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Abstract. Convolutional Neural Networks (CNNs) lack an explanation
capability in the form of propositional rules. In this work we define
a simple CNN architecture having a unique convolutional layer, then
a Max-Pool layer followed by a full connected layer. Rule extraction
is performed after the Max-Pool layer with the use of the Discretized
Interpretable Multi Layer Perceptron (DIMLP). The antecedents of the
extracted rules represent responses of convolutional filters, which are dif-
ficult to understand. However, we show in a sentiment analysis problem
that from these “meaningless” values it is possible to obtain rules that
represent relevant words in the antecedents. The experiments illustrate
several examples of rules that represent n-grams.
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1 Introduction

A natural way to explain neural network responses is by means of propositional
rules [8]. Andrews et al. introduced a taxonomy to characterize all rule extraction
techniques [1]. Diederich and Dillon presented a rule extraction study on the
classification of four emotions from SVMs [6]. Extracting rules in Sentiment
Analysis (SA) is very challenging with thousands of words represented in the
inputs [6]. As a consequence Diederich and Dillon restricted their study to only
200 inputs and 914 samples. Bologna and Hayashi used the Quantized Support
Vector Machine to generate rules explaining Tweets’ sentiment polarities [4]. In
this work we propose a model to generate rules from a Convolutional Neural
Network architecture (CNN) that is trained with a dataset related to SA. To
the best of our knowledge this problem has not been tackled.

Since Convolutional Neural Networks (CNNs) started to be broadly used
less than ten years ago, very few works have proposed to determine the acquired
knowledge in these models. Several authors proposed to interpret CNNs in the
neighborhood of the instances. As an example, Ribeiro et al. presented LIME
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whose purpose is to learn an interpretable model in the local region close to
an input instance [13]. Koh et al. determined the training instances that are
the most important for the prediction [10]. Finally, Zhou et al. presented CAM
whose purpose is to determine discriminative image regions using the average
pooling of CNNs [14].

This work illustrates rule extraction from a CNN architecture shaped by
an input layer representing sentences of word embeddings [11], a convolutional
layer with filters, and max-pooling layer followed by a fully connected layer.
After the training phase, the fully connected layer is replaced by a Discretized
Interpretable Multi Layer Perceptron (DIMLP) [2] that allows us to extract rules.
This subnetwork approximates the fully connected part of the original CNN to
any desired precision. Nevertheless, the antecedents of the extracted rules rep-
resent maximal responses of convolutional filters, which can not be understood
directly. Thankfully, it is possible to go back to the words that are relevant in the
decision-making process. Specifically, these words are structured into n-grams,
that depend on the size of the convolutional filters. In the following sections we
first describe the used model, then we present the experiments, followed by the
conclusion.

2 The Interpretable CNN Architecture

The CNN architecture used here is similar to those typically used in SA problems
[9]. Before rule extraction, we train a CNN having only a fully connected layer
between the last two layers of neurons. Then, we perform rule extraction by
replacing these last two layers of neurons by a special subnetwork that can be
translated into symbolic rules [2]. Hence, after training the modified CNN for
rule extraction has two components:

– a CNN without the fully connected layer;
– a DIMLP with only a hidden layer that approximates the CNN fully con-

nected layer.

Rules generated from the DIMLP component are related to filter thresholds in
the convolutional layer of the CNN. From these values relevant words represented
in the input layer can be determined. More details are given in the following
paragraphs.

2.1 The CNN Subnetwork

Our CNN subnetwork is quite similar to that proposed in [5,9]. A smaller rep-
resentation of the adopted CNN architecture is described in Fig. 1. The inputs
are words represented by word embeddings of dimensionality d = 300, calcu-
lated with word2vec [11]. Here, the maximal number of words in a sentence is
equal to s = 59, thus the size of an instance in the left part of Fig. 1 is equal to
17700(= 59 ∗ 300). Then, an instance is convolved with filters of different size.
Specifically, for each filter we define a filtering matrix of size f ·d, with f = 1, 2, 3,
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corresponding to the number of words on which it operates. After convolution
we apply a Relu function (Relu(x) = Max(0, x)), which is non-linear. For each
filter, the result of the convolution provides a vector of size s − f + 1. After-
ward, the max-pooling operator is applied and the maximal value is retained,
independently of where it is located in a sentence. All the max-pooling units
are concatenated (right most layer in Fig. 1) and then follows a fully connected
layer. In the output layer, a Softmax activation function is used. Specifically, for
N ai scalars it calculates an N-dimensional vector with values between 0 and 1.
It is given as:

Si =
exp(ai)

∑N
k=1 exp(ak)

; ∀i ∈ 1 . . . N. (1)

We use the Lasagne Library Package [7] to train our CNNs. The training phase is
achieved with the Cross-Entropy loss function. After learning the fully connected
layer, which is not represented in Fig. 1 is replaced by a DIMLP subnetwork
having two layers of weights, with the second being equal to the fully connected
layer of the CNN.

2.2 The DIMLP Subnetwork

DIMLP differs from standard Multi Layer Perceptrons in the connectivity
between the input layer and the first hidden layer. Specifically, any hidden neu-
ron receives only a connection from an input neuron and the bias neuron, as
shown in Fig. 2. After the first hidden layer, neurons are fully connected. Note
that very often DIMLPs are defined with two hidden layers; the number of neu-
rons in the first hidden layer being equal to the number of input neurons. The
key idea behind rule extraction from DIMLPs is the precise localization of axis-
parallel discriminative hyperplanes. In other words, the input space is split into
hyper-rectangles representing propositional rules. Specifically, the first hidden
layer creates for each input variable a number of axis-parallel hyperplanes that
are effective or not, depending on the weight values of the neurons above the
first hidden layer. More details on the rule extraction algorithm can be found in
[3].

The activation function in the output layer of a standard DIMLP [2] is a
sigmoid function given as

σ(x) =
1

1 + exp(−x)
. (2)

However, here since the CNN is trained with a Softmax function in the output
layer, we replace the sigmoid by it. In the first hidden layer the activation func-
tion is a staircase function S(x) with Q stairs that approximate the Identity
function I(x) = x; ∀x ∈ (Rmin..Rmax), with two constants Rmin and Rmax.

S(x) = Rmin, if x ≤ Rmin; (3)
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Fig. 1. The CNN subnetwork has an input layer with data provided as word embed-
dings; these word vectors are represented horizontally, while sentences are represented
vertically. Then follows a convolutional layer with filters of different size. The con-
volution of the input with filters provides one-dimensional vectors (represented verti-
cally). Finally, the “max” function reduces the size of these vectors that are finally
concatanated (last layer on the right). The fully connected layer is not represented.

Fig. 2. A DIMLP network creating two discriminative hyperplanes. The activation
function of neurons h1 and h2 is a step function, while for output neuron y1 it is a
sigmoid.
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Rmin represents the abscissa of the first stair. By default Rmin = 0.

S(x) = Rmax, if x ≥ Rmax; (4)

Rmax represents the abscissa of the last stair. By default Rmax = 1. Between
Rmin and Rmax S(x) is given as

S(x) = I(Rmin +
[

q · x − Rmin

Rmax − Rmin

]

(
Rmax − Rmin

q
)). (5)

Square brackets indicate the integer part function and q = 1, . . . Q. The step
function t(x) is a particular case of the staircase function with only one step:

t(x) =
{

1 if x > 0;
0 otherwise. (6)

The approximation of the Identity function by a staircase function depends
on the number of stairs. The larger the number of stairs the better the approx-
imation. Note that the step/staircase activation function makes it possible to
precisely locate possible discriminative hyperplanes.

As an example, in Fig. 2 assuming two different classes, the first is being
selected when y1 > σ(0) = 0.5 (black circle) and the second with y1 ≤ σ(0) = 0.5
(white squares). Hence, two possible hyperplane splits are located in −w10/w1

and −w20/w2, respectively. As a result, the extracted unordered rules are:

– (x1 < −w10/w1) → square
– (x2 < −w20/w2) → square
– (x1 ≥ −w10/w1) and (x2 ≥ −w20/w2) → circle

2.3 From Meaningless Rules to Meaningful Rules

Each antecedent extracted from the max-pooling-layer is given as a < t, or a ≥ t;
t being a filter threshold involving in the input layer a number of activated words.
Specifically, these words correspond to bigrams and trigrams when the filter size
in the convolutional layer is equal to two or three, respectively. In practice, filters
of size equal to one are convolved with all possible single words. Then with the
obtained values, we retain all the single words that make true a rule antecedent
related to the max-pool-layer. This is repeated for filters of size two with respect
to bigrams and so on with other filter sizes.

Generally, the condition expressed in a rule antecedent is true with more than
one n-gram; thus a rule antecedent which is true for the DIMLP subnetwork
implies a disjunction of one or more n-grams represented in the input layer (one
or more n-grams connected by a logical or). Nevertheless, with the use of the
“Max” function a unique n-gram becomes dominant (the one with the highest
activation) and cancels the others.

Disjunctions of n-grams related to a rule antecedent extracted from the max-
pooling-layer involving thousands of words could be considered too numerous.
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However, in practice these words are not necessarily encountered, especially
for rules activated by a small number of examples. These words will be use-
ful for determining possible contradictions, such as the simultaneous presence
of words/n-grams that are clearly of positive polarity and others of negative
polarity.

3 Experiments

In the experiments we use a well-known binary classification problem describing
movie reviews with Tweets [12].1 The number of examples is equal to 10662,
with half of them belonging to the positive class. Note that the total number of
single words in the dataset is equal to 21426, while the total number of bigrams
is equal to 111590. Words are coded into vectors of word embeddings of size 300
[11]. Two CNN architectures were defined; one with 50 filters of size one and two
(f = 1, 2) and another with 40 filters of size one, two and three. Hence, the last
layer in Fig. 1 has 100 and 120 neurons, respectively. For deep learning training
we use Lasagne libraries, version 0.2 [7]. The loss function is the categorical
cross-entropy and the training parameters are:

– learning rate: 0.02;
– momentum: 0.9;
– dropout = 0.2;

From the whole dataset we selected the first 10% of the samples of each class
as a testing set and the rest as training examples. Moreover, a subset of the
training set representing 10% of it was used as a tuning set for early-stopping.
Table 1 shows the results for the first CNN architecture. The first row of this
Table is related to the original CNN, while the other rows provide results of
the approximations obtained with the CNN-DIMLP combination by varying the
number of stairs in the staircase activation function. Columns from left to right
designate:

– train accuracy;
– predictive accuracy on the testing set;
– fidelity, which is the degree of matching between rules and the model;
– predictive accuracy of the rules;
– predictive accuracy of the rules when rules and model agree;
– number of extracted rules and total number of rule antecedents.

Note that these rules involve filter responses in the antecedents from which n-
grams are determined (cf. Sect. 2.3). Table 2 presents the results obtained with
the second CNN architecture.

The best predictive accuracy of rules was obtained with the second architec-
ture, which takes into account trigrams. Note however that accuracy performance
in this work is not a priority, since our purpose is to demonstrate how to generate

1 Available at: http://www.cs.cornell.edu/people/pabo/movie-review-data/.

http://www.cs.cornell.edu/people/pabo/movie-review-data/
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Table 1. Results obtained with the fist CNN architecture including filters of size one
and two, involving unigrams and bigrams. In the DIMLP subnetwork the number of
stairs of the staircase activation function is varied from 20 to 200.

Train Acc. Test Acc. Fidelity Test Acc. (r1) Test Acc. (r2) #Rules/#Ant

CNN 81.5 74.6 – – – –

CNN (q=20) 81.2 74.0 93.6 72.9 75.0 747/6159

CNN (q=50) 81.5 74.0 94.8 74.3 75.5 636/5730

CNN (q=100) 81.4 74.1 95.3 73.0 74.7 669/5619

CNN (q=200) 81.4 74.5 95.8 73.4 75.0 562/5131

Table 2. Results obtained with the second CNN architecture including filters of size
one, two and three, involving unigrams, bigrams and trigrams.

Train Acc. Test Acc. Fidelity Test Acc. (r1) Test Acc. (r2) #Rules/#Ant

CNN 83.0 75.4 – – – –

CNN (q=20) 83.0 75.0 94.6 73.4 75.6 637/5633

CNN (q=50) 82.9 75.3 95.2 72.8 75.3 559/5065

CNN (q=100) 82.9 75.4 95.5 75.2 76.5 568/4885

CNN (q=200) 83.0 75.3 94.0 73.5 75.9 555/4798

meaningful propositional rules from CNNs. Overall, fidelity on the testing set is
above 90%, meaning that rules explain CNN responses in a large majority cases.

The antecedents of rules extracted from the DIMLP subnetwork involve long
lists of n-grams. Here we illustrate several rules extracted from the first architec-
ture with q = 200 (the one with the highest fidelity). Rules are ranked according
to their support with respect to the training set, which is the proportion of cov-
ered samples. Note that rules are not disjointed, which means that a sample can
activate more than a rule. The first rule has a support of 765 training samples
and 76 testing samples; it is given as:

– (f51 < 0.285) (f65 < 0.09) (f70 < 0.275) (f74 ≥ 0.185) (f87 < 0.305) (f99 <
0.06) Class = POSITIVE

Here, f designates maximal values of filters with respect to the max-pooling
layer. Indexes between one and 50 are related to single words, while those
between 51 and 100 correspond to bigrams. The accuracy of this rule is 93.9% on
the training set and 88.1% on the testing set. Antecedent f74 ≥ 0.185 involves
the presence of at least one bigram in a list of 1218 possible bigrams. Generally,
the possible bigrams are not necessarily encountered in the tweets activating a
rule. By negating all other antecedents of this rule we obtain a list of 12730
bigrams that are required to be absent.

We illustrate a number of sentences with possible bigrams including the dom-
inant bigram, represented in bold and related to the rule shown above. Note that
three consecutive words in bold represent two consecutive bigrams:

1. offers that rare combination of entertainment and education.
2. a thoughtful, provocative, insistently humanizing film.



A Rule Extraction Study Based on a Convolutional Neural Network 311

3. a masterful film from a master filmmaker, unique in its deceptive grimness,
compelling in its fatalist worldview.

4. cantet perfectly captures the hotel lobbies, two-lane highways, and roadside
cafes that permeate vincent’s days.

5. the film makes a strong case for the importance of the musicians in creating the
motown sound.

6. a compelling coming-of-age drama about the arduous journey of a sensitive
young girl through a series of foster homes and a fierce struggle to pull free from
her dangerous and domineering mother’s hold over her.

7. this delicately observed story, deeply felt and masterfully stylized, is a tri-
umph for its maverick director.

8. a portrait of alienation so perfect, it will certainly succeed in alienating most
viewers.

9. it’s sincere to a fault, but, unfortunately, not very compelling or much fun.

The first eight tweets are correctly classified and we can clearly recognize
words of positive polarity. The two tweets at the end of the list are classified
as positive, whereas their class is negative. The last tweet is wrongly classified,
because “not” before “very compelling” has been ignored. Regarding the ninth
tweet, “so perfect” contributes without any doubt to a positive polarity; then, at
the end of the sentence “alienating” contributes to its true negative classification,
but it is not considered at all by the rule.

Rule number 17 is given as:

– (f7 < 0.315) (f39 < 0.295) (f54 ≥ 0.05) (f65 < 0.12) (f75 < 0.25) (f83 <
0.13) (f95 ≥ 0.135) (f96 ≥ 0.16) Class = POSITIVE

It has a support of 404 samples in the training set and 47 samples in the testing
set with an accuracy of 91.6% and 83.0%, respectively. The presence of one or
more bigrams is imposed by f54, f95, and f96; it contains 8266 elements. Ninety-
six single words must be absent; they are related to f7, and f39. Moreover, 6307
mandatory absent bigrams depends on f65, f75, and f83. Ten tweets with their
possible bigrams including the dominant bigram are shown here; the last two
tweets are wrongly classified:

1. an utterly compelling ‘who wrote it’ in which the reputation of the most
famous author who ever lived comes into question.

2. between the drama of cube? s personal revelations regarding what the shop means
in the big picture, iconic characters gambol fluidly through the story, with charm-
ing results.

3. it’s an old story, but a lively script, sharp acting and partially animated
interludes make just a kiss seem minty fresh.

4. this is simply the most fun you’ll ever have with a documentary!
5. one of the best, most understated performances of [jack nicholson’s] career.
6. tadpole is a sophisticated, funny and good-natured treat, slight but a

pleasure.
7. a smart, sweet and playful romantic comedy.
8. mr . parker has brilliantly updated his source and grasped its essence, compos-

ing a sorrowful and hilarious tone poem about alienated labor, or an absur-
dist workplace sitcom.
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9. beautifully filmed and well acted. . . but admittedly problematic in its narra-
tive specifics.

10. one of the oddest and most inexplicable sequels in movie history.

The following list illustrate negative tweets correctly classified by a rule reach-
ing an accuracy of 100% on the testing set:

1. it’s an 88-min highlight reel that’s 86min too long.
2. such an incomprehensible mess that it feels less like bad cinema than like being

stuck in a dark pit having a nightmare about bad cinema.
3. during the tuxedo’s 90min of screen time, there isn’t one true ’chan moment’.
4. the script becomes lifeless and falls apart like a cheap lawn chair.
5. the script falls back on too many tried-and-true shenanigans that hardly dis-

tinguish it from the next teen comedy.
6. a close-to-solid espionage thriller with the misfortune of being released a few

decades too late.

Finally, we show another example of negative tweets correctly classified by
another rule yielding predictive accuracy equal to 100%:

1. maybe leblanc thought, “hey, the movie about the baseball-playing monkey was
worse.”

2. a muddled limp biscuit of a movie, a vampire soap opera that doesn’t make
much sense even on its own terms.

3. the script becomes lifeless and falls apart like a cheap lawn chair.
4. a baffling subplot involving smuggling drugs inside danish cows falls flat, and if

you’re going to alter the bard’s ending, you’d better have a good alternative.
5. given the fact that virtually no one is bound to show up at theatres for it, the

project should have been made for the tube.
6. jonathan parker’s bartleby should have been the be-all-end-all of the modern-

office anomie films.

4 Conclusion

We presented a model that allowed us to extract rules of high fidelity from a
typical trained CNN architecture for Sentiment Analysis. Rule extraction was
first applied to the layer before the output layer and then relevant words were
determined from convolutional filters thresholds. Generated rules are described
by disjunctions of n-grams that must be present or conjunctions of n-grams
that must be absent. Moreover, extracted n-grams do not depend on particu-
lar positions in sentences. In the experiments, several examples of tweets with
discriminatory bigrams that explained CNN responses were illustrated. These
discriminatory words are important, as they can be used to understand how
correct/wrong classifications are obtained by the classifier.
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