAS called X̄ , involving the
AUs A, B, and C, where A has one input terminal, B has one input terminal
and one output terminal, and C has one output terminal. Since each AU has at
most one child, the hierarchy of X̄ is linear (no branches). To avoid irrelevant
details, the internal structure of the AUs is omitted.

A state of X is a triple (S,E,M), where S is the array of states of the ACs in
X , E is the array of (possibly empty) events ready at the input terminals of the
ACs in X , and M is the array of states of the matchers of the events emerging
from all AUs in X . Like for ASs, a state of X is quiescent iff all elements in
E are ε. A trajectory of X is a finite sequence of transitions of the ACs in X ,
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T = [t1(c1), . . . , tq(cq)], which moves X from an initial quiescent state to a final
quiescent state. Given an initial state x0 of X , the space of X is a DFA

X ∗ = (Σ,X, τ, x0,Xf), (3)

where Σ is the alphabet, namely the set of transitions of the ACs in X , X is the
set of states, τ is the transition function, namely τ : X × Σ �→ X, and Xf ⊆ X
is the set of final states, which are quiescent. In other words, the sequence of
symbols in Σ (transitions of ACs) marking a path (sequence of transitions) in X ∗

from x0 to a final state is a trajectory of X . Hence, X ∗ is a finite representation
of the (possibly infinite) set of trajectories of X starting at x0.

Within a trajectory of a CAS X , each transition is either observable or unob-
servable. The mode in which an observable transition is perceived is defined by
the viewer V of X , namely a set of pairs (t(c), �), where t(c) is a transition of an
AC c and � is an observable label. Given a transition t(c), if (t(c), �) ∈ V, then
t(c) is observable via label �; otherwise, t(c) is unobservable.

Assuming that X includes n AUs, namely U1, . . . ,Un, the temporal obser-
vation of a trajectory T of X based on a viewer V, denoted TV , is an array
(O1, . . . , On) where, ∀i ∈ [1 .. n], Oi is the observation of Ui, defined as the
sequence of observable labels associated with the observable transitions in T
that are relevant to the ACs in Ui only:

Oi = [ � | t(c) ∈ T, c ∈ Ui, (t(c), �) ∈ V ]. (4)

In other words, TV is the result of grouping by AUs the observable labels asso-
ciated with the observable transitions in T .

Not only each transition in a trajectory T is either observable or unobserv-
able; it also is either normal or faulty. Faulty transitions are defined by the ruler
R of X , a set of pairs (t(c), f), where t(c) is a transition of an AC c and f is
a fault. Given a transition t(c), if (t(c), f) ∈ R, then t(c) is faulty via fault f ;
otherwise, t(c) is normal. The diagnosis of a trajectory T of X based on R,
denoted TR, is defined as follows3:

TR = { f | t(c) ∈ T, (t(c), f) ∈ R}. (5)

If TR �= ∅, then T is faulty; otherwise, T is normal. Even if X ∗ includes an
infinite number of trajectories, the domain of the possible diagnoses is always
finite, this being the powerset 2F , where F is the domain of faults involved in R.

3 Diagnosis Problem

When X performs an (unknown) trajectory T , what is observed is a tempo-
ral observation O = TV , where V is the viewer of X . However, owing to partial
unobservability, several (possibly an infinite number of) trajectories may be com-
patible with O. Hence, several (a finite number of) candidate diagnoses may be
3 More generally, any set of faults is called a diagnosis.



50 G. Lamperti et al.

compatible with O. The goal is finding all these candidates. A diagnosis problem
℘(X ,O) is an association between X and a temporal observation O. Given the
viewer V and the ruler R of X , the solution to ℘(X ,O) is the set of candidate
diagnoses

Δ(℘(X ,O)) = {TR | T ∈ X ∗, TV = O }. (6)

Example 4. Consider the CAS X̄ in Example 3. Assume that the observable
labels involved in V̄ are a, b, c, d, e, and f ; the faults involved in the ruler R̄
are p, q, v, w, x, y, and z; the temporal observation is Ō = (ŌA, ŌB , ŌC), where
ŌA = [e, f ], ŌB = [c, d], and ŌC = [a, b, a]. We have that ℘(X̄ , Ō) is a diagnosis
problem.

It should be clear that Eq. (6) is only a definition formalizing what the solution to
a diagnosis problem is. It makes no sense to enumerate the candidate diagnoses
as suggested by this definition, as the size of X ∗ is exponential in the number
of ACs and input terminals. The space X ∗ plays only a formal role and is never
materialized. Even the reconstruction of the subspace of X ∗ that is compatible
with O is out of the question because, in the worst case, it suffers from the same
exponential complexity of X ∗. So, what to do? The short answer is: focusing on
the AUs rather than on the whole of X . The important points are soundness
and completeness: the set of diagnoses determined must coincide with the set of
candidate diagnoses defined in Eq. (6).

4 Knowledge Compilation

The diagnosis process involves several tasks, which are performed either offline
or online, that is, before or while the CAS is being operated, respectively. The
tasks performed offline are collectively called “knowledge compilation”, and the
resulting data structures, “compiled knowledge”. Compiled knowledge is meant
to speed up the task performed online by the diagnosis engine. In offline pro-
cessing, the AUs are processed independently from one another. For each AU U ,
three sorts of data structures are compiled in cascade: the unit space U∗, the unit
labeling Uδ, and the unit knowledge UΔ, of which the latter is exploited online.
Online processing depends on a diagnosis problem to be solved, specifically, on
the observation, whereas offline processing does not.

Definition 1 (Unit space). Let U be an AU involving an AS A. The space of
U is a DFA

U∗ = (Σ,U, τ, u0, Uf), (7)

where: the alphabet Σ is the set of transitions of ACs in U ; U is the set of
states (S,E,M), where (S,E) is a state of A and M is the array of states of
the matchers of the emergent events of U ; u0 = (S0, E0,M0) is the initial state,
where (S0, E0) is a quiescent state of A and M0 is the array of initial states
of the matchers; Uf ⊆ U is the set of final states, where (S,E,M) ∈ Uf iff
(S,E) is a quiescent state of A; and τ : U × Σ �→ U is the transition function,
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Fig. 2. CAS X̄ (left) and unit spaces C∗, B∗, and A∗. (Color figure online)

where (S,E,M)
t(c)−−→ (S′, E′,M ′) ∈ τ iff (S,E)

t(c)−−→ (S′, E′) occurs in A, M ′ is
the result of updating M based on t(c), and (S′, E′,M ′) is connected to a final
state4.

Example 5. We assume that the space of each AU has been generated already,
as shown next to the CAS X̄ in Fig. 2, namely C∗ (left), B∗ (center), and A∗

(right). In each unit space, the states are identified by numbers, the final states
are double circled, and the transitions are marked by relevant information only,
namely: observable label (in blue), fault (in red), occurrence of an emergent event
(prefixed by the “+” plus sign), and consumption of an event emerged from a
child unit (prefixed by the “−” minus sign). For instance, in B∗, the transition
from 3 to 4 is observable via the label d, is faulty via the fault v, and generates
the emergent event β. The transition from 2 to 3, which is unobservable and
normal, consumes the event α emerging from C, the child of B.

Since the space of an AU does not depend on other AUs, the occurrence of a
transition depending on an event e emerging from a child AU in the CAS is not
constrained by the actual readiness of e at one input terminal, as this information
is outside the scope of the AU. Yet, the enforcement of this interface constraint
is not neglected, but only deferred to the diagnosis engine operating online (cf.
Sect. 5).

Definition 2 (Unit labeling). Let U∗ = (Σ,U, τ, u0, Uf) be the space of an
AU U in a CAS X , let R be the ruler of X , and let δ be the domain of diagnoses
in U . The labeling of U is a DFA

Uδ = (Σ,U ′, τ ′, u′
0, U

′
f ), (8)

where: U ′ ⊆ U × δ is the set of states; u′
0 = (u0, ∅) is the initial state; U ′

f ⊆ U ′

is the set of final states, with (u, δ) ∈ U ′
f if u ∈ Uf ; τ ′ : U ′ × Σ �→ U ′ is the

transition function, with (u, δ)
t(c)−−→ (u′, δ′) ∈ τ ′ iff u

t(c)−−→ u′ ∈ τ and

δ′ =
{

δ ∪ {f} if (t(c), f) ∈ R
δ otherwise.

4 The requirement on connection means that there is a contiguous sequence of transi-
tions from (S′, E′, M ′) to a final state in Uf .
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Fig. 3. Unit labelings Cδ (left), Bδ (center), and Aδ (right).

Example 6. Displayed on Fig. 3 are the unit labelings Cδ, Bδ, and Aδ derived
from the unit spaces outlined in Fig. 2. To facilitate subsequent referencing, states
are re-identified by numbers. Owing to the additional field δ (set of faults), the
number of states in Uδ is generally larger than the number of states in U∗.

Definition 3 (Unit knowledge). Let U be an AU in a CAS X , let Uδ be a
labeling of U , and let R be the ruler of X . Let U ′

δ be the NFA obtained from Uδ

by substituting the alphabet symbols marking the transitions as follows. For each

transition (u, δ)
t(c)−−→ (u′, δ′) in Uδ, t(c) is replaced with a triple (�, e, E), where: if

(t(c), �′) ∈ V, then � = �′, else � = ε; if t(c) consumes an event e′ emerging from
a child unit, then e = e′, else e = ε; E is the (possibly empty) set of emergent
events generated at t(c) by U . Eventually, all triples (ε, ε, ∅) are replaced by
ε. The unit knowledge UΔ is the DFA obtained by the determinization of U ′

δ,
where each final state sf of UΔ is marked by the aggregation of the diagnosis sets
associated with the final states of U ′

δ within sf , denoted Δ(sf)5.

Example 7. Shown in Fig. 4 are the unit knowledge CΔ, BΔ, and AΔ, derived
from the unit labelings displayed in Fig. 3, where ε elements in triples (�, α, β)
are omitted and states are re-identified by numbers. For instance, consider the
final state 4 of CΔ (left of Fig. 4), which includes the states 7 = (1, {x, z}),
10 = (3, {x, z}), and 14 = (2, {x, y, z}) of Cδ. Since the state 10 = (3, {x, z}) in
Cδ is final (it is final in C ′

δ too), the state 4 of CΔ is marked by {{x, z}}.

5 Based on the algorithm Subset Construction [10], when an NFA is determinized into
an equivalent DFA, each state in the DFA is identified by a subset of the states of
the NFA.
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Fig. 4. Unit knowledge CΔ (left), BΔ (center), and AΔ (right).

5 Diagnosis Engine

A diagnosis problem for X is solved online by the diagnosis engine by exploiting
the knowledge of the AUs compiled offline. Each unit knowledge UΔ is con-
strained by the observation of U and by the events emerging from the child AUs
of U .

Definition 4 (Abduction of leaf AU). Let U be an AU that is a leaf of
the tree of a CAS, let UΔ = (Σ,S, τ, s0, Sf) be the knowledge of U , and let
O = [�1, . . . , �n] be an observation of U . The abduction of U is a DFA

UO = (Σ,S′, τ ′, s′
0, S

′
f),

where: S′ ⊆ S × [0 .. n] is the set of states6; s′
0 = (s0, 0) is the initial state;

S′
f ⊆ S′ is the set of final states, where s′ ∈ S′

f iff s′ = (s, n), s ∈ Sf , with s′

being marked by Δ(s′) = Δ(s); τ ′ : S′ ×Σ �→ S′ is the transition function, where

(s, j)
(�,ε,E)−−−−→ (s′, j′) ∈ τ ′ iff (s′, j′) is connected to a final state, s

(�,ε,E)−−−−→ s′ ∈ τ ,
and

j′ =
{

j + 1 if � �= ε and �j+1 = �
j if � = ε.

(9)

Example 8. Consider the unit knowledge CΔ displayed on the left side of Fig. 4.
Let ŌC = [ a, b, a ] be the observation of C. The unit abduction CO is shown on
the left side of Fig. 5.

To extend Definition 4 to nonleaf AUs, we introduce the notion of a unit interface
in Definition 5 (generalized in Definition 8).

6 Each natural number in [0 .. n] is called an index of O.
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Fig. 5. Unit abductions CO (left), BO (center), and AO (right).

Definition 5 (Interface of leaf AU). Let UO be an abduction where U is a leaf
AU. Let U ′

O be the NFA obtained from UO by substituting E for each transition
symbol (�, ε, E) such that E �= ∅, and ε for all other symbols. The interface U�
of U is the DFA obtained by determinization of U ′

O, where each final state s′
f

is marked by the union of the sets of diagnoses marking the final states of U ′
O

included in s′
f , denoted Δ(s′

f).

Example 9. Considering the unit abduction CO displayed on the left side of
Fig. 5, the unit interface C� is shown on the left side of Fig. 6, where all three
states are final.

To extend the notion of a unit abduction to nonleaf AUs (Definition 7), we make
use of the join operator defined below.

Definition 6 (Join). The join “⊗” of two sets of diagnoses, Δ1 and Δ2, is
the set of diagnoses defined as follows:

Δ1 ⊗ Δ2 = { δ | δ = δ1 ∪ δ2, δ1 ∈ Δ1, δ2 ∈ Δ2 }. (10)

Definition 7 (Abduction of nonleaf AU). Let U be a nonleaf AU in X , let
U1, . . . ,Uk be the child AUs of U in X , let UΔ = (Σ,S, τ, s0, Sf) be the knowledge
of U , let O = [�1, . . . , �n] be an observation of U , let E be the domain of tuples
of (possibly empty) events emerging from child AUs ready at the input terminals
of U , let Ui� = (Σi, Si, τi, s0i, Sf i) be the interface of Ui, i ∈ [1 .. k], and let
S = S1 × · · · × Sk. The abduction of U is a DFA

UO = (Σ′, S′, τ ′, s′
0, S

′
f),

where: Σ′ = Σ ∪ Σ1 ∪ · · · ∪ Σk; S′ ⊆ S × S × E × [0 .. n] is the set of states;
s′
0 = (s0, (s01, . . . , s0k), (ε, . . . , ε), 0) is the initial state; S′

f ⊆ S′ is the set of final
states, where s′

f ∈ S′
f iff s′

f = (sf , (sf 1, . . . , sfk), (ε, . . . , ε), n), sf ∈ Sf , ∀i ∈ [1 .. k],
sf i ∈ Sf i, and s′

f is marked by the set of diagnoses

Δ(s′
f) = Δ(sf) ⊗ Δ(sf 1) ⊗ · · · ⊗ Δ(sfk); (11)
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τ ′ : Σ′ × S′ �→ S′ is the transition function, where

(s, (s1, . . . , sk), E, j) σ−→ (s′, (s′
1, . . . , s

′
k), E′, j′) ∈ τ ′

iff (s′, (s′
1, . . . , s

′
k), E′, j′) is connected to a final state and either of the following

conditions holds:

(a) s
σ−→ s′ ∈ τ , σ = (�, e, Ē), either e = ε or e is ready in E, E′ equals E except

that e is removed, and the index j′ is defined as in Eq. (9);
(b) si

σ−→ s′
i ∈ τi, σ = Ei, all elements in E corresponding to the input emergent

events in Ei are ε, E′ equals E except that all events in Ei are inserted
into E′.

Example 10. Consider the unit knowledge BΔ displayed on the center of Fig. 4
and the unit interface C� displayed on the left side of Fig. 6. Let ŌB = [ c, d ] be
the observation of B. The unit abduction BO is shown on the center of Fig. 5.
Each state in BO is marked by a quadruple (sB , sC , e, j), where sB is a state of
BΔ, sC is a state of C� (C is the unique child of B), e is the event emerging
from C and possibly ready (if e �= ε) at the input terminal of B (B includes
one input terminal only), and j is an index of the observation ŌB . Let Δ̄ be the
set of diagnoses marking the final state 8 = (8, 2, ε, 2). Based on Eq. (11), Δ̄ is
generated via join Δ(8) ⊗ Δ(2), where Δ(8) is the set associated with the state
8 of the unit knowledge BΔ (shown on the center of Fig. 4), namely {{v, w}},
and Δ(2) is the set associated with the state 2 of the unit interface C� (shown
on the left side of Fig. 6), namely {{y, z}}. Hence, Δ̄ = {{v, w}} ⊗ {{y, z}} =
{{v, w, y, z}}. The unit interface B�, drawn from BO, is displayed on the right
side of Fig. 6.

Definition 8 (Interface of AU). Let UO be an abduction. Let U ′
O be the NFA

obtained from UO by substituting E for each transition symbol (�, e, E) such that
E �= ∅, and ε for all other symbols. The interface U� of U is the DFA obtained
by determinization of U ′

O, where each final state s′
f is marked by the union of the

sets of diagnoses marking the final states of U ′
O included in s′

f , denoted Δ(s′
f).

Example 11. Considering the unit abduction BO displayed on the center of
Fig. 5, the unit interface B� is shown on the right side of Fig. 6.

6 Soundness and Completeness

Once the abduction process reaches the root U of the CAS X , thereby gener-
ating UO, the solution to the diagnosis problem ℘(X ,O) can be determined by
collecting the diagnoses marking the final states of UO (Proposition 1).

Proposition 1 (Correctness). Let ℘(X ,O) be a diagnosis problem, let U be
the AU at the root of X , let UO be the abduction of U , with Sf being the set of
final states, and let

Δ(UO) =
⋃

sf∈Sf

Δ(sf) . (12)

We have Δ(℘(X ,O)) = Δ(UO).
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Fig. 6. Unit interfaces C� (left) and B� (right).

To prove Proposition 1, further terminology is required. Let Ū be the CAS within
X rooted in U . The restriction of ℘(X ,O) on Ū is a diagnosis problem ℘(Ū , Ō)
where the viewer V̄ of Ū is the restriction of the viewer of X on pairs (t(c), �)
such that c is a component in Ū , the ruler R̄ of Ū is the restriction of the ruler
of X on pairs (t(c), f) such that c is a component in Ū , the initial state of Ū is
the restriction of the initial state of X on the components and links in Ū , and Ō
is the restriction of O on observations of AUs in Ū . The notion of a trajectory is
extended to any DFA involved in the diagnosis task, namely unit labeling, unit
knowledge, unit abduction, and unit interface. A trajectory in any such DFA is a
string of the regular language of the DFA, that is, the sequence of symbols in the
alphabet which mark the sequence of transitions from the initial state to a final
state of the DFA; such a final state is called the accepting state of the trajectory.
The set of trajectories in a DFA D (the regular language of D) is denoted by
‖D‖. For instance, T ∈ ‖UO‖ denotes a trajectory T in the abduction UO.

A path p in a DFA D is the sequence of transitions yielding a trajectory
[σ1, . . . , σn] in D, namely p = s0

σ1−→ s1
σ2−→ · · · σn−−→ sn. A semipath in D is a prefix

of a path in D. A subpath p′ in D is a contiguous sequence of transitions within a
path, from state si to state sj , namely si

σi+1−−−→ s1+1
σi+2−−−→ · · · σj−1−−−→ sj−1

σj−→ sj ,
concisely denoted si

σ=⇒ sj , where σ = [σi+1, . . . , σj−1, σj ] is the subtrajectory
generated by p′.

The notion of an interface is extended to any trajectory. The interface of a
trajectory T , denoted 
(T ), is the sequence of nonempty sets of emergent events
occurring in T . Specifically, if T is a trajectory in U�, then 
(T ) = T . If T is
a trajectory in either UO or UΔ, then 
(T ) = [E | (�, e, E) ∈ T,E �= ∅ ]. If T is
a trajectory in either U∗ or Uδ, then each set E in 
(T ) is the nonempty set of
events emerging at the occurrence of a component transition in T .

Let G = (N,A) be a directed acyclic graph (DAG), where N is the set of
nodes and A is the set of arcs. Let n and n′ be two nodes in N . We say that n
precedes n′, denoted n ≺ n′, iff n′ is reachable from n by a contiguous sequence
of arcs. A topological sort S in G is a sequence of all nodes in N (with each node
occurring once) such that, for each pair (n, n′) of nodes in S, if n ≺ n′ in G, then
n ≺ n′ in S. The whole (finite) set of topological sorts in G is denoted ‖G‖.

Based on the terminology introduced above, a sketch of the proof of Propo-
sition 1 can be given on the ground of Lemma 11, Lemma 12, Corollary 11, and
Lemma 13.
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Lemma 11 (Mapping). Let D = (Σ,S, τ, s0, Sf) be a DFA. Let Σ′ be an alpha-
bet (possibly including ε) and let Σ �→ Σ′ be a surjective mapping from Σ to Σ′.
Let N = (Σ′, S, τ ′, s0, Sf) be the NFA derived from D by replacing each tran-

sition s
σ−→ σ ∈ τ with s

σ′
−→ σ ∈ τ ′, where σ′ is the symbol in Σ′ mapping the

symbol σ in Σ. Let D′ be the DFA obtained by determinization of N . If T ′ is a
trajectory in ‖D′‖ with accepting state s′

f , then, for each final state sf ∈ s′
f , there

is a trajectory T in ‖D‖ with accepting state sf such that T ′ is the mapping of
T based on Σ �→ Σ′.

Proof. By induction on T ′.
(Basis) According to the Subset Construction determinization algorithm, if

s ∈ s′
0, where s′

0 is the initial state of D′, then there is a path s0
ε∗
=⇒ s in N

where ε∗ is a (possibly empty) sequence of ε. Hence, there is a path s0
σ=⇒ s in

D such that ε∗ is the mapping of σ based on Σ �→ Σ′.

(Induction) Assume that there is a semipath s′
0

σ ′
=⇒ s′ in D′ such that for each

s ∈ s′ there is a semipath s0
σ=⇒ s in D where σ′ is the mapping of σ based on

Σ �→ Σ′. Consider the new semipath s′
0

σ ′
=⇒ s′ σ̄−→ s̄′ in D′. According to Subset

Construction, for each state s̄ ∈ s̄′ there is a state s ∈ s′ such that s
σ̄n=⇒ s̄ is a

subpath in N where σ̄n starts with σ̄, followed by a (possibly empty) sequence
of ε. Hence, there is a subpath s

σ̄d=⇒ s̄ in D such that σ̄d maps to [σ̄]. Thus, by
virtue of the induction hypothesis, σ ∪ σ̄d maps to σ′ ∪ [σ̄] based on Σ �→ Σ′. �

Corollary 11. With reference to the assumptions stated in Lemma 11, if T ′ is

generated by a path p′ = s′
0

σ′
1−→ s′

1

σ′
2−→ s′

2

σ′
3−→ · · · σ′

n−1−−−→ s′
n−1

σ′
n−−→ s′

n in D′, then
there is a path p = s0

σ1=⇒ s1
σ2=⇒ s2

σ3=⇒ · · · σn−1===⇒ sn−1
σn=⇒ sn in D such that,

∀i ∈ [1 .. n], si−1 ∈ s′
i−1, si ∈ s′

i, and [σ′
i] is the mapping of σi based on Σ �→ Σ′.

Lemma 12 (Soundness). If s′
f is a final state in UO, δ ∈ Δ(s′

f), and T ∈ ‖UO‖
with accepting state s′

f , then δ ∈ Δ(℘(Ū , Ō), where δ = T̄R̄, T̄ ∈ ‖Ū∗‖, and

(T̄ ) = 
(T ).

Proof. By bottom-up induction on the tree of Ū .
(Basis) Assume that U is a leaf AU. Since s′

f = (sf , n) is a final state in UO,
δ ∈ Δ(s′

f), and T ∈ ‖UO‖ with accepting state s′
f , based on Definition 4 and

Lemma 11, there is TΔ ∈ ‖UΔ‖ with accepting state sf such that δ ∈ Δ(sf) and

(TΔ) = 
(T ). Hence, based on Definition 3 and Lemma 11, there is Tδ ∈ ‖Uδ‖
with accepting state (s, δ) such that 
(Tδ) = 
(TΔ) = 
(T ). Therefore, based
on Definition 2, there is T̄ ∈ ‖U∗‖ such that T̄V̄ = Ō and T̄R̄ = δ; in other words,
according to Eq. (6), δ ∈ Δ(℘(Ū , Ō). Also, 
(T̄ ) = 
(Tδ) = 
(T ).

(Induction) Assume that U is the parent of the AUs U1, . . . ,Uk, where ∀i ∈
[1 .. k], if s′

if is a final state in UiO, δi ∈ Δ(s′
if), and Ti ∈ ‖UiO‖ with accepting

state s′
if , then δi ∈ Δ(℘(Ūi, Ōi), where δi = T̄iR̄i

, T̄i ∈ ‖Ū∗
i ‖, and 
(T̄i) = 
(Ti).

Since s′
f = (sf , (s1f , . . . , skf), (ε, . . . , ε), n) is a final state in UO, δ ∈ Δ(s′

f),
and T ∈ ‖UO‖ with accepting state s′

f , according to Eq. (11), δ ∈ Δ(s′
f) = Δ(sf)⊗
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Δ(s1f) ⊗ · · · ⊗ Δ(skf), where, ∀i ∈ [1 .. k], sif is final in Ui�. Hence, based on
Definition 6, δ = δ0∪δ1 ∪· · ·∪δk, where δ0 ∈ Δ(sf) and, ∀i ∈ [1 .. k], δi ∈ Δ(sif).
Also, based on Definition 8 and Lemma 11, ∀i ∈ [1 .. k], there is Ti ∈ ‖UiO‖
with accepting state s′

if ∈ sif such that δi ∈ s′
if and all emergent events in

Ti are consumed in T . Thus, by virtue of the induction hypothesis, we have
δi ∈ Δ(℘(Ūi, Ōi), where δi = T̄iR̄i

, T̄i ∈ ‖Ū∗
i ‖, and 
(T̄i) = 
(Ti). According

to Definition 7, the trajectory T is composed of triples (�, e, E) interspersed
by elements Ei, with each Ei being a nonempty set of events emerging from
Ui. Note that, for each Ei in T there is one transition in T̄i generating Ei.
Thus, each T̄i is composed of transitions t(c), where c is a component in Ūi,
in which there are some transitions generating sets Ei of emergent events. The
sequence of Ei generated in T̄i equals the subsequence of Ei in T , i ∈ [1 .. k]. So,
there is a sequential correspondence between each Ei in T and each transition
in T̄i generating the set Ei of emergent events. According to Definition 7 and

Corollary 11, if s′
0

σ ′
1=⇒ s′

1

Ei1−−→ s′′
1

σ ′
2=⇒ s′

2

Ei2−−→ s′′
2

σ ′
3=⇒ · · · σ ′

n=⇒ s′
n is the path in

UO generating the trajectory T = σ′
1 ∪ [Ei1] ∪ σ′

2 ∪ [Ei2] ∪ σ′
3 ∪ · · · ∪ σ′

n, then
there is a path s0

σ1=⇒ s1
σ2=⇒ s2

σ3=⇒ · · · σn=⇒ sn in Uδ generating the trajectory
T ∗ = σ1 ∪σ2 ∪· · ·∪σn , T ∗ ∈ ‖U∗‖, such that T ∗ generates the observation of U
and the diagnosis δ0. Now, consider the DAG G constructed by the following four
steps, where each node is either a component transitions or a set Ei of emergent
events, while arcs indicate precedence dependencies between these nodes. Step 1:
in T , substitute σj for each σ′

j , j ∈ [1 .. n]; this step substitutes sequences of
transitions of components in U for corresponding sequences of triples (�, e, E)
in T ; Step 2: transform each trajectory T̄i = [t1, t2, . . . , tni

], i ∈ [1 .. k], into a
connected sequence of nodes t1 → t2 → · · · → tni

, where arrows indicate arcs
(precedence dependencies); Step 3: transform T into a connected sequence of
nodes in the same way as in step 2; Step 4: for each transition ti in T̄i generating
the set Ei of emergent events, insert an arc from ti to the corresponding Ei

in T . This results in a DAG, namely a dependency graph G, where each Ei is
entered by an arc from a transition in T̄i, i ∈ [1 .. k]. Let T̄ be the sequence
of transitions relevant to a topological sort of G, where all Ei are eventually
removed. As such, T̄ is a sequence of transitions of components in Ū fulfilling
the precedences imposed by G. Remarkably, T̄ fulfills the following properties: (1)
T̄ ∈ ‖Ū∗‖, because the component transitions in each T̄i are only constrained by
the emptiness of the output terminals of Ui, while the component transitions in T
are only constrained by the availability of the events emerging from U1, . . . ,Uk,
which are checked by the mode in which the abduction UO is generated; (2)
T̄V̄ = Ō, because the sequence of observable labels generated by transitions in T
equals the observation of U and, ∀i ∈ [1 .. k], T̄iV̄i

= Oi; and (3) the sequence of
faults generated by the the transitions in T equals δ0 and, ∀i ∈ [1 .. k], T̄iR̄i

= δi.
In other words, T̄R̄ = δ = δ0 ∪ δ1 ∪ · · · ∪ δk; hence, δ ∈ Δ(℘(Ū , Ō). Also,

(T̄ ) = 
(T ). �

Lemma 13 (Completeness). If δ ∈ Δ(℘(Ū , Ō), where δ = T̄R̄ and T̄ ∈ ‖Ū∗‖,
then there is T ∈ ‖UO‖ ending in s′

f such that δ ∈ Δ(s′
f) and 
(T ) = 
(T̄ ).
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Proof. By bottom-up induction on the tree of Ū .
(Basis) Assume that U is a leaf AU. Since δ ∈ Δ(℘(Ū , Ō), where δ = T̄R̄ and

T̄ ∈ ‖Ū∗‖, based on Definition 2, there is Tδ ∈ ‖Uδ‖ with accepting state (s, δ)
such that 
(Tδ) = 
(T̄ ). Hence, based on Definition 3, there is TΔ ∈ ‖UΔ‖ with
accepting state sf such that δ ∈ Δ(sf) and 
(TΔ) = 
(Tδ) = 
(T̄ ). Thus, based
on Definition 4, there is T ∈ ‖UO‖ ending in s′

f = (sf , n) such that δ ∈ Δ(s′
f)

and 
(T ) = 
(TΔ) = 
(T̄ ).
(Induction) Assume that U is the parent of the AUs U1, . . . ,Uk, where, ∀i ∈

[1 .. k], if δi ∈ Δ(℘(Ūi, Ōi)), where δi = T̄iR̄i
and T̄i ∈ ‖Ū∗

i ‖, then there is
Ti ∈ ‖UiO‖ with accepting state s′

if such that δi ∈ Δ(s′
if) and 
(Ti) = 
(T̄i).

Since δ ∈ Δ(℘(Ū , Ō), where δ = T̄R̄ and T̄ ∈ ‖Ū∗‖, we have δ = δ0∪δ1∪· · ·∪
δk, where δ0 includes the faults of the components in the AU U and, ∀i ∈ [1 .. k], δi

includes the faults of the components in the CAS Ūi. Since each δi is the diagnosis
of the trajectory T̄i corresponding to the restriction of T̄ on the transitions of
the components in Ūi such that T̄i ∈ ‖Ū∗

i ‖, T̄iV̄i
= Oi, and T̄iR̄i

= δi, based
on Eq. (6), δi ∈ ℘(Ūi, Ōi). Hence, by virtue of the induction hypothesis, there is
Ti ∈ ‖UiO‖ with accepting state s′

if such that δi ∈ Δ(s′
if) and 
(Ti) = 
(T̄i).

Also, based on Definition 8, there is T ′
i ∈ ‖Ui�‖ with accepting state sif such

that δi ∈ Δ(sif) and 
(T ′
i ) = 
(Ti) = 
(T̄i). Let T ′ be the subtrajectory of T̄

including only the transitions of components in U . As such, T ′ ∈ ‖U∗‖, T ′
V equals

the observation in O relevant to U , and T ′
R = δ0. Hence, based on Definition 2,

there is Tδ ∈ ‖Uδ‖ with accepting state (s, δ0) such that 
(Tδ) = 
(T ). Also,
based on Definition 3, there is TΔ ∈ ‖UΔ‖ with accepting state sf such that
δ ∈ Δ(sf) and 
(TΔ) = 
(Tδ) = 
(T ). Thus, based on Definition 7, there is
T ∈ ‖UO‖ with accepting state s′

f = (sf , (s1f , . . . , skf), (ε, . . . , ε), n) such that
δ0 ∈ Δ(sf) and, ∀i ∈ [1 .. k], δi ∈ Δ(sif). Since δ = δ0 ∪ δ1 ∪ · · · ∪ δk, based on
Definition 6 and according to Eq. (11), δ ∈ Δ(sf) ⊗ Δ(s1f) ⊗ · · · ⊗ Δ(skf); that
is, δ ∈ Δ(s′

f). Also, 
(T ) = 
(T̄ ). �

Example 12. Consider the unit knowledge AΔ displayed on the right side of
Fig. 4 and the unit interface B� displayed on the right side of Fig. 6. Let ŌA =
[ e, f ] be the observation of A. The unit abduction AO is shown on the right side
of Fig. 5. Let Δ̄ be the set of diagnoses marking the final state 5 = (5, 1, ε, 2).
Based on Eq. (11), Δ̄ is generated via join Δ(5) ⊗ Δ(1), where Δ(5) is the set
associated with the state 5 of the unit knowledge AΔ (on the right side of
Fig. 4), namely {{q}}, and Δ(1) is the set associated with the state 1 of the
unit interface B� (on the right side of Fig. 6), namely {{v, w, y, z}}. Hence,
Δ̄ = {{q, v, w, y, z}}. Based on Proposition 1, Δ̄ is the solution to the diagnosis
problem ℘(X̄ , Ō) defined in Example 4.

7 Computational Complexity

Had we adapted the diagnosis technique proposed for ASs [18,19] to the diagnosis
of CASs, we would have inherited (and even exacerbated) its poor performance
(see the experimental results in [17]). In contrast with diagnosis of ASs, the
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diagnosis engine described in Sect. 5 does not require the abduction of the whole
system. Instead, it focuses on the abduction of each single AU based on the
interface constraints coming from the child AUs. In doing so, it exploits the unit
knowledge compiled offline.

We analyze the time complexity of solving a diagnosis problem ℘(X ,O) based
on the (not unreasonable) assumption that the processing time is proportional
to the size (number of states) of the data structures generated by the diagnosis
engine. Furthermore, we make the following bounding assumptions: X is com-
posed of n AUs; each nonleaf AU has c child AUs, has h input terminals, and
defines m emergent events; each unit knowledge (generated offline) includes k
states; the length of each AU observation in ℘(X ,O) is o. We also assume that
the size of the DFA obtained by the determinization of an NFA compares to the
size of the NFA7. We call this the determinization assumption. We first consider
the (upper bound of the) complexity C of the abduction UO of a leaf AU (at
level zero, that is, without children). Based on Definition 4, CUO = k ·o. In order
to estimate the complexity of each unit abduction UO at level one, where all
children of U are leaf AUs, two steps have to be analyzed: (1) generation of c
interfaces and (2) generation of UO based on Definition 7. As to step (1), on the
ground of the determinization assumption, the number of states of the interfaces
of the child AUs is c · k · o. Based on Definition 7, the (upper bound of the)
number of states generated by step (2) for each unit abduction at level one is
k · (k ·o)c ·mh ·o = (k ·o)c+1 ·mh. Owing to the factor (k ·o)c+1, the contribution
c · k · o of step (1) can be neglected; hence,

CUO = (k · o)c+1 · mh . (13)

The complexity of each unit abduction UO at the second level (where U is the
grandparent of leaf AUs) can be computed as before, where the size of each
interface equals CUO in Eq. (13), namely

CUO = k · ((k · o)c+1 · mh)c · mh · o = (k · o)c2+c+1 · m(c+1)·h . (14)

At level d (depth of the tree) of the root AU, the complexity of the unit abduc-
tion is

CUO = (k · o)cd+cd−1+···+c2+c+1 · m(cd−1+···+c2+c+1)·h . (15)

Since 1 + c + c2 + · · · + cd = n, with n being the number of AUs in the CAS,
the dominant factor in Eq. (15) is (k · o)n. In other words, the complexity of the
unit abduction is exponential in the number of AUs in the CAS.

Finally, we consider the space complexity of knowledge compilation, which
is performed offline. We assume that each AU includes p components and l

7 In the worst case, if n is the number of states of the NFA, then the number of
states of the DFA is 2n. However, this is an extremely improbable scenario since, in
practice, the size of the DFA resulting from the determinization of an NFA generated
randomly typically compares with the size of the NFA (cf. Fig. 4). If the NFA includes
a considerable percentage of ε-transitions, then the size of the DFA is likely to be
substantially smaller than the size of the NFA [4].
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links, with each component having s states and generating q different events
for each connected link. Each matcher (the DFA recognizing the occurrence of
an emergent event) has μ states. The number of possible faults is f . The space
complexity of the unit space U∗ is CU∗ = sp · (q +1)� ·μm. The space complexity
of the unit labeling Uδ is

CUδ
= CU∗ · 2f = sp · (q + 1)� · μm · 2f . (16)

According to the determinization assumption, the complexity of the unit knowl-
edge equals the complexity of the unit labeling, namely CUΔ

= CUδ
.

8 Conclusion

The contributions of this paper are the specification of a class of DESs inspired
by the complexity paradigm, called complex active systems, and a knowledge-
compilation technique that speeds up online diagnosis for such systems. Most
notably, the shift from ASs to CASs does not come with an additional cost in the
diagnosis task; on the contrary, the diagnosis technique is not only sound and
complete, but also viable compared to the diagnosis of ASs. In fact, since a state
of the AS includes the states of all components and the states of all links, the
complexity of the abduction of the whole AS in diagnosis of ASs is exponential
both in the number of components and in the number of links.

This theoretical expectation is confirmed by the experimental results pre-
sented in [17], with the diagnosis engine being not supported by any compiled
knowledge. Two diagnosis engines have been implemented, one greedy and one
lazy. The greedy engine makes use of the same technique of behavior recon-
struction adopted in diagnosis of ASs [19], while the lazy engine operates sim-
ilarly to the technique proposed in this paper (although without any compiled
knowledge). The results clearly show that the processing time of the lazy engine
increases almost linearly with the size of the system, in contrast with the pro-
cessing time of the greedy engine, which grows exponentially.

On the ground of these results, we expect that the technique proposed in
this paper, which is essentially a lazy engine exploiting compiled knowledge,
is still more efficient than the lazy engine in [17], since the low-level model-
based reasoning, performed offline and incorporated in the compiled knowledge,
is avoided online. Experiments to confirm this intuition will be carried out.

But, why should we model a real system as a CAS rather than a flat AS?
In our opinion, the reason is twofold. First, real event-driven systems are typi-
cally organized hierarchically, at different abstraction levels. Modeling one such
system as a (flat) AS may be awkward because of the mismatch between the
hierarchical organization of the structure and behavior of the real system and the
flat organization of the modeling AS. CASs provide a natural modeling support
against such a mismatch, where emergent events are the means of communica-
tion between strata at different abstraction levels, thereby supporting behavior
stratification. In short, the first benefit is ergonomics in the modeling task. Sec-
ond, once the real system is modeled as a CAS, the diagnosis task provides the



62 G. Lamperti et al.

sound and complete solution to a diagnosis problem more efficiently than in a
(flat) AS. Since diagnosis is potentially interesting to the degree that it is accu-
rate and viable, the second benefit is correctness and viability of the diagnosis
task.

As diagnosis of CASs is still in its infancy, several research paths can be
envisaged. First, the tree-based topology of the CAS can be relaxed to a directed
acyclic graph (DAG), where an AU can have several parent units. Moreover,
each node of the DAG can be generalized to a (possibly cyclic) network of AUs.
Second, the language of the patterns defining emergent events can be extended
beyond regular expressions, based on more powerful grammars, possibly enriched
by semantic rules. Third, the diagnosis task, which in this paper is assumed
to be a posteriori, that is, performed at the reception of a complete temporal
observation of the CAS, can be made reactive, where diagnosis is performed as
soon as a piece of observation is received. Finally and more challengingly, an
adaptive CAS can be envisaged, where the behavior of components and AUs can
change based on specific patterns of events, so as to convert a nonconstructive
or even disruptive behavior to a more constructive behavior.
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14. Jéron, T., Marchand, H., Pinchinat, S., Cordier, M.: Supervision patterns in dis-
crete event systems diagnosis. In: Seventeenth International Workshop on Princi-
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