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Chapter 11
Clinical Decision Support Systems

A. T. M. Wasylewicz and A. M. J. W. Scheepers-Hoeks

11.1  �Introduction on CDSS

11.1.1  �What Is CDSS?

Clinical decision support includes a variety of tools and interventions, computer-
ized as well as non- computerized. Non-computerized tools include clinical 
guidelines or digital clinical decision support resources like ClinicalKey® or 
UpToDate ® [1, 2]. Such clinical decision support systems (CDSS) are character-
ized as tools for information management. Another category of CDSS sometimes 
also called basic or simple clinical decision support systems are tools to help 
focus attention. Examples of such CDSS include laboratory information systems 
(LISs) highlighting critical care values or pharmacy information systems (PISs) 
presenting an alert ordering a new drug and proposing a possible drug-drug inter-
action [3, 4]. Most focus in the past few decades however has gone to tools to 
provide patient-specific recommendations called advanced CDSS. Advanced 
CDSS  mayinclude, for example, checking drug disease interactions, individual-
ized dosing support during renal impairment, or recommendations on laboratory 
testing during drug use.
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11.1.2  �Why CDSS?

The quantity and quality of clinical data are rapidly expanding, including elec-
tronic health records (EHRs), disease registries, patient surveys and information 
exchanges. Big data and digitalization however, does not automatically mean bet-
ter patient care. Several studies have shown that only implementing an  EHRand 
computerized physician order entry (CPOE) has rapidly decreased the incidence 
of certain errors, introducing however many more [5–7]. Therefore, high-quality 
clinical decision support is essential if healthcare organizations are to achieve the 
full benefits of electronic health records and CPOE. In the current healthcare set-
ting when facing a decision, healthcare providers often do not know that certain 
patient data are available in the EHR, do not always know how to access the data, 
do not have the time to search for the data or are not fully informed on the most 
current medical insights. It is said the healthcare providers often drown in the 
midst of plenty [8–10].

Moreover, decisions by healthcare professionals are often made during direct 
patient contact, ward rounds or multidisciplinary meetings. This means that many 
decisions are made in a matter of seconds or minutes, and depend on the healthcare 
provider having all patient parameters and medical knowledge readily available at 
that time of the decision. Consequently, current decisions are still strongly deter-
mined by experience and knowledge of the professional. Also, subtle changes in a 
patient’s condition taking place before hospital- or ward admission are often over-
looked because clinicians regularly perceive a patient in his current state without 
taking into account changes within normal range. A computer however, takes into 
account all data available making it also possible to notice changes outside the 
scope of the professional and notices changes specific for a certain patient, within 
normal limits.

11.1.3  �Types of CDSS

To understand literature on the topic of CDSS and familiarize oneself on the subject 
it is important to categorize the vast array of CDSS. Categorization of CDSS is often 
based on the following characteristics: system function, model for giving advice, 
style of communication, underlying decision making process and human computer 
interaction which are briefly explained below [11].

The characteristic ‘System function’ distinguishes two types of functions. 
Systems determining: what is true?: These include purely diagnostic CDSS like 
many popular differential diagnosis websites like Diagnosaurus® or WebMD® [12, 
13]. These CDSS base their advices on a fixed set of data that is user inputted or 
readily available. The other type of CDSS determine: what to do?, advising which 
test to order with the purpose of further differential diagnosis or which drug to pre-
scribe for the patient’s current condition. However, this distinction is of limited 
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value as most current integrated CDSS almost always do both: first determine what 
is true about a patient and then suggest what to do.

Another parameter of CDSS is the approach to give advice, either passive or 
active. Passive CDSS require the user to do something to receive advice, for exam-
ple clicking a button or opening a tab. These passive types however, have been 
abandoned for most part because of their lack of efficacy and dependence of human 
involvement [14, 15]. A challenge of active systems is to avoid the generation of 
excessive amount of alerts, causing alert fatigue with the user. This topic is dis-
cussed further on in the paragraph on alert fatigue. A closely related characteristic 
commonly used to categorize CDSS is  thestyle of communication, distinguishing a 
consulting and critiquing model. In a consulting model the system is an advisor, 
asking questions and proposes subsequent actions. For example, when entering a 
medication order, the computer asks for the diagnosis and advises the right dose or 
an alternative treatment. A critiquing system lets the user decide the right dose for 
itself and only afterwards alerts the user that the dose prescribed for this therapy is 
too low.

Human computer interaction is another clinical decision support system charac-
teristic. How does a user interact with the computer? Historically CDSS were slow, 
difficult to access and difficult to use. However, modern day computing power, elec-
tronic health record integration and computer mobility have made these problems of 
the past. However, human computer interaction is still a good way to categorize 
CDSS describing EHR integration or overlay, keyboard or voice recognition and 
advice by means of pop-ups, acoustic alarms or messaging systems.

The last commonly used characterization of CDSS, and perhaps the most inter-
esting, is the underlying decision-making process  ormodel. The simplest models 
are problem-specific flowcharts encoded for computerized use, these are discussed 
further on. With the availability of additional statistical models, mathematical tech-
niques and increasing computing power, much more complex models have been 
researched and used since, like Bayesian models [16, 17], artificial neural networks 
[18], support vector machines [19] and artificial intelligence [20]. Many of these 
systems are used to improve prediction of outcome, prioritize treatment or help 
choosing the best course of action. Use of such systems in practice however is 
delayed mainly because of trust issues towards ‘black box’ systems. If a computer 
tells you to start drug A for a patient based solely on a mathematical model, without 
a guideline to back it up, are you convinced to do it? Linked to the major trust issue 
towards ‘black box’ systems is the current model of evidence based medicine and 
concurrent guidelines based on these studies. Are you willing to ignore an interna-
tional guideline saying you should start a patient on drug A only because your 
CDSS says you should start the patient on drug B?

Decision tree models are the oldest but still most used models in clinical practice 
today. These CDSS use a tree-like model of decisions consisting of multiple steps 
of ‘if then else’ logic. Figure 11.1 shows an example of such a decision tree model. 
These models have the advantage of being interpretable by humans and follow logi-
cal steps based on conventional medical guidelines. Such decision tree models are 
also called clinical rules (CRs), computer-interpretable guidelines (CIGs) or 
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Fig. 11.1  Part of the clinical rule gastric protection, represented in GLIF, created in CDSS Gaston 
(Medecs BV). (Picture adopted from Scheepers et al. 2009 [14])

A. T. M. Wasylewicz and A. M. J. W. Scheepers-Hoeks



157

decision support algorithms. [15] Instead of predicting outcome or best therapy, a 
CDSS only automatizes information gathering and provides advice in accordance to 
a guideline.

The next few paragraphs will focus on CDSS that determine both what is true? 
and what to do?, as well as the use of mainly active critiquing advice and the use of 
a decision tree model as underlying decision making process.

11.1.4  �Medication Related CDSS

From a historical point of view, medication related CDSS seem to go the farthest 
back and are likely to have the largest potential for benefit [21]. They date back as 
long as the 1960s [22]. They supported pharmacists with drug allergy checking, 
dose guidance, drug-drug interaction checking and duplicate therapy checking. 
Medication related CDSS took further shape when directly linked to computer-
ized physician order entry (CPOE) [23]. CPOE being the system that enabled 
physicians to prescribe medication using electronic entry. The combination of 
CPOE and CDSS helped physicians choose the right drug in the right dose and 
alert the physician during prescribing if for example the patient is allergic. 
Combining CPOE with basic medication related CDSS meant a giant leap in safer 
medication prescribing [24, 25]. However, all of the checks mentioned above fol-
low simple ‘if then else’ logic and do not combine multiple patient characteristics 
when producing alerts. This addition came with the introduction of advanced 
medication related CDSS.

Such advanced CDSS follow decision tree based models and can assist the physi-
cian in dosing medication for patients with renal insufficiency, provide guidance for 
medication-related laboratory testing and perform drug – disease contraindication 
checking [23, 26]. Parameters incorporated into medication related CDSS rose 
steadily in the past few decades including pharmacogenetics and more and more 
drug disease interactions.

Many current EHRs with integrated CDSS however, still fail to provide guid-
ance relevant to the specific patient receiving care, poorly presenting data and 
causing alert fatigue to health care providers [27]. One of the main issues with 
these systems is that they combine only one or two parameters to provide alerts, 
thereby only increasing the number of alerts. For example, prescribing nortripty-
line to a patient with hepatorenal syndrome and being an intermediate metabolizer 
of CYP2D6 will generate a total of 3 alerts with different advices. An advice on 
how to dose nortriptyline in a patient with renal insufficiency, another alert with 
an advice how to dose nortriptyline in patients with liver failure and last but not 
least an advice how to start treatment in a patient being an CYP2D6 intermedi-
ate metabolizer. So which advice should we follow? Therefore, effort should be 
made into combining multiple parameters and clinical rules to provide one correct 
advice to the healthcare provider. Designs should incorporate the engagement of 
all clinicians involved in the delivery of health care and combine multiple patient 
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characteristics and context simultaneously, to ensure that CDSS are actually help-
ful to clinicians, rather than interrupt health care delivery.

11.2  �Challenges for Implementing a CDSS

CDSS are an evolving technology with potential for wide applicability, to individu-
alize and improve patient outcome and health care resource utilization [24, 28]. 
However, to make CDSS more helpful it requires thoughtful design, implementa-
tion and critical evaluation [29].

As mentioned earlier  thepromise of CDSS has been around since the 1960s. In 
2008, Simon et  al. still found that the vast majority of EHRs across the U.S.A. 
implemented little or any decision support [30]. A recent survey send out to all 
Dutch hospital pharmacies showed similar disappointing results, only 48% of them 
using some kind of advanced CDSS [31].

Such alarming results were one of the main reasons the American Medical 
Informatics Association (AMIA) published the Roadmap for National Action on 
Clinical Decision Support. The paper acknowledged six strategic objectives, divided 
into three main pillars, for achieving widespread adoption of effective clinical deci-
sion support system capabilities [32]. The three main pillars being: (1) High 
Adoption and Effective Use. (2) Best Knowledge Available When Needed. (3) 
Continuous Improvement of Knowledge and CDSS Methods [32]. In the following 
paragraphs these three pillars will be highlighted to give an overview of tasks and 
challenges that lay ahead.

11.2.1  �High Adoption and Effective Use

To ensure high adoption and effective use, it is important to fine-tune the CDSS in 
order to suit end-users wishes. Only then alert fatigue can be minimized.

11.2.1.1  �Alert Fatigue

Alert fatigue is the concept of poor signal to noise ratio caused by CDSS with an 
active alerting mechanism. Alert fatigue is defined as the “Mental fatigue experi-
enced by health care providers who encounter numerous alerts and reminders from 
the use of CDSS” [33]. Alert fatigue causes physicians to override 49–96% of the 
current medication safety alerts from basic CDSS as well as advanced medication 
related CDSS. The main reasons for overriding alerts are: low specificity, unneces-
sary workflow disruption and unclear information [34, 35]. Many of these aspects 
are caused by lack of user- and patient context. More on the subject of context can 
be read in the paragraph on context factors, later on.
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Because CDSS are offering more and more options characterization of the CDSS 
itself is not enough. Characterization of the clinical rules used by decision tree 
CDSS is also key to understand the background of alert fatigue. In the upcoming 
paragraphs the taxonomy of clinical rules is explained using two fundamental con-
cepts, being triggers and context factors.

11.2.1.2  �Triggers

In an effort to characterize clinical rules, Wright et al. used four functional catego-
ries: triggers, input data, interventions and offered choices. Triggers were identified 
as one of the key functional dimensions of CDSS and are the start of each clinical 
rule. Wright and colleagues reviewed and analyzed their own extensive rule reposi-
tory, using these four functional dimensions to identify and quantify the use of dif-
ferent taxonomic groups. They identified nine different triggers. However, by far the 
trigger most often used is the ‘order entered’ trigger, accounting for 94% of all the 
studied clinical rules and 38% of all clinical rule types. Combined with the knowl-
edge that a patient’s drug list is also the most used ‘input data element’ in all of the 
studied rules, medication orders (MOs) and drug lists seem to play a key role in 
CDSS currently used [36, 37].

11.2.1.3  �Context Factors

‘Context’, in computer science, refers to the idea that a system, in our case a clinical 
decision support system, is both capable of sensing and reacting, based on its envi-
ronment. An often provided definition of the term ‘context’ is the one provided by 
Dey, being: “Context is any information that can be used to characterize the situa-
tion of an entity. An entity is a person, place, or object that is considered relevant to 
the interaction between a user and an application, including the user and applica-
tions themselves”. Using this definition a system providing ‘context’ also tries to 
make assumptions about the current situation in relevance, dependent on the user’s 
task or patient’s status [38].

Riedmann et al. performed a review of literature and subsequently performed an 
international Delphi study to identify the most important context factors to medica-
tion related CDSS [39, 40]. The most important context factors found were ‘severity 
of the effect’, ‘clinical status of the patient’, ‘complexity of the case’ and ‘risk fac-
tors of the patient’. All of these context factors are gained from input data elements 
such as diagnosis, prior disease history, laboratory results and hospital unit [36].

Another study group of Berlin et al. found that the most targeted clinical tasks of 
clinicians were associated with drug dosing (46%) and drug treatment (22%) [41, 
42]. These findings are in agreement with the study of Wright et al. although using 
a completely different taxonomy [41].

When combining the results from the studies performed by Wright et  al. and 
Berlin et al., the most CDSS targeted clinical tasks were ‘start of treatment’ and 
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‘dose adjustment’. As stated earlier, medication ordering was the most frequently 
used trigger to a clinical rule and a patient’s drug list was the utmost used and most 
easily available input element. Therefore, providing the right context to medication 
orders using the drug list should be an important priority. Context factors like ‘sever-
ity of the effect’, ‘clinical status of the patient’, ‘complexity of the case’ and ‘risk 
factors of the patient’ found by Riedmann et al are logical context factors from a 
physician’s point of view. However, adding such context only adds value when trig-
ger related contexts like ‘start of treatment’ and ‘dose adjustment’ are also included. 
Moreover, data input like those described by Riedmann et al is not always distinct 
and readily available in the EHR [36, 39, 41].

In our own experience, gained in the Netherlands, integrated medication related 
CDSS are still unable to correctly interpret the simple contexts of medication orders. 
During development and validation of clinical rules, basic contexts like start of new 
treatment or dose adjustment proved to be elusive and are a frequent cause of sub-
optimal positive predictive value (PPV) and sometimes suboptimal negative predic-
tive value (NPV). Experts also frequently disagree upon the definitions and clinical 
relevance of these contexts [43, 44]. Is a medication order a dose adjustment or start 
of new treatment? An example is a digoxin order. If the clinical task would be start-
ing a patient on digoxin therapy, the CDSS should advice the prescriber on ordering 
serum potassium levels, perform therapeutic drug monitoring and review new drug-
drug interactions. However, entering the same digoxin order to change drug admin-
istration time or change drug form, the above monitoring is not applicable. Providing 
the physician or pharmacist with notifications during this process would cause frus-
tration and alert fatigue [45].

11.2.2  �Best Knowledge Available when Needed

The second pillar in the Roadmap provided by the AMIA is best knowledge avail-
able when needed. The pillar contains three key challenges:

•	 When needed: Integration in clinical workflow
•	 Knowledge is available: so it has to be written, stored and transmitted in a format 

that makes it easy to build and deploy CDSS interventions
•	 Best knowledge: Only CDSS which provides current and additional information 

has potential

11.2.2.1  �When Needed: Integration in Clinical Workflow

A key success factor of CDSS is that they are integrated into the clinical workflow. 
CDSS not integrated into clinical workflow will have no beneficial effect and will 
not be used [46]. Messages should be presented at the moment of decision-making, 
though with as less disturbance for the physician as possible. Therefore, different 
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alert mechanisms (pop-up, automatic lab order, prescription order, emails, etc.) 
should be developed, suitable for different alerting priorities [47]. Understanding 
how to prompt physicians successfully at the point of care is a complex problem, 
and requires consideration of technological, clinical, and socio-technical issues. As 
mentioned earlier, interruptive (active) alerts show significantly higher effectiveness 
than non-interruptive (passive) reminders [48]. Additionally, a greater positive 
impact was observed when recommendations prompted an action and could not be 
ignored [49]. Thoroughly understanding the clinical workflow and users’ wishes 
strongly increases the probability for success [49]. One of the more recent attempts 
to incorporate CDSS into clinical workflow was to incorporate CDSS advice into 
checklists often used in ward rounds [50]. An example of such a particular system 
is Tracebook. This is a process-oriented and context-aware dynamic checklist, 
showing great promise and good user acceptability [51].

11.2.2.2  �Knowledge Is Available

One of the other major challenges of effective CDSS adaptation is keeping  theclini-
cal rules up to date [49]. However, keeping these clinical rules up to date is a mas-
sive time and money-consuming task. Therefore, sharing clinical rules seems to be 
a sensible and financially attractive choice. One of the strategic objectives described 
in the roadmap was to create a way to easily distribute, share and incorporate clini-
cal knowledge and CDSS interventions into own information systems and pro-
cesses. With this concept clinical rules could be externally maintained, making a 
huge leap in efficacy of development and maintenance. A healthcare provider could 
then just subscribe to certain clinical rules. This should work in “such a way that 
healthcare organizations and practices can implement new state of the art clinical 
decision support interventions with little or no extra effort on their part” [32].

Today many clinical rule repositories exist, however none of them are fully func-
tioning. They rely on software vendors to rebuild them into their own CDSS mod-
ules. Progress on this objective has been especially problematic when attempting to 
make or share clinical rules outside an ecosystem of the software vendor [52]. The 
progress being made using integrated EHR systems, also called second phase 
CDSS, is commendable however; it strictly limits sharing clinical rules outside of 
the EHR ecosystem. Newer standards-based systems, third phase and service model 
systems like the Arden syntax, GLIF, SAGE and SEBASTIAN solve many issues 
concerning sharing clinical rules [53, 54]. Although all very good initiatives, none 
of the architectures have really found use in clinical practice.

One of the issues in sharing fully functioning clinical rules are the difference in 
clinical terms as well as language. Clinicians starting to program clinical rules 
should keep in mind using standardized terms to make exchange of their CDSS 
modules possible. Using standardized clinical health terminologies like SNOMED 
CT would resolve a lot of issues surrounding sharing CDSS [55].

One of the other challenges however is to standardize definitions of context, 
as these are essential to minimize signal to noise ratio. To study the obstacles 
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left to make sharing a reality, an initiative was started to develop clinical rules 
which would work across different EHRs, CPOEs, PISs and institutions using 
the GASTON framework [56]. The framework, derived from GLIF architecture, 
facilitates sharing guidelines and facilitates integration with institution specific 
medical knowledge sources and information systems such as EHRs and CPOEs 
without changing the clinical rules themselves. The most important lesson 
learned from this project was that despite consensus on the content of a clinical 
rule, local adaptation was always necessary to achieve sufficient specificity of 
the alerts.

11.3  �Best Knowledge & Continuous Improvement 
of Knowledge and CDSS Methods

To ensure the best knowledge and retain continuous improvement, validation and 
verification is indispensable. Much research has been done on the validation of clin-
ical rules itself and focuses on clinical relevance of the recommendations produced 
by the CDSS. However, to assure correct clinical rules and recommendations we 
depend on data from the EHR and the correct functioning of the clinical decision 
support system. The next few paragraphs will give an overview over the levels of 
validation and verification of CDSS.

11.3.1  �CDSS Verification and Validation

Successful adaption and functioning of clinical rules vastly depends on the 
CDSS used. Tendering, choosing or implementing a new CDSS requires a  com-
prehensiveuser requirement specification (URS) or user requirement documen-
tation (URD). A URS specifies what the users of the software expect the software 
to do. It is often seen as the contract between the user and the software supplier. 
Not explicitly or correctly stating user requirements for a software system is the 
major factor contributing to failed software implementations and massive bud-
get overruns. Maybe not a very appealing job for clinicians, we cannot stress 
enough the importance of working together with IT personnel to write an all-
encompassing URS. Adding or improving functionality afterwards is difficult 
and costly.

It is important to test all functions of software products such as CDSS. Deepening 
the topic of software verification and validation requires a book on its own. However, 
to prevent running into issues during clinical rule development and use of the CDSS 
in practice it is key to perform software verification and validation using the URS 
and lower level specifications. Software validation and verification can be per-
formed at many levels using many tools. If your hospital does not have IT personal 
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qualified to plan and perform software verification and validation it is highly recom-
mended to hire external help. Thorough verification and validation of the CDSS 
software can save expenses and spare frustration later on or even failure of 
implementation.

When using a CDSS we should keep in mind that a CDSS relies on high quality 
data to work. Assuring the correct collection of data and their quality is vital before 
starting to program the clinical rules themselves. A part of the requirements should 
therefore be a thorough description and testing of items to be used in the clinical 
rules. If you state: “the system must present the age of a patient” for example; the 
CDSS probably will present the age of the patient in years. Designing clinical rules 
using this parameter however for a neonatal care unit could be unwanted and unspe-
cific. Testing if items used in clinical rules result in the expected answer requires 
clinical knowledge, often scares IT personnel. Clinicians eager to program clinical 
rules themselves are therefore encouraged to assist in this stage of CDSS 
validation.

After the successful implementation of the CDSS itself we are ready to start 
building our own clinical rules.

11.3.2  �Development and Validation Strategy

Key to preventing alert fatigue in active CDSS is structured development and vali-
dation of clinical rules. Much has been published on the validation of these clinical 
rules focusing on providing maximal clinical relevance of the recommendations 
outputted by the CDSS [47, 57–59].

Two key components of a good validation strategy described in most studies are: 
(1) the use of a multidisciplinary expert panel as well as (2) offline test and revision 
cycles [58].

A framework was published by McCoy, describing a potentially effective method 
for assessing clinical appropriateness of medication alerts. A key attribute of this 
framework is that it determines appropriateness at the time of a triggered alert and 
by applying expert knowledge [60]. Weingart et al. examined a subset of all dis-
played alerts to determine alert validity and expert agreement with overrides, 
although no measures of unintended adverse consequences were reported [58]. 
Sucher mentions factors that need to be tested, such as verification, validation and 
worst case testing, but these factors are not explained in detail [59]. A practical vali-
dation approach is described by Osherhoff et al., using cases and testing scenarios 
to validate clinical rules [47]. This method however has limited usefulness due to 
lack of a detailed description of the method and outcome. To prevent alert fatigue, 
CDSS implementers must monitor and identify situations that frequently trigger 
inappropriate alerts and take well-defined steps to improve alert appropriateness 
[60]. Studies examining CDSS content validation often lack a complete and repro-
ducible method that is demonstrably leading to appropriate alerts.
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11.3.2.1  �Strategy for Development and Validation of Clinical Rules

Below we describe a four-step strategy to develop and implement clinical rules, 
which we ourselves use as part of development [57, 61].

Step 1: Technical Validation

The  objectiveof this step is to determine whether a clinical rule functions as we 
expect it to do. Are the parameters in the CDSS linked correctly to the EHR and 
are we using technically valid definitions. Of course the first step starts by design-
ing a clinical rule. Most often such a clinical rule is based on an evidence-based 
medicine (EBM) guideline. The EBM guideline is first translated into a computer-
interpretable format with measurable and specific parameters. This regularly 
requires translating clinical terms used in guidelines to standardized clinical 
terms before use. For example, how to define diarrhea? Is it enough a patient has 
watery stool or should it also be more than 3 times a day? Such definitions are not 
solved using only standardized terms. After definitions are clear and build into 
the clinical rule the clinical rule is tested on a historical EMR database. 
Subsequently, results are analyzed to determine the amount of true positives 
(PPV) and true negatives (NPV). These results are discussed in a plenary meeting 
together with an expert team. Here possible improvements are identified, which 
could later on be implemented. When the objectives are met (positive predictive 
value >90% and negative predictive value >95%), the second step of the develop-
ment strategy is started.

Step 2: Therapeutic Retrospective Validation

The second step is intended to check whether the alerts produced by the CDSS 
are clinically relevant, useful and actionable. This step of therapeutic validation 
is of greatest importance for user acceptance further on. Although alerts at this 
stage are technically valid and based on evidence-based guidelines, health care 
professionals may not always consider them useful or relevant. This step starts 
with a meeting between the building team and the expert team to discuss the 
therapeutic value of the alerts. The expert team should include experts on the 
subject at hand from different medical disciplines. Moreover, opinion leaders 
from the clinic should also be included. The expert team reviews all of the alerts 
generated and classifies them as being relevant or not. Differences between 
theory and practice are discussed and the expert team formulates modifications 
to the clinical rule. After modifications are implemented, the clinical rule is 
tested in the same manner as in step 1 using the same set of patients from his-
torical EHR database. After this test, outcome is once again evaluated by the 
technical team and expert team together in order to maximize therapeutic PPV 
and NPV.
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Step 3: Pre-implementation Prospective Validation

The third step is used to prepare the CDSS and clinical rule for implementation in 
practice. The CDSS is linked to a real live EHR, allowing to generate alerts of actually 
admitted patients. Adaptations are made to assure timely alerting and integration into 
clinical workflow. The expert team is consulted once again however now focusing on 
the content of the message (e.g., proposal, command), the recipient of the message 
(e.g., nurse, physician, pharmacist), the frequency (e.g., once daily, continuously) and 
the alerting method (e.g., on-demand, automatic). When the rule is refined on these 
issues, it once again returns to step 1 to proceed through the validation cycle. After 
completing step one and two again, the rule is implemented into operation and made 
accessible to a selected group of users to do the final validation. Based on user feed-
back some final minor technical adjustments are mostly directed to optimize user 
satisfaction. Frequently, the issues requiring adjustment are the result of only testing 
the clinical rule in a retrospective setting on a static database instead of prospective on 
a dynamic real live EHR database. Depending on the frequency of alerting, usually 
after 2 months, the results from the prospective testing are evaluated by the technical 
and expert team together to calculate the final positive predictive value. Now the clini-
cal rule is ready for implementation in daily practice.

Step 4: Post-implementation Prospective Validation

The fourth step, after implementation of the clinical rule in daily practice, is continuous 
maintenance. This step corresponds to the third pillar of effective CDSS implementation 
suggested by Osherhof and colleagues in their Roadmap. In this step the clinical rule is 
monitored while operational. Monitoring consists on reviewing performance, follow-up 
and PPV. The step also encompasses technical and therapeutic maintenance to ensure 
continuous accuracy of the alerts. We found that every clinical rule needs adjustments 
after implementation in practice, which were not foreseen during the development 
phase (step 1–3). First, technical adjustments may be necessary due to updates or new 
functionalities in the CDSS or EHR. These technical adjustments are developed, vali-
dated and implemented by the technical team. When the changes also had therapeutic 
consequences, the expert team was consulted. Secondly, the content of the clinical rule 
should be updated regularly, due to changes in the underlying evidence-based medicine 
or end-users preferences. For example when a new version of the clinical guideline was 
available, clinical rules were checked and differences reviewed. This step finalizes the 
strategy, through continuously optimizing suitability of the rule in practice.

11.3.2.2  �Adaption in Practice

The adaptation of a CDSS in practice is a key component to success. The validation 
strategy described above especially benefits from including experts in all of its 
development cycles. These experts and opinion leaders help support the adaptation 
of clinical rules in practice and are the main success factor of this strategy.
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11.4  �Future Perspectives

This chapter shows that clinical decision support systems can definitely support the 
use of clinical data science in daily clinical practice. However, adoption in practice 
remains a slow process and many are still reinventing the wheel instead of support-
ing national initiatives. Decision support systems today mainly use the ‘if then else’ 
logic. And even using this method, validation is already very time-consuming and 
complex.

We are very curious to see combinations of systems using tree-based logic using 
current EBM guidelines and suggestions made using Bayesian models and artificial 
intelligence. It is a great and promising challenge to make healthcare really benefit 
more from big data, draw conclusions humans haven’t drawn themselves. However, 
validation, acceptance and adaptation of ‘black box’ systems will require a para-
digm shift, challenging the basic principles of current day EBM practice. 
Nevertheless, believe in decision support keeps attracting health care professionals 
to work with these powerful and promising systems.
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