
Diminishing Reality

Andreas Hackl and Helmut Hlavacs(B)

Entertainment Computing Research Group, University of Vienna, Vienna, Austria
a1308402@unet.univie.ac.at, helmut.hlavacs@univie.ac.at

http://entertain.univie.ac.at/~hlavacs/

Abstract. We explore ways of removing objects from live video feeds in
augmented reality-like use cases, using a method for inpainting unwanted
objects using previously captured visuals of the surrounding environ-
ment. In contrast to related previous work, this approach can completely
retain and reproduce hidden objects in all their detail. We describe the
approach and detail results from our evaluation.

1 Introduction

Augmented reality (AR), the “augmentation” of a view of the physical world, has
found its way into normal peoples’ everyday lives, with smartphones becoming
ubiquitous devices in the developed world. For entertainment purposes it found
widespread use in humorous overlays over peoples’ faces, or even real-time alter-
ation of their physical appearances [16], in social networking applications like
Snapchat or SNOW, and in video games that use real environments as back-
drops to render in-game graphics onto.

On a different front, technologies and applications for the removal of
unwanted objects from still images and even video, generally described as
“inpainting”, have existed for some time, mainly for the improvement of pre-
recorded media. They allow removal of a person from a scenic photograph, the
seamless stitching panoramas, or removal of strings from a video that should not
be visible to viewers. These technologies have also found their way into software
available to standard consumer software, most notably in Adobe Photoshop with
its “content-aware fill” feature, based on the PatchMatch [1,7] algorithm.

By combining both of these technologies, objects could be made to vanish
from a user’s view in real-time. In doing so, reality would not be augmented
with additional information, but real information would be reduced, resulting
in diminished reality (DR). The goal of this work is to devise and implement an
efficient and lightweight DR approach to this on the Android platform.

2 Related Work

While the subject of inpainting is well researched and continues to be subject
of new research, there have not been many applications so far with the aim
c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
E. Clua et al. (Eds.): ICEC 2018, LNCS 11112, pp. 28–39, 2018.
https://doi.org/10.1007/978-3-319-99426-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99426-0_3&domain=pdf

Diminishing Reality 29

of, or any functionality similar to, the concept of diminished or reduced reality
proposed in this work.

A single application has been developed as part of very promising research
into exactly this topic in 2010, with viable results, on even then-current hard-
ware, named “Diminished Reality” [12]. The rendering pipeline proposed by
Broll et al. is very similar to the one chosen by us, but differs in that it uses a
patch-based approach, similar to PatchMatch, that operates entirely on a frame-
by-frame basis, without considering any earlier input. The visual fidelity and
accuracy of its inpainting is therefore largely dependent on the input image and
surroundings of the object to be inpainted.

Research into the broader topic of general video inpainting by Newson
et al. [14] utilises a sort of memory, while still being patch-based, by consid-
ering patches from multiple frames of a video to inpaint objects. It manages to
produce very convincing results, but is not efficient enough for real-time use.

Other approaches to improve accuracy and fidelity in real-time inpainting,
compared to the traditional patch-based ones, have originally been considered,
but turned out to not be quite applicable to this task.

Neural networks in particular have in recent years become sophisticated
enough, and consumer hardware powerful and cheap enough, to make the imple-
mentation and use of powerful networks for various image generation and alter-
ation tasks viable.

An application of Generative Adversarial Networks (GAN) to the problem
of texture synthesis and style transfer by Ulyanov et al. [17] provides an entirely
feed-forward way of generating images, once a model has been trained. Because
of its promises of very fast image generation, it has been tested in consideration
of its viability as a base for real-time inpainting.

Using a relatively inexpensive GPU (Nvidia GTX 960 with 2 GB VRAM)
generation of images was possible at an average of 20 frames per second with a
resolution of 512 × 512 pixels, which makes it fast enough for real-time use. It
can however only generate textures that were trained into a model beforehand.
Although one model can be trained for multiple textures at once, without much
increase in needed computation time or loss in image quality, is a very limiting
factor. Training one such model on the same hardware limits the maximum input
size to 256 × 256 pixels (although not necessarily the output size), due to the
high VRAM requirements of the training process, and takes more than 20 min.
In real-world environments, where any kind of texture could appear in a user’s
surroundings, this training process would therefore need to be on an as-needed
basis, for which this time frame is still far too long. It also does unfortunately
not provide any consistency between generated inputs, or any facility to blend
generated textures into an existing background texture (cf. Fig. 1).

Another promising project based on Convolutional Neural Networks (CNN)
by Yang et al. [20], with the explicit purpose of high-quality inpainting of images,
similar to PatchMatch but with better results, has recently managed to reduce
processing time to only half a minute per image [20]. That means it might soon
be usable even for real-time purposes, but at this time it is not.

30 A. Hackl and H. Hlavacs

Fig. 1. Two frames, foreground (red) generated by [17] over a static image of the image
the model was trained. (Color figure online)

Since this kind of method poses a great challenge in making it fit the purpose
of real-time inpainting, in either some kind of extensive pre- or post-processing
being necessary or being simply too slow overall, while still offering behaviour,
strengths and drawbacks very similar to patch-based ones, it has been discarded
in favour of the method described here.

3 Our Inpainting Approach

The image processing pipeline for inpainting relies on a simple in-memory struc-
ture that can be used to store the visual appearance of the environment around a
point in space and later retrieve parts of it to fill in regions in images. It consists
of five core parts:

1. Input: Capturing of frames from the camera. Every captured frame poten-
tially needs to be put into a spacial relation to other frames and/or the
positioning of the capturing device in space. For this purpose, at the time of
frame capture, the orientation of the device is queried and stored alongside
it, adding other metadata, such as a measurement of time (e.g. timestamp or
frame number).

2. Object detection: Detection of objects and generation of regions inside of
a frame that are to be inpainted. An object detection algorithm is applied
to the newly captured frame, identifying one or more regions inside it that
contain objects which the user might want to vanish. To make description
of arbitrary regions easy, and because later stitching of frames requires it
anyway, they are stored as monochrome bitmaps.

3. Frame storage: Input frames in which no objects of interest have been
detected are candidates for use in inpainting to fill in objects and as such need
to be stored in a frame store for later use. Frames are stored uncompressed

Diminishing Reality 31

in a 2D array-like structure with each cell representing a few degrees of yaw
and pitch, essentially subdividing the range of possible device orientations
(disregarding roll) into a grid. Each cell can hold one frame at most at any
given time, limiting the maximum amount of frames to be stored in a given
range of orientation, therefore preventing the storage of too many too similar
frames.

4. Frame search: For input frames in which objects have been detected that
are to be inpainted, a frame that is potentially suitable to fill in the region(s)
generated by the object detection step needs to be found. As comparison of
actual frame content, of potentially many pairs of frames, is computationally
too expensive to do for each input frame in real-time, a frame is searched
inside the frame store by the most similar orientation to that of the input
frame.

5. Stitching: If a frame suitable for inpainting has been found in the frame
store, a single frame is stitched together using the newly captured frame, the
frame found in the frame store, and an object mask. The stored frame needs
to be aligned to the input frame as precisely as possible and then blended
together according to the object mask.

Other than simple, direct storage of input frames into memory during runtime,
there is no need for any lengthy preprocessing (e.g. pre-generating a sphere map)
in order to work in any given environment, as frames are stored and accessed
independently of each other.

4 Implementation

An application implementing the proposed method has been developed for
Android using OpenCv4Android [2], which provides Java bindings for OpenCV’s
C++-based API. It is largely based on the desktop OpenCV Java API, with sev-
eral Android-specific convenience features added.

OpenCV provides basic functions for image manipulation (e.g. translation,
colour manipulation, conversion), as well as more advanced features typical for
computer vision (e.g. feature extraction), both of which this project heavily
relies on. Because it is a thin wrapper around natively compiled C++ code, it
avoids many potential performance problems caused by the JVM and its garbage
collection. It being a standard API available on many platforms also makes
porting applications using it easy.

The architecture is kept largely modular, with the main roles in the program
separated out into their own classes/interfaces.

4.1 Input

The camera provides the image as both 4-channel RGBA (red, green, blue and
alpha channels) and 1-channel monochrome data. A sensor manager class pro-
vides a combined 3-component orientation vector, computed from the “grav-
ity” (virtual device based on accelerometer and gyroscope) and “magnetic field”

32 A. Hackl and H. Hlavacs

(uncalibrated magnetometer data) sensors. Data provided by the magnetometer,
by nature of the hardware built into smartphones, reflects changes in orientation
nearly instantly but is very noisy, sometimes jumping rapidly between up to 10◦

above/below the expected value. To get more stable readings, for every input
value, the average of the last 100 values (including the new one) is calculated
using a moving window approach.

4.2 Object Detection and Mask Generation

Video frames are passed to a mask generator class that creates a monochrome
mask for detected objects, which are masked white. All other pixels are masked
black.

There are two approaches for object detection implemented. Colour keying
computes a mask by converting the RGB colour image to HSV (hue, saturation
and value) and generates a greyscale image, setting all pixels in it to white if
their corresponding pixels’ HSV values are within a given range. HSV is used
because RGB makes it difficult to define a range of similar looking colours.

Because this is prone to create very holey masks and include undesirable
single pixels, the resulting mask is blurred using a simple box blur with a kernel
size of 10 pixels and then all pixels above a value of 50 (in the range of 0–255)
are set to pure white, all below to pure black (cf. Fig. 2). This produces more
coherent, hole-less areas and discards single stray pixels.

For performance reasons, input is (optionally) downscaled before processing
and the result upscaled afterwards.

(a) Input frame (b) Generated mask

Fig. 2. Generating a mask using colour keying, with downscaling. (Color figure online)

The second detector is a face detector and uses OpenCV’s Cascade
Classifier and its detectMultiScale method, which uses Haar feature [18]
or LBP-based (local binary pattern [13]) cascade classifiers to detect objects in
a greyscale image. LBP cascade descriptors were chosen because the detection
process is computationally less intensive than the Haar feature-based one, even
if slightly more inaccurate.

Diminishing Reality 33

For each detected object, the function returns a rectangle describing its posi-
tion inside the image and its size. Because these rectangles often do not com-
pletely cover the object, instead of simply filling them with pure white to create
a mask, a circle is drawn over each one, with the centre being that of the rect-
angle and the radius the average of its sides’ lengths. This results in circles with
approximately double the diameter of the rectangles (cf. Fig. 3).

(a) detectMultiScale output (b) Generated mask

Fig. 3. Generating a mask from a rectangle describing a face detected using an LBP
cascade.

4.3 Frame Storage and Search

The FrameStore utilises a basic fixed-size 2D array of VideoFrames, with each
element representing a certain amount of degrees of yaw and pitch. Unoccupied
elements are initialised to null to conserve memory.

To store a frame input to the frame store via its replace method, the X
and Y indices in the array are computed using the frame’s orientation. The new
frame and the frame previously stored there, if there is one, are passed to the
shouldReplace method of an IReplacementPolicy provided to the frame store,
to determine if the old frame should really be replaced (hence the method name
replace). A copy of the new frame is then stored in the array.

The replacement policy implemented compares the two frames’
frameNumbers (a value incremented every frame) and indicates to replace an
old frame, only if their difference is large enough. This prevents frames from
being copied and discarded many times per second, for a similar device orien-
tation, which can lead to large memory consumption and even crashing of the
application, depending on available memory and garbage collection frequency of
the JVM. To search for the nearest frame to a given orientation, the getNearest
method again calculates the corresponding array indices, and then searches from
there outwards until a frame is found.

34 A. Hackl and H. Hlavacs

4.4 Stitching

If a suitable frame has been found in the frame store, the input frame and stored
frame need to be stitched together, to fill regions marked in the generated mask
and produce a single, coherent image.

Since orientation is recorded alongside every captured frame, and changes
in orientation of the input device are reflected in captured frames as mainly
translation and rotation, using these data an approximate translation of the
fill frame to match the base frame can be computed.

A simple translation matrix is computed, with X and Y components’ pixel
values approximated using the difference in yaw and pitch angles of both frames
and the number of pixels per degree of field of view of the camera. The exact
formula being (for the X component, FOV being the field of view in degrees
along the X axis):

frame size

FOV
· (fill yaw − base yaw) · (1 +

|fill yaw − base yaw|
FOV

)

As this is only a simple translation based on angles and percentages, it does
not correct for difference in roll (image rotation) or any distortion, like the dis-
tortion caused by the camera lens. It is further hindered from reliably overlaying
the frames accurately by the inaccuracy and lag in recorded orientation data
and the possibility of the capturing device having moved, other than simple
orientation change.

Translating the fill frame in this manner before further processing has still
proven beneficial, as it is not a very computationally expensive operation and in
most cases provides a better overlap of both frames (cf. Fig. 4).

(a) Before (b) After

Fig. 4. Overlap of base and fill before and after orientation-based translation.

Transformation by Features. After the fill frame has been translated once,
key features from both it and the base frame are extracted from their greyscale
variants using OpenCV’s FeatureDetector and DescriptorExtractor classes
and their implementation of ORB (Oriented FAST and rotated BRIEF) [8].
Although OpenCV does implement other algorithms for feature detection, ORB

Diminishing Reality 35

proved to be the most efficient while still producing good features. Features of
both frames are then correlated using OpenCV’s DescriptorMatcher class and
its “Bruteforce Hamming” algorithm, which is a brute-force search based on the
Hamming distance of extracted feature descriptors.

Found matches are then filtered by the distance (in pixels) between the fea-
tures matched of each match, discarding all matches with distances greater than
two times the smallest matched distance (cf. Fig. 5). This serves to exclude dis-
proportionately far matches, which are likely to be wrong. Including only rela-
tively very short distances proved to often produce very accurate overlap in the
final image, at the expense of sometimes not producing a match at all.

Filtering this way has purely empirically turned out to work well; other fac-
tors or for example basing the calculation on the mean distance also leads to
usable results.

A translation matrix is then computed using OpenCV’s estimateRigid
Transform function, the filtered matches and the fill frame translated by it.

Fig. 5. Extracted ORB features in both frames and selected matches.

Final Blending. To blend the now aligned frames together into one complete
frame, the fill frame is multiplied by the base frame’s mask and the base
frame by the inverse of its own mask, leaving holes in the base frame and only
the content to fill them in the fill frame, which are then added together (cf.
Fig. 6, an app screen shot is shown in Fig. 9).

5 Evaluation

Although conceptionally relatively simple, our DR application manages to pro-
duce visually coherent and realistic looking results. Through the use of a simple
visual memory, structures and objects entirely hidden behind an inpainted area
of a frame can be successfully retained with all their details. This amount of detail
is impossible to produce using inpainting methods that operate exclusively on
the content of one frame (cf. Fig. 7).

36 A. Hackl and H. Hlavacs

(a) base frame (b) fill frame (c) Final blended image

Fig. 6. Blending of base and fill frames into the final complete image.

(a) Content aware fill (b) Our DR app

Fig. 7. Comparison of inpainted frames using
Adobe Photoshop’s PatchMatch-based content-
aware fill and output of our DR application.

Fig. 8. Half of an envelope in front
of the detected face being wrongly
inpainted.

5.1 Foreground and Background

Because the only concept of separation between fore- and background is that
of inpainted objects being “in front of” the stored frames’ content, other things
moving in the camera’s view cannot really be distinguished or separately reacted
to. This leads to moving backgrounds leaving out of date data in the frame store
and (partly) view-obstructing things being wrongly inpainted (cf. Fig. 8). Largely
static surroundings produce the best results for this reason.

A more sophisticated object detection algorithm may solve at least the fore-
ground problem (e.g. the colour key method does not suffer from this problem),
the background problem however is somewhat inherent to the use of a frame
store and may not be easily solvable.

5.2 Blending

In addition to non-static surroundings possibly leaving wrong data in the frame
store, even mostly static environments can change slightly over time, through
lighting changes, moving shadows or the often not software-controllable adjust-
ments made by Android and camera hardware in smartphones to parameters
like exposure and white balance.

Diminishing Reality 37

The naive blending approach of only masking areas in both frames does not
correct for these differences and can lead to visible seams, sometimes even very
obvious ones (cf. Fig. 10).

Fig. 9. Split view containing (from top
left to bottom right): camera input,
fill frame, (inpainted) output frame,
frame store array

Fig. 10. Obvious seam after the
exposure auto-adjusted.

Correcting for colour shift and blurring the edges between the two blended
frames could drastically reduce these effects. Less uniform changes, like shadows
cast by an inpainted object, may not be as easily corrected for.

If objects are detected in a frame, but no usable frame is found in the frame
store, the frame is shown to the user unaltered. Instead of doing so, in a kind
of best-effort way, another inpainting method that is independent of the frame
store could be used to hide the objects. Using such a fallback method may then
be less accurate, but would hide objects in these circumstances, which is better
than not doing so at all.

5.3 Runtime Performance

During runtime, various timings are taken of different parts of the program to
provide an overview over their performance. Running the application on differ-
ent devices and comparing them reveals a relatively clear bottleneck in need of
improvement (cf. Table 1).

Stitching is responsible for the majority of the processing time of one frame,
taking around 150 ms even on a relatively recent high-performance mobile pro-
cessor, limiting the overall frame rate to below 6 frames per second. While not
extremely slow and especially in hand-held situations still very usable and good
enough to prove the concept, for users to better enjoy using the application, the
highest possible frame-rate should be pursued.

Since the application runs all image manipulation sequentially in a single
thread, performance could be dramatically improved by parallelising these oper-
ations and possibly offloading them to the GPU. Although OpenCV implements

38 A. Hackl and H. Hlavacs

Table 1. Average performance on three different Android devices at a resolution of
1280 × 720 pixels.

Device/CPU Stitching Colour mask Face detection Frame search

Galaxy Nexus Arm
Cortex A-9
(1.2 GHz)

433.7 ms 9.8 ms 65.4 ms 0.8 ms

Google Nexus 7
(2013) Krait 300
(1.51 GHz)

253.2 ms 4.7 ms 32.7 ms 1.5 ms

Oneplus One Krait
400 (2.5 GHz)

147.5 ms 1.6 ms 22.3 ms 0.7 ms

acceleration using OpenCL for most of the functionality used by our DR appli-
cation [4], which would enable exactly this kind of parallelisation, OpenCL is not
officially supported on Android. Some devices nonetheless support it [3,5] and
tests have in the past shown very good performance using it [15], but getting
OpenCL support for OpenCV working on Android turned out to be non-trivial
and it was therefore not used in our DR application.

Reimplementing key parts of the application using RenderScript would likely
yield similar performance improvements, but be equally non-trivial and specific
to the Android platform.

6 Conclusion

This project explored not only a way of utilising AR technology that has not
been subject of much research so far, but also an approach to it that has not yet
been described. The proposed approach to removing objects from the live view
of a camera has in practice turned out to work quite well within its inherent
limitations and even produce more accurate images than prior approaches. Per-
formance of the implementation is not on-par with them yet, but the potential
for optimisation is still great, depending mainly on the support of OpenCL on
the chosen platform. On other, less restricted platforms these improvements may
even be implemented easily.

Although users are restricted to orientation and otherwise only very limited
movement of the device, since users of smartphones and similar devices are often
very stationary (i.e. sat at a desk), this may not be a big problem in many cases.
It is not unthinkable that an application like this could in the future be used,
if AR technology has matured enough to be widely used in work environments,
to filter out unwanted visual distractions, much like noise cancelling headphones
are used to filter out unwanted distracting sounds.

Overall this was an interesting foray into a niche topic, which maybe in the
future, as AR technology improves and new use-cases thereof emerge, could even
become a basis for solving real needs.

Diminishing Reality 39

References

1. Adobe research. https://research.adobe.com/project/content-aware-fill/. Accessed
10 Feb 2018

2. Android - OpenCV library. https://opencv.org/platforms/android/. Accessed 13
Feb 2018

3. Android devices with OpenCL support. https://docs.google.com/spreadsheets/d/
1Mpzfl2NmLUVSAjIph77-FOsJeuyD9Xjha89r5iHw1hI/edit. Accessed 14 Feb 2018

4. OpenCL - OpenCV library. https://docs.opencv.org/2.4/modules/ocl/doc/object
detection.html. Accessed 28 Feb 2018

5. OpenCL overview. https://www.khronos.org/opencl/resources. Accessed 14 Feb
2018

6. opencv/data/lbpcascades at master. https://github.com/opencv/opencv/tree/
master/data/lbpcascades. Accessed 20 Feb 2018

7. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a ran-
domized correspondence algorithm for structural image editing. TOG 28(3), 1
(2009)

8. Bartolini, I., Patella, M.: WINDSURF: the best way to SURF. Multimed. Syst.
24, 459–476 (2017)

9. Bruno Patrão, S.P., Menezes, P.: How to deal with motion sickness in virtual reality.
Sci. Technol. Interact. (2015)

10. Daly, S.: Google translate App. Nurs. Stand. 28(29), 33 (2014). Accessed 10 Feb
2018

11. Guihot, H.: RenderScript. In: Guihot, H. (ed.) Pro Android Apps Performance
Optimization, pp. 231–263. Apress, New York (2012). https://doi.org/10.1007/
978-1-4302-4000-6 9. Accessed 13 Feb 2018

12. Herling, J., Broll, W.: Advanced self-contained object removal for realizing real-
time diminished reality in unconstrained environments. In: 2010 IEEE Interna-
tional Symposium on Mixed and Augmented Reality, pp. 207–212. IEEE, October
2010

13. Liao, S., Zhu, X., Lei, Z., Zhang, L., Li, S.Z.: Learning multi-scale block local
binary patterns for face recognition. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS,
vol. 4642, pp. 828–837. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74549-5 87

14. Newson, A., Almansa, A., Fradet, M., Gousseau, Y., Pérez, P.: Video inpainting
of complex scenes. SIAM J. Imaging Sci. 7(4), 1993–2019 (2014)

15. Ross, J.A., Richie, D.A., Park, S.J., Shires, D.R., Pollock, L.L.: A case study of
OpenCL on an android mobile GPU. In: 2014 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1–6. IEEE, September 2014

16. Shaburova, E.: Method for real time video processing for changing proportions of
an object in the video (2014)

17. Ulyanov, D., Lebedev, V., Vedaldi, A., Lempitsky, V.S.: Texture networks: feed-
forward synthesis of textures and stylized images. CoRR abs/1603.03417 (2016)

18. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple
features

19. Ware, C., Balakrishnan, R.: Reaching for objects in VR displays: lag and frame
rate. ACM Trans. Comput.-Hum. Interact. 1(4), 331–356 (1994)

20. Yang, C., Lu, X., Lin, Z., Shechtman, E., Wang, O., Li, H.: High-resolution image
inpainting using multi-scale neural patch synthesis. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, July 2017

https://research.adobe.com/project/content-aware-fill/
https://opencv.org/platforms/android/
https://docs.google.com/spreadsheets/d/1Mpzfl2NmLUVSAjIph77-FOsJeuyD9Xjha89r5iHw1hI/edit
https://docs.google.com/spreadsheets/d/1Mpzfl2NmLUVSAjIph77-FOsJeuyD9Xjha89r5iHw1hI/edit
https://docs.opencv.org/2.4/modules/ocl/doc/object_detection.html
https://docs.opencv.org/2.4/modules/ocl/doc/object_detection.html
https://www.khronos.org/opencl/resources
https://github.com/opencv/opencv/tree/master/data/lbpcascades
https://github.com/opencv/opencv/tree/master/data/lbpcascades
https://doi.org/10.1007/978-1-4302-4000-6_9
https://doi.org/10.1007/978-1-4302-4000-6_9
https://doi.org/10.1007/978-3-540-74549-5_87
https://doi.org/10.1007/978-3-540-74549-5_87

	Diminishing Reality
	1 Introduction
	2 Related Work
	3 Our Inpainting Approach
	4 Implementation
	4.1 Input
	4.2 Object Detection and Mask Generation
	4.3 Frame Storage and Search
	4.4 Stitching

	5 Evaluation
	5.1 Foreground and Background
	5.2 Blending
	5.3 Runtime Performance

	6 Conclusion
	References

