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Abstract. The literature lacks definitions for quantitative measures of
model interpretability for automatic model selection to achieve high
accuracy and interpretability, hence we define inherent model inter-
pretability. We extend the work of Lipton et al. and Liu et al. from
qualitative and subjective concepts of model interpretability to objec-
tive criteria and quantitative measures. We also develop another new
measure called simplicity of sensitivity and illustrate prior, initial and
posterior measurement. Measures are tested and validated with some
measures recommended for use. It is demonstrated that high accuracy
and high interpretability are jointly achievable with little to no sacrifice
in either.
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1 Introduction

For machine learning (ML) models, data and results, there is a demand for
transparency, ease of understanding and explanations [24] to satisfy a citizen’s
“right to explanation” in the European Union [20] and to meet health care
requirements for justification and explanation [7,22].

Without quantitative measures of transparency and understandability, doc-
tors (or users) will select models which maximize accuracy but may unnecessar-
ily or unintentionally neglect or sacrifice transparency and understandability, or
they will choose models in an ad hoc manner to try and meet all criteria. We
refer to the transparency and understandability of models as inherent model
interpretability—defined further in Sect. 3.

We propose criteria and measures of inherent model interpretability to help
a doctor select ML models (Table1 steps 1 and 2) which are more transparent
and understandable, in a quantitative and objective manner. More transparent
models can offer additional views of results (Table1 step 3) for interpretation.
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Table 1. Measures of inherent model interpretability facilitate model selection (bold
text) in steps 1 and 2.

Step | Task Basis for task

1 The doctor selects candidate models | Data types and distributions,
for learning and testing based on... Inherent model interpretability

(transparency of model)

2 The machine learns model weights for Accuracy, Inherent model
optimal accuracy with various interpretability (transparency of
parameters. The doctor selects the model and understandability of
model to use based on... results)

3 The doctor uses the model to classify new | Theory, Views of results,
data. The doctor understands and Additional views of results

interprets the result and model based on...

4 The doctor explains the result and model | Selected interpretations, Theory
to a patient or peer based on...

Our measures facilitate the inclusion of better models as candidates and the
selection of better models for use.

Some of our proposed measures are specific to support vector machines
(SVM), as one popular ML method. We perform experiments to validate the
SVM measures against a set of propositions and evaluate their utility by con-
cordance or matched pair agreement.

Notably, the proposed measures do not provide an interpretation or expla-
nation. They also do not indicate how useful or meaningful a model is in the
context of data. For example, a model that always classifies patient data as
belonging to the positive class is very understandable (interpretable). We can
easily construct the explanation of the model and result—all patients are classi-
fied as positive—but that does not mean that the model is useful, meaningful,
appropriate, or unbiased. Accuracy and common sense address the latter issues.
The proposed measures only indicate how understandable a model is, i.e., how
likely we are able to provide an interpretation, as the necessary basis for subse-
quent explanation.

Making ML more interpretable facilitates its use in health care because there
is a perception that ML is a black box [31] lacking interpretability which inhibits
its use. Greater use is important because for a good number of health care
problems and data, ML methods offer better accuracy in classification [12,15,41]
than common alternatives among statistical methods, decision trees and rule-
based methods and instance-based methods. Interpretable ML also facilitates
research on models and model fit.
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Fig. 1. A model consists of a learning method, SVM in this case, and all of its associ-
ated parts as depicted above. Most machine learning and statistical models (or classi-
fiers) have an underlying continuous output that most accurately describes the model’s
behaviour.

2 Notation

A machine learning task begins with data in a matrix X consisting of N instances
z; which are vectors, each containing n features.

X:[ghg%"'a&N]T liERn (1)

Entry x;; in the matrix is the j!* feature of instance z;. We assume real-
valued features converting any atomic data type to reals as needed (Appendix A).
A supervised learning task also has N targets (or outcomes) in a vector y
which are binary in classification, B

y = [ylv Y2, - - 7yN]T Yi € {_]—7 +1} (2)

or continuous in regression:

y=[y17y27~-.,yN]T ¥, €R (3)

In binary classification there are N7T instances in the positive class and N~
instances in the negative class.

We refer to a posterior model (e.g., Fig.1), or simply model, as a
learning method (e.g., SVM, neural networks) with all of its associated learn-
ing/estimation functions (e.g., kernels and transfer functions), hyperparameters,
structure (e.g., layers, connections, components in a composite kernel), con-
straints and learned model weights, in the context of specific data. A model
only learns from, and has meaning in, the context of specific data.

We refer to an initial model as a model in the context of specific data with
initial model weights prior to learning/iteration.

We refer to a family of models, or a prior model, as the set of models
possible when hyperparameters are variables (not specified)—e.g., SVM with a
Gaussian RBF kernel with unspecified box constraint and kernel width.
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Fig. 2. We measure inherent model interpretability at several points (dashed arrows)
in the process of machine learning and/or statistical learning (partially derived from
[25]). Note: some steps may not apply to some methods and models.

The prior, initial and posterior models are available at different points in the
process of machine learning and/or statistical learning process (Fig. 2).
Other notation is introduced in the context of discussion.

3 Inherent Model Interpretability Concept and Measures

We propose the concept of inherent model interpretability as distinguished from
an individual’s understanding and we propose two measures for any learning
method or model with numeric inputs.

Feynman said that if we understand a concept we must be able to describe it
at a freshman level, which often requires simplification or reduction, otherwise
we don’t really understand it [21]. Badii et al. express that complexity is closely
related to understanding and that understanding comes from accurate models
which use condensed information or reduction schemes [4]. Miller indicates that
selection is a key attribute of explanations [38]. Hence, we posit that the simpler
a model is, the easier it is to understand, interpret and describe, with all other
aspects of the model being equal. This leads to the following general measure.

3.1 A General Measure of Inherent Model Interpretability

As stated above, the simpler a model is, the more interpretable it is, inherently.
Formally, we propose the following definition.

Definition 1. Inherent model interpretability (or understandability) U, is a
measure with range [0,1] based on either: a measure of model transparency T
in the same range, the inverse of semi-infinite model complexity H.,, or the
inverse of finite model complexity Hy, respectively as follows:
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T @) T €lo,1]

U= m (i1) Hy € [a, 00) a €R"; a < oo (4)

1- (B=t) GipHye ol a bR o b<oo

where:

— Ho and Hy are measures of model complexity based on parts [4] in the cate-
gories of information, entropy, code length or dimension [33],

— inherent indicates that the measure is independent of an individual, e.g., their
specific learning and forgetting curves [44], and

— the multiplicative inverse [29] in (4)ii or additive inverse [57] in (4 )iii are
applied as needed for absolute or relative measure respectively according to
the comparison required. The relative measure is preferred where applicable
since it is more intuitive and interpretable (not shown).

e c.g., to compare a set of models where the range [a, b] is known to encom-
pass them all, a relative measure (iii) is fine, however, to compare them
to any future model where the mazimum b is not known, use an absolute
measure (), i.e., let b = co.

The separation of model interpretability into at least two parts, one part that
is inherent to the model (and data) and another part that depends on the indi-
vidual, aligns with the functionally-grounded approach [17].

In order to use this general measure, one must further define T', H, or Hy, as
we do in subsequent sections. We note also that measurement may be performed
prior to, initially at, or posterior to, optimizing the model weights (Fig. 2).

3.2 A New Measure: Simplicity of Output Sensitivity

We consider the continuous underlying output of a classifier (e.g., Fig. 1) to be
the most accurate representation of a classifier’s behaviour. It is available most
learning classifiers, in machine learning or statistical learning, such as, neural
networks, SVM, logistic regression and naive bayes. It is also facilitated by most
implementations, e.g., for SVM it is available in Matlab, R, Python, SPSS, Weka,
libsvm and Orange, where the output may be the probability of the positive class
or a non-probabilistic value, e.g., “classification score”.

Some measure or analyze a classifier’s behaviour based on its binary output
instead [46]—this approach lacks fine-grained behavioural information. Others
measure classifier behaviour by modeling its responses with a separate expla-
nation model that provides a continuous output [5,46]—this post hoc approach
may not meet untested legal, assurance or business requirements.

We use the underlying continuous output, and the logic similar to the previ-
ous measure to posit that:

If a model is uniformly sensitive in its output to changing values in input
features and instances, then its sensitivity is simple to describe, understand and
interpret (as one value). Conversely, a model that is differently sensitive to
each feature and instance is more difficult to describe, understand and interpret,
in those terms or from that perspective. Formally, we propose the following
definition:
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Definition 2. The simplicity of output sensitivity Uy is a measure of inherent
model interpretability. It describes the simplicity of the sensitivity of the model’s
continuous output (e.g., Fig. 1) to changes in input. It is specified as the inverse
of Shannon entropy Hs with a finite range (4 )iii, repeated below:

H
Ugs=1-— <H z ) H; € [O, Hmaw] (5)
Hs:—Zfl Ylog fi(s), i=1...N, (6)
L 1
Hmaz:* — 1 T
2 s @)

where s is the set of sensitivities S; , of the model’s continuous output g, (the
value which is underlying for a classifier) to small changes € = (0.1) - 30 in each
input instance j, one feature q at a time,

s ={5j.q} (8)
Sj’q: ?)c (QJ +€q)2_€yc (.13 — £ ) (9)

=[..0e0..])" e in ¢'" cell

&q

and where Ny is the number of bins according to standard binning methods for
histograms [18,47,53].

We use entropy to measure the global complexity of sensitivities across the
space for input data. In the literature, entropy has been applied quite differ-
ently to measure the information loss of perturbed features, to indicate their
influence—we use entropy instead to measure the complexity of influence with
perturbed features.

Our measure uses a first-order central difference (first derivative approxima-
tion) as a standard and easy to understand approach to sensitivity that does
not require knowing or differentiating the model’s formulas. We can generalize
this idea to second and third-order differences/derivatives, and so on, like the
derivatives in deep Taylor decomposition [39]—but the latter requires a model’s
formulas and derivatives. Whereas [39] examines the local behaviours of a model,
we do that and compute the complexity of the values.

We treat the entries S , as a set or random variable s (8) because we are mea-
suring model interpretability overall, across features and instances, not within a
feature nor within an instance.

We note that instead of Shannon entropy, it may be possible to apply other
types of entropy, such as Renyi entropy, Tsallis entropy, effective entropy or total
information [19,45,56] and/or Kullback-Leibler (K-L) divergence [14], however
such a change would require validation. Prior to this study we experimented
with discrete Kullback-Leibler (K-L) divergence as implemented by four mea-
sures in the ITK toolkit [54,55], as an alternative to Shannon entropy, however,
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our experimental results with K-L divergence did not sufficiently match our
expectations, so we focused on Shannon entropy as a more popular and credible
measure.

We also implemented differential entropy [14], which is the continuous ver-
sion of entropy and is defined as the K-L divergence from a uniform probability
density function (pdf) to the pdf of interest, but put that aside based on the pre-
viously mentioned K-L divergence results and also because it was more compute
intensive as it required a kernel density estimate.

Finally we note that the sensitivity portion of our measure (i.e., entropy
aspect aside) differs from how other authors compute sensitivity globally across
both instances and features [27].

4 Criteria for Model Transparency and a Measure
for SVM

We identify criteria for model transparency from the literature (Table2) for
any model, and propose new criteria in most cases, which are objective, not
subjective, and thus suitable for a (quantitative) measure of model transparency.

We apply the proposed criteria (Table 2) for any model, to create a measure
specific to kernel methods or support vector machines (SVM).

We use the seven proposed criteria for inherent prior model interpretability
(Sect.4) to define 6 Dirac (binary) measures for SVM (Table 3) meeting each
criterion without overlap, except for criterion d (since all SVM kernels are gen-
eralized linear models).

We define an overall measure as follows:

Ug = 1/6 (8essep + 8ﬁn + 8eM + ax + 8uni + aadm)

Table 2. We identify criteria for model interpretability in the literature and translate
these into proposed criteria which are objective rather than subjective.

Term Criteria in the literature ID | Proposed criteria
Interpretable [34] Each calculation has an intuitive (a) | The feature space is known/explicit
Decomposable [30] explanation [30]

(b) | The feature space has a finite
number of dimensions

Inputs are interpretable, not (c) | The model is generalized additive
anonymous or highly-engineered [30]. with?® known/explicit basis/shape
Generalized additive models are functions

interpretable [34]

Generalized linear models are (d) | The model is generalized linear [34]
interpretable [34]. The contributions
of individual features in the model,
are understandable [34]

(e) | The model is multiplicative, e.g.,
probabilistic, with known/explicit
basis/shape functions

N/A (f) | Model parts are uniform in function
Transparent The training algorithm converges to | (g) | Model weights are learned by convex
algorithm [30] a unique solution [30] optimization or direct computation

2Note: Unlike functions of a single variable, basis/shape functions are only available if the kernel is separable.
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A Dbenefit of this measure is that while independent of the data, it requires
little computation and it informs model selection prior to optimization.

Table 3. For kernel methods, e.g., SVM, we propose the following Dirac (binary) mea-~
sures 0 of model transparency T. Let 2T be the space of transparent features derived
from simple transforms of the original features 2~ which are not highly engineered: i.e.,
given data 2" = {z},let Z1 = {x, —z, L, log (z), tanh (z) , min (Ctop, ) , max (Coottom, =) }-

Name of measure Symbol for Conditions for measure to be true

and criterion met measure

Explicit symmetric | Qessep k(z,z)=¢(x)¢(2), ¢ known

separable (a) Ti,zi € Zo, 20 C 21, pEF, p:R" >R
Finite (b) Ofin dim (Z) < o0

Explicit Mercer (¢) | Jem E(z, 2)=¢(x)" ¢(2).

:z¢q (Eq) ®q (2¢), ¢q known
q
wi?'zie'%oa %g’%Tv ()blleya ¢QZR_)R

Explicit Ox k(z, z) = [1 bq (xq) bq (2q) , ¢q known
e p
multiplicative (e) Ti,zi € Zo, Zo C Zr, ¢q €F, ¢pg: R—-R
Uniform (f) Ouni ¢q known and uniform
e.g., (c) or (e) with ¢4 = ¢ Vg
Admissible (g) Oadm k is positive definite (p.d.) [37]

or k is conditionally p.d. (c.p.d.) [§]

5 Creating More Measures Specific to SVM

In this section we propose measures specific to SVM.

Support Vectors: In SVM, a subset of the patients in the data set are key
to defining the model. They are known as support vectors since they support
the definition of the model’s class boundary and decision surface. For example,
the decision regarding whether a patient has a disease or not, is determined by
a subset of patients, e.g., 5 out of 200 patients, the model learned/picked as
positive and negative examples of disease.

The more support vectors there are, the more complex the model is, with all
other things being equal: Hg,, = sv. SVM models have at least three support vec-
tors in general—at least two to define the line, curve, hyperplane or surface that
is the class boundary, and at least one to define the margin, so sv > 3, sv € N.

To select a model for one data set, or to compare results between two data
sets, we know the maximum number of patients N, so sv < N, and we apply
(4)iii to obtain a relative measure, U, ,. Or to obtain an absolute measure Us, 4,
to compare against any current or future data set, we assume N = oo and apply
(4)ii.
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Degrees of Freedom: Akaike includes all method and kernel hyperparame-
ters and weights as among the degrees of freedom [50]. We calculate the prior
complexity measure Hy, ¢ with three terms comprised of: the number of SVM
hyperparameters, e.g., 1 for C, the number of kernel hyperparameters, e.g., 1 for
the kernel width for a Gaussian RBF kernel, the number of independent inputs,
e.g., 1 for a Gaussian RBF kernel or stationary kernel, 2 otherwise. We calculate
the posterior complexity measure Hg,r with an additional term for the support
vectors and apply the general measure for model interpretability.

I:Idof = d(;f = dSVM,hyp + dkernel,hyp + dinput
Hdof = dOf = dSVMlep + dkerneljlyp + dinput + sv

Relevant Dimensionality Estimate: The relevant dimensionality estimate
(rde) [9] provides a way to measure the complexity of the SVM feature space
induced by a kernel. There are two complexity measures H,go1 and H,4e1, corre-
sponding to two rde methods: the two-component model and the leave-one-out
method, respectively.

6 Validation of Measures

We validate our proposed measures with sanity checks on formulas (not shown)
and by agreement with propositions that describe our expectations and knowl-
edge about model complexity and interpretability.

We create propositions based on expected relationships between measures,
and check/test the propositions with a statement P and its inverse P~! such as
the following,

usually .,

P: défl < défz - rdel > Ur*deQ (10)
P~': dof, > dof, vy raer < Urges (11)

sually | . . . .
where "7 is a notation that means “implies the majority of the time”. For

brevity P! is implied but not shown in statements that follow. We measure
how much our results agree with these propositions using either Kendall’s W
coefficient of rank correlation [26] or matched pair agreement [48], where the
latter is applied to control for confounding factors.

If a proposition is robust, then the percentage of the concordance coefficient
or matched pair agreement indicates how correct and useful the measure is, from
that perspective. A measure has some utility, if it is correct the majority of the
time, for different models/kernels and data sets, with a confidence interval that
does not include 50%.

We validate our propositions using two types of experiments (#1 and #2
as below). We run each experiment five times on each of three data sets from
the University of California at Irvine repository: the Statlog Heart, Hepatitis
and Bupa Liver data sets. Missing data in the Hepatitis data set are imputed
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with Stata, taking one of three multiple imputations with Monte Carlo Markov
Chains. Bupa Liver is used with the common target [36] rather than the clinically
meaningful target.

— Experiment Type #1: For each of 90 points chosen randomly in the hyperpa-
rameter space, we choose a pair of models, matched pairs [48], that differ by
one hyperparameter/dof that is fixed in one and free in the other, and check
propositions as the percentage truth of the propositions. We use 3 pairs of
kernels that differ by a single dof, e.g., a polynomial kernel of varying degree
versus a linear kernel, a Gaussian RBF kernel with/without a fixed kernel
width and a Mercer sigmoid kernel [11] with/without a fixed horizontal shift.

— Experiment Type #2: From the experiment type #1 we identify three points
in the hyperparameter space which perform well for each kernel. For each
of 3 fixed points, we choose 30 values of C equally spaced (as logarithms)
throughout the range from 1072 to 10° and check propositions as the concor-
dance of the left-hand side with the right-hand side in the propositions, using
Kendall’'s W coefficient of concordance. If the right-hand side should have
opposite rank to the left-hand side then we apply a negative to the measure
on the right-hand side for concordance to measure agreement of rank. We use
the following kernels: linear, polynomial, Gaussian RBF and Mercer sigmoid
kernel [11].

6.1 Propositions

Proposition 1. The majority of the time we expect that a model with less
degrees of freedom dof,, with all other things being equal when compared to
another model with dof,, will be simpler and have a relevant dimensionality
estimate (rde) [9] that is less than or equal to the other model and therefore be
more interpretable/understandable (U}, ):

la: dof, < dofy ““Y" rde, < rdes (12)
b dofy < dofy " Ulyer > Utyes (13)

This applies to rde with the two-component model (rdeT) and the leave-one-
out method (rdeL).

Proposition 2. In SVM, the hyperparameter C is called the box constraint or
cost of error. Authors have remarked [49, Remark 7.31] that C' is not an intuitive
parameter, although it has a lower bound for use C > % and its behaviour
suggests C' = ﬁ, where v is a proportion of support vectors. We therefore expect
that a model with a higher value Cy wversus a second model with Cy will have

less support vectors (sv) and consequently be more interpretable/understandable
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(UHS)"
2a: C; > (0, usually sv1 < Svg (14)
2b: sv; < sva Y Upar > Upso (15)
2c: Cl > CQ US?L“}”?/ Usv,al Z Us’U,aQ (16)
2d: C; > 0y usglly Ubns1 2 Upgs2 (17)

This applies to simplicity of sensitivity Ugs with any binning method.

Our experiment uses three binning methods: Scott Uy, Freedman-Diaconis
Upysq and Sturges Upgt-

Proposition 3. The majority of the time we expect that, if a prior measure is
useful, then it reflects the same rankings as the posterior measure,

usually

3: Ufsr S Ufgo Ubgs1t < Uns2 (18)
Proposition 4. We expect that the linear kernel is the simplest of all kernels
with greater transparency than other kernels such as the polynomial, Gaussian
RBF kernel, sigmoid and Mercer sigmoid kernels, whereby,

4 : isLinear (k1) > isLinear (ky) — Us1 > Ugo (19)

7 Results

We summarize the results of our validation tests (Tables4 and 5) as follows: we
recommend Up and Uy, as good measures. We find that UY; ., U%;.; and Uggt
are measures which are of limited use, because they may be wrong one third of the
time when providing guidance on decisions. Upg. and Ugsq are not distinguished
from chance by our propositions and are therefore not recommended. If Uy is
validated to a greater degree in the future, then the initial measure Uj;, has been
shown to be a good proxy for it, incurring some loss of information (Table5).

Our proposed measure of kernel transparency Up, a prior measure, scored
100% agreement. This is a good measure that may be used a priori, but it is
high-level and not specific to the match between a model and data. No surprises
or complexities arose regarding the attributes of kernels.

The general measure based on the number of support vectors, Us,, scored
81 + 2.3% agreement—this is a good measure.

Our proposed simplicity of sensitivity measure with Sturges binning Upgt
scored 64 &+ 3.2% and 62 + 3.5%, which is of limited use—we are interested in
agreement that is sufficiently greater than chance (50%), enough to be reliable.

The same measure with Scott binning (Ugs.), however, is barely distin-
guishable from chance in one test, and not distinguishable in another, and with
Freedman-Diaconis binning (Ugtq) it is not distinguishable from chance in both
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tests. We recommend further validation to examine the role of confounding fac-
tors such as kernel width/scale along with C per [6,16].

If the simplicity of sensitivity measure Ugg can be validated to a greater
degree in the future, then the initial measure U}, which scores 80+ 3.2% agree-
ment with it, may be used in its place to avoid optimization, or to gain an initial
estimate prior to optimization.

The general measure based on the relevant dimensionality of the feature
space, U, r and U, ; scored 62+5.0% and 59+ 5.2% agreement, respectively.
These are of some use. We did not include Braun’s noise estimate, which in
hindsight should improve the measure.

8 Application

We apply model interpretability to results in a toy problem. When we select
results for maximum accuracy with the Gaussian RBF kernel, we find that the
top result in our sorted list of results achieves 100% accuracy (rounded to no
decimal places) with 51 support vectors, while the second best result also achieves
100% accuracy with 40 support vectors and the fifth best result according to the
list also achieves 100% accuracy with 25 support vectors.

Selecting results for maximum interpretability Us, ,, we find the top result
uses 9 support vectors for 99% accuracy and the fourth best result uses 10
support vectors for the same accuracy.

We plot the results (Fig.3) of accuracy versus interpretability Us, , (above
80% in each) and find that there are many results which are highly accurate and
highly interpretable, i.e., above 96% in both. These results indicate that there
is not a trade-off between accuracy and model interpretability based on support
vectors in this data set.

We also plot the results of accuracy versus interpretability U, , for other
data sets (Figs.4 and 5) and it is clear that there is no trend in all points
showing a trade-off between accuracy and model interpretability, although this

Table 4. The results from propositions using experiment type #2 validate the support
vector measure Us, and simplicity of sensitivity measure with Sturges binning Upgst.

Proposition|Measure | Agreement % |Comment
& Result

2a sV 82423 C validates sv, supports B3

2b Unse 53+3.3 Uy not distinguished by sv
Upntq 48+3.7 Upygq not distinguished by sv
Upst 62+3.5 sv validates Up

2c Usy 81+2.3 C validates Usy

2d Ugse 54+33 C validates Upgc
Upntq 49+3.7 Upygq not distinguished by sv
Upnst 64+3.2 C validates U

Legend: Green = affirmative result. Yellow = inconclusive result. Red = contrary result.
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Table 5. The results from propositions using experiment #1 validate the relevant
dimensionality measures rdeT and rdel,, the initial model interpretability measures
based on relevant dimensionality U 4.t and U1, the use of prior measures of sim-
plicity of sensitivity as proxies for posterior measures, and the measure of kernel trans-
parency Up.

Proposition|Measure Agreement % |Comment
& Result
la rdeT 63+5.0 dof validates rdeT, supports A2
rdelL 59+5.2 dof validates rdeL, supports A2
1b Uor 62+5.0 dof validates U},
el 59+5.2 dof validates Uy,
3 Upys as aproxy|72+3.1 Upc validates Upy,. as a proxy
Ulygq as a proxy|76 £3.5 Uptq validates Ujjgy as a proxy
Upyg s a proxy [80+3.2 Uy, validates Uy, as a proxy
4 U, 100+0 kyin vs. others, validates U,

Legend: Green = affirmative result. Yellow = inconclusive result. Red = contrary result.

Table 6. Result for Us confirm that the linear kernel is more transparent than other
kernels.

Dirac Gaussian Mercer
measure |Linear|Polynomial| RBF |Sigmoid|Sigmoid
Oessep v X X X X
Jin v v X X v
deM v X /[13] X v
Ox X X X X X
Ouni v X X X v
Oadm v v Ve X v
Uy (%) | 83 33 33 0 67

Legend: Green = top result. Light green = second best result.

trend may be present at the pareto front. A trade-off trend would show as an
inverse correlation, a trend line running from the top left to the bottom right—
instead, high interpretability is consistently achievable with high accuracy, i.e.,
there are points toward the top right of a bounding box for all points.

9 Related Work

Lipton [30] provides a good taxonomy for model interpretability with con-
cepts falling into two broad categories: transparency (the opposite of a black
box) and post-hoc interpretability.

Post-hoc interpretability involves an explanatory model separate from the
predictive model, or visuals that transform data where the transformation is also
a separate explanatory model. Liang [28] cautions against explaining a black box
predictive model with another black box explanatory model.
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Fig. 3. In classification for the toy problem, there are many results with high accuracy
and high model interpretability, with almost no sacrifice in the latter for maximum
accuracy.
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Fig. 4. In classification with the Hepatitis data set there is a less than 5% sacrifice in
interpretability for the highest accuracy.
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Fig. 5. In classification with Statlog Heart data there are points with high accuracy
and interpretability, with minimal sacrifice, 1% and 2%, respectively.
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Riberio et al. [46] create an external local linear model to approximate
the prediction model in a post-hoc approach called LIME. They jointly optimize
accuracy and model complexity but they do not elucidate much about model
complexity as in our work. LIME perturbs features in a separate binary repre-
sentation of features, which sometimes map to non-local features in the original
space of data. In their examples they use the binary model output, only referring
in passing to the possibility of using a continuous output for classifiers, as we do.

Transparency, on the other hand, focuses on the predictive model itself,
and has three aspects: decomposability, simulatability and algorithmic trans-
parency [30].

Decomposability refers to being able to see and understand the parts of the
model of the model, e.g., kernels and parameters and the parts of the data, i.e.,
features and instances—and how they contribute to a result from the predictive
model. Some authors refer to the output from decomposition as an interpreta-
tion, e.g., initial understanding, separate from an explanation [24,39] that may
require analysis, selection or perhaps synthesis. Miller adds that explanations
are selected and social [38].

Since the social and synthesis tasks are more suitable to a person than a
computer—it is reasonable for our work to focus on inherent measures of inter-
pretability, rather than explanations.

[34] express that some types of models are more intelligible (i.e., decompos-
able) than others. We include categories for generalized linear and generalized
additive models in our measures as a result of their work.

Simulatability, as another aspect of transparency, refers to a model that a person
can mentally simulate or manually compute in reasonable time [30] and is corre-
lated, for example, with the number of features in a linear model, or the depth of
the tree in a decision tree. Mlodel complexity is implied Lipton’s examples but
the term is not invoked although other authors refer to it [10,35,42].

Ockham’s razor, also called the principle of parsimony [50], is a well known
principle related to model complexity. Regarding models, it says that among
sufficient explanations (e.g., equally accurate’ models), the simplest? should be
preferred. A quick note on sufficiency: for multiple equally accurate models, none
are necessary, because any one of them is sufficient. Model accuracy is sought
first, then simplicity. Using our proposed measure one can search for the model
with highest interpretability among equally accurate models.

Backhaus et al. propose a quantitative measure of model interpretability
[3]—but that is for a different meaning or definition—the ability for a model to
interpret data, with relevance in relevance vector machines as the context.

Related to our work, sensitivity analysis of model outputs (SAMO)
[2,23] describe how sensitive a model output is to a change in feature values, one
at a time—which is the approach of our proposed general measure.

! Where accuracy cannot be distinguished with statistical significance.
2 [Sober] refers to [Akaike]’s definition of the simplest model as the model with the
least degrees of freedom, i.e., least number of (independent) coefficients.
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In variance-based sensitivity analysis, Sobol [51] finds the variance in the out-
put explained by an input feature. Liu et al. [32] performs entropy-based sensi-
tivity analysis, called global response probabilistic sensitivity analysis (GRPSA),
to find the influence of input features—where entropy is used to compute the
effect as information loss. Lemaire et al. [27] apply sensitivity analysis but their
perturbations are non-local and could easily create points outside of any known
clusters of instances and true states of nature. Poulin et al. [43] provides effective
visualization and analysis tools but for SVM they only apply their method to
linear SVM and its binary output.

Automatic model selection methods have been proposed for accuracy [1,
40]—these are based on rules computed from many data sets. The rule-based
approach is brittle in comparison to our measures, since it only works with a
fixed set of candidate kernels.

10 Conclusions

We developed and validated measures for inherent model interpretability to
enable automatic model selection and ongoing research. Two measures are rec-
ommended: our proposed kernel transparency measure Uy which is an inexpen-
sive prior measure, and a posterior measure based on support vectors Us,. Three
other measures, U, r, U, and Ugg were found to be of limited use but may
be further validated by future work.

We also contributed ideas as a foundation for these measures: the concept
of inherent model interpretability, a general measure, a simplicity of sensitivity
measure, and measurement of interpretability at different points in the learning
process, i.e., via prior, initial and posterior models.

We applied our measure to model selection and demonstrated that choosing
a model based on a sorted list of accuracy alone can result in models with sub-
stantively less inherent model interpretability despite the consistent availability
of models with high accuracy and high interpretability in multiple data sets.
The notion of a trade-off between accuracy and interpretability does not hold
for these data sets.

A Appendix: Treating Features of Any Atomic Data
Type as Continuous

Assuming that we are not given a fixed pre-trained model, but can instead the
machine learning method and model, we can select one that handles continuous
values, and we can treat features of any atomic data type (defined below) as
continuous. This treatment requires three steps—and most of the content in
these steps are standard practice, with a few exceptions denoted by an asterix™.
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Table 7. Atomic data types are based on Steven’s scales of measurement
Atomic data type | Steven’s scale | Summary of key attributes
Continuous | Discrete | Ordered | Fixed zero
Real Ratio v v v
Integer Ratio v v v
Datetime Interval v v
Date Interval v Ve
Ordinal Ordinal v v
Binary Nominal v
Nominal Nominal v
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We define atomic data types (Table 7) as the following set of data types
which are fundamental building blocks for all electronic data®: reals, integers,
datetimes, dates, ordinals, binary and nominals. These atomic data types are
based on Steven’s scales of measurement [52], but are specified at a level that is
more interpretable and useful.

Although binary values may also be considered nominals, we identify them
separately because there are methods in the literature specific to binary data
(e.g., for imputation and similarity measurement) and the data type is specifi-
cally defined in programming languages, machine learning platforms, database
schema and data extraction tools.

1. Treat missing data. Assuming data are missing completely at random
(MCAR) do the following, otherwise refer to [58].
(a) Impute missing data for reals, integers, datetimes, dates and ordinals,

using whichever method meets requirements—e.g., multiple imputation
with Monte Carlo Markov chain, expectation maximization, hot-deck
imputation or mean imputation.
(b) Impute missing data for nominals using the mode, i.e., the most frequent

level.

(¢) Impute missing binary data with a method that will produce continu-
ous values and which is appropriate for binary distributions—e.g., mul-
tiple imputation or expectation maximization. We refer to the output as
continuously-imputed binary data.

2. Convert nominals to binary indicators, one for each level.
3. Center and normalize data

(a) For continuously-imputed binary data, bottom-code and top-code the
data to the limits, then min-max normalize the data to the range [-1,
+1] for SVM or [0, 1] for neural networks and logistic regression.

3 E.g., a combination of atomic data types can make up a complex data type—e.g.,
a combination of letters or symbols (nominals) make up a string as a complex data

type.
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(b) For binary data, min-max normalize the data to the set {-1, +1} for
SVM or {0, 1} for neural networks and logistic regression. This data will
be treated as reals by the methods/models, but {-1, +1} makes more
sensible use of the symmetric kernel geometry in SVM than {0, 1}.

(c) For all other data types, center and normalize each feature using z-score
normalization (or scalar variations based on 2 or 3 sigma instead of 1
sigma).

Now all of the data are ready to be treated as reals by the methods/models.

References

10.

11.

12.

13.

14.

. Ali, S., Smith, K.A.: On learning algorithm selection for classification. Appl. Soft

Comput. 6(2), 119-138 (2006)

Auder, B., Iooss, B.: Global sensitivity analysis based on entropy. In: Proceedings
of the ESREL 2008 Safety, reliability and risk analysis Conference, pp. 2107-2115
(2008)

Backhaus, A., Seiffert, U.: Quantitative measurements of model interpretability for
the analysis of spectral data. In: IEEE Symposium on Computational Intelligence
and Data Mining (CIDM), pp. 18-25. IEEE (2013)

. Badii, R., Politi, A.: Complexity: Hierarchical Structures and Scaling in Physics,

vol. 6. Cambridge University Press, Cambridge (1999)

Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., MAZller,
K.-R.: How to explain individual classification decisions. J. Mach. Learn. Res. 11,
1803-1831 (2010)

Ben-Hur, A., Weston, J.: A user’s guide to support vector machines. In: Data
Mining Techniques for the Life Sciences, pp. 223—-239. Springer (2010)

Berner, E.S.: Clinical Decision Support Systems. Springer, New York (2007).
https://doi.org/10.1007/978-0-387-38319-4

Boughorbel, S., Tarel, J.-P., Boujemaa, N.: Conditionally positive definite kernels
for SVM based image recognition. In: IEEE International Conference on Multime-
dia and Expo, ICME 2005, pp. 113-116. IEEE (2005)

Braun, M.L., Buhmann, J.M., MAiller, K.-R.: On relevant dimensions in kernel
feature spaces. J. Mach. Learn. Res. 9, 1875-1908 (2008)

Breiman, L.: Statistical modeling: the two cultures (with comments and a rejoinder
by the author). Stat. Sci. 16(3), 199-231 (2001)

Carrington, A.M., Fieguth, P.W., Chen, H.H.: A new mercer sigmoid kernel for
clinical data classification. In: 36th Annual International Conference on Engineer-
ing in Medicine and Biology Society (EMBC), pp. 6397-6401. IEEE (2014)
Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learn-
ing algorithms. In: Proceedings of the 23rd International Conference on Machine
Learning, pp. 161-168. ACM (2006)

Cotter, A., Keshet, J., Srebro, N.: Explicit approximations of the Gaussian kernel.
arXiv preprint arXiv:1109.4603 (2011)

Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, Hoboken
(2012)


https://doi.org/10.1007/978-0-387-38319-4
http://arxiv.org/abs/1109.4603

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Measures of Model Interpretability for Model Selection 347

Cruz, J.A., Wishart, D.S.: Applications of machine learning in cancer prediction
and prognosis. Cancer Inform. 2, 59-78 (2006)

Devos, O., Ruckebusch, C., Durand, A., Duponchel, L., Huvenne, J.-P.: Support
vector machines (SVM) in near infrared (NIR) spectroscopy: focus on parameters
optimization and model interpretation. Chemom. Intell. Lab. Syst. 96(1), 27-33
(2009)

Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine
learning (2017)

Freedman, D., Diaconis, P.: On the histogram as a density estimator: L2 theory.
Zeitschrift fir Wahrscheinlichkeitstheorie und verwandte Gebiete 57(4), 453-476
(1981)

Gell-Mann, M., Lloyd, S.: Information measures, effective complexity, and total
information. Complexity 2(1), 44-52 (1996)

Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-
making and a “right to explanation”. In: 1st Workshop on Human Interpretability
in Machine Learning, International Conference of Machine Learning (2016)
Goodstein, D.L., Goodstein, J.R.: Feynman’s Lost Lecture: The Motion of Planets
Around the Sun, vol. 1. W. W. Norton & Company, New York (1996)

Greenes, R.A.: Clinical Decision Support: The Road Ahead. Academic Press,
SanDiego (2011)

Hanson, K.M., Hemez, F.M.: Sensitivity analysis of model output. In: Proceed-
ings of the 4th International Conference on Sensitivity Analysis of Model Output
(SAMO 2004), Santa Fe, 8-11 March 2004. Los Alamos National Laboratory (2005)
Holzinger, A., Biemann, C., Pattichis, C.S., Kell, D.B.: What do we need to build
explainable Al systems for the medical domain? arXiv preprint arXiv:1712.09923
(2017)

Jernigan, M.E., Fieguth, P.: Introduction to Pattern Recognition. University of
Waterloo (2004)

Kendall, M.G.: The treatment of ties in ranking problems. Biometrika 33(3), 239—
251 (1945)

Lemaire, V., Féraud, R., Voisine, N.: Contact personalization using a score under-
standing method. In: IEEE International Joint Conference on Neural Networks
(IEEE World Congress on Computational Intelligence), IJCNN 2008, pp. 649-654.
IEEE (2008)

Liang, P.: Provenance and contracts in machine learning. In: Proceedings of the
2016 ICML Workshop on Human Interpretability in Machine Learning (WHI 2016)
(2016)

Lin, D.: An information-theoretic definition of similarity. ICML 98, 296-304 (1998)
Lipton, Z.C., et al.: The mythos of model interpretability. In: IEEE Spectrum
(2016)

Lisboa, P.J.G.: Interpretability in machine learning — principles and practice. In:
Masulli, F., Pasi, G., Yager, R. (eds.) WILF 2013. LNCS (LNAI), vol. 8256, pp.
15-21. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03200-9_2

Liu, H., Chen, W., Sudjianto, A.: Relative entropy based method for probabilistic
sensitivity analysis in engineering design. J. Mech. Des. 128(2), 326-336 (2006)
Lloyd, S.: Measures of complexity: a nonexhaustive list. IEEE Control Syst. Mag.
21(4), 7-8 (2001)


http://arxiv.org/abs/1712.09923
https://doi.org/10.1007/978-3-319-03200-9_2

348

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.
51.

52.
53.

54.

A. Carrington et al.

Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regres-
sion. In: Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 150-158. ACM (2012)

Martens, D., Baesens, B.: Building acceptable classification models. In: Stahlbock,
R., Crone, S., Lessmann, S. (eds.) Data Mining. Annals of Information Systems,
pp. 53—74. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1280-0_-3
McDermott, J., Forsyth, R.S.: Diagnosing a disorder in a classification benchmark.
Pattern Recognit. Lett. 73, 41-43 (2016)

Mercer, J.: Functions of positive and negative type, and their connection with the
theory of integral equations. Philos. Trans. R. Soc. Lond. Ser. A 209, 415-446
(1909). Containing papers of a mathematical or physical character

Miller, T., Howe, P., Sonenberg, L.: Explainable Al: beware of inmates running
the asylum. In: IJCAI-17 Workshop on Explainable AT (XAI), p. 36 (2017)
Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Miiller, K.-R.: Explain-
ing nonlinear classification decisions with deep Taylor decomposition. Pattern
Recognit. 65, 211-222 (2017)

Nahar, J., Ali, S., Chen, Y.-P.P.: Microarray data classification using automatic
SVM kernel selection. DNA Cell Biol. 26(10), 707-712 (2007)

Olson, R.S., La Cava, W., Orzechowski, P., Urbanowicz, R.J., Moore, J.H.: PMLB:
a large benchmark suite for machine learning evaluation and comparison. BioData
Min. 10(1), 36 (2017)

Perez, P.S., Nozawa, S.R., Macedo, A.A., Baranauskas, J.A.: Windowing improve-
ments towards more comprehensible models. Knowl. Based Syst. 92, 9-22 (2016)
Poulin, B., et al.: Visual explanation of evidence with additive classifiers. In: Pro-
ceedings of the National Conference On Artificial Intelligence, vol. 21, p. 1822.
AAAT Press, Menlo Park (1999). MIT Press, Cambridge (2006)

Pusic, M.V., Boutis, K., Hatala, R., Cook, D.A.: Learning curves in health profes-
sions education. Acad. Med. 90(8), 1034-1042 (2015)

Rényi, A., et al.: On measures of entropy and information. In: Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume
1: Contributions to the Theory of Statistics. The Regents of the University of
California (1961)

Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you? Explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1135-1144. ACM
(2016)

Scott, D.W.: On optimal and data-based histograms. Biometrika 66(3), 605-610
(1979)

Selvin, S.: Statistical Analysis of Epidemiologic Data. Oxford University Press,
New York (2004)

Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press, New York (2004)

Sober, E.: Parsimony and predictive equivalence. Erkenntnis 44(2), 167-197 (1996)
Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their
Monte Carlo estimates. Math. Comput. Simul. 55(1), 271-280 (2001)

Stevens, S.S.: On the theory of scales of measurement (1946)

Sturges, H.A.: The choice of a class interval. J. Am. Stat. Assoc. 21(153), 65-66
(1926)

Szabd, Z., Péczos, B., Lérincz, A.: Undercomplete blind subspace deconvolution.
J. Mach. Learn. Res. 8, 1063-1095 (2007)


https://doi.org/10.1007/978-1-4419-1280-0_3

55.

56.

57.
58.

Measures of Model Interpretability for Model Selection 349

Szabd, Z., Pbczos, B., Lérincz, A.: Separation theorem for independent subspace
analysis and its consequences. Pattern Recognit. 45, 1782-1791 (2012)

Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys.
52(1), 479-487 (1988)

Tussy, A., Gustafson, R.: Elementary Algebra. Nelson Education (2012)

Donders, A.R.T., Van Der Heijden, G.J.M.G., Stijnen, T., Moons, K.G.M.: A gentle
introduction to imputation of missing values. J. clin. epidemiol. 59(10), 1087-1091
(2006). Elsevier



	Measures of Model Interpretability for Model Selection
	1 Introduction
	2 Notation
	3 Inherent Model Interpretability Concept and Measures
	3.1 A General Measure of Inherent Model Interpretability
	3.2 A New Measure: Simplicity of Output Sensitivity

	4 Criteria for Model Transparency and a Measure for SVM
	5 Creating More Measures Specific to SVM
	6 Validation of Measures
	6.1 Propositions

	7 Results
	8 Application
	9 Related Work
	10 Conclusions
	A Appendix: Treating Features of Any Atomic Data Type as Continuous
	References




