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Abstract The processing power of smartphones supports steganographic algo-
rithms that were considered to be too computationally intensive for
handheld devices. Several steganography apps are now available on mo-
bile phones to support covert communications using digital photographs.

This chapter focuses on two key questions: How effectively can a
steganography app be reverse engineered? How can this knowledge help
improve the detection of steganographic images and other related files?
Two Android steganography apps, PixelKnot and Da Vinci Secret Im-
age, are analyzed. Experiments demonstrate that they are constructed
in very different ways and provide different levels of security for hiding
messages. The results of detecting steganography files, including images
generated by the apps, using three software packages are presented. The
results point to an urgent need for further research on reverse engineer-
ing steganography apps and detecting images produced by these apps.
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1. Introduction
The field of covert communications has a long history. Message en-

cryption, called cryptography, is a well-known method for secret commu-
nications, but its limitation is that the transmission of encrypted mes-
sages is not kept secret. Steganography, on the other hand, attempts
to send a message while hiding the fact that it is being transmitted,
essentially evading the detection of the secret communication itself. The
word steganography originates from Greek, meaning “covered writing.”
The first evidence of steganography dates back to late sixth century BC
Greece: Herodotus [11] describes how Histiaeus sent his slave to the Io-
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nian city of Miletus with a hidden message to incite a revolt against the
Persian king. The slave’s head was shaved, a message was tattooed on
his scalp and his hair was allowed to grow back. After his hair had con-
cealed the message, the slave was sent to Aristagoras, the city’s regent.
Aristagoras had the slave’s head shaved and read the secret message.
Modern versions of steganographic communications include invisible ink
and microdots. Digital versions of steganographic messaging are now
provided by software on computers as well as by smartphone apps.

Digital steganography hides a message or payload in the form of bits
in a cover medium, also represented by bits, so as to not arouse suspicion
of the hidden content. The cover file is combined with the payload to
produce a “stego” file. The stego file is transmitted to the intended
recipient, who extracts the hidden payload. A key is sometimes involved
in steganographic communications.

The fundamental question is: How can one change the bits of a cover
medium, such as a digital photograph, PDF document, digital audio file
or video file, to represent the payload bits and then have the recipient
successfully extract the payload after the stego version is received?

Hiding a payload in a digital photograph may be accomplished by
appending it after the end-of-file (EOF) marker in a JPG image [23, 25,
29], in the color palette of a GIF image [14], in the EXIF header of an
image [1, 5], in a PDF file [15], in the lower bits of a non-compressed
RGB or grayscale image [8] or in the quantized discrete cosine trans-
form coefficients of a compressed JPG image [12]. Digital audio [6] and
video [22] files can also be used to hide payloads, as well as TCP/IP
packets [17].

The discovery of stego-related files is called “steg detection.” The
existence of stego executables and related files on a system may indicate
that steganography was used, so steg detection includes the detection of
ancillary files that do not contain payloads. Patterns in stego files such
as an embedded signature or statistical properties can also be exploited
in steganalysis. Signature-based detection of a stego or ancillary file,
based on specific characters or, perhaps, locations of added information,
requires signatures and computer code that opens the file and searches
for signatures. Statistics-based detection employs statistical measures
of a suspected stego file and searches for abnormalities that indicate
steganography. Another type of steg detection engages machine learning
algorithms that do not depend on signatures written explicitly into stego
files.

Although a mobile phone app makes steganography very easy to use,
the detection of stego images produced by mobile phone apps has not as
yet been discussed in the literature. Mobile apps for iOS and Android
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phones can conceal a text payload in a photograph stored on the phone
or acquired using the camera. Certain apps enable another file (e.g., im-
age file) to be hidden in the cover image. However, some of the roughly
30 available steganography apps are unstable and may crash when us-
ing certain cover photographs, large payloads or specific mobile phone
models.

The code used in the bit embedding process, where the bits of a cover
image are changed to capture payload bits, varies according to the apps.
In addition, not all apps have open-source code, which makes it difficult
to reverse engineer their code. Thus, signature-based investigations of
these apps are difficult, if not impossible, when signatures do not exist.
Machine-learning-based detection may be more reliable than signature-
based detection, but it requires substantial image data for training and
classification.

In principle, applying machine learning to detect stego images from
a mobile phone camera is no different from the “classical academic set-
ting.” In this classical setting, steganography or steganalysis is per-
formed on a known set of image data, where the embedding algorithm
is completely known and machine learning detection algorithms can be
applied. Many academic steganography algorithms demonstrate the dif-
ficulty in detecting new embedding algorithms using known “best de-
tection” algorithms (typically machine learning algorithms). In the case
of steganalysis, the goal is to show that a new algorithm has clear per-
formance advantages over existing algorithms. This chapter does not
present any steganalysis results involving machine learning applications,
although it includes a short description for completeness. The focus is
on software that forensic practitioners can use to detect the existence of
steganography.

This chapter discusses reverse engineering efforts on two Android
apps, PixelKnot [10] and Da Vinci Secret Image [21]. The results un-
derpin a procedure for generating a large quantity of stego images on a
computer using PixelKnot code without having a human enter informa-
tion manually using the mobile phone app. This chapter also presents the
results of the first publicly-available evaluation of steg detection tools.

2. Related Work
This section discusses methods for detecting steganography payloads

hidden in image files. Also, it discusses tools used for reverse engineering
Android apps.
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2.1 Steg Detection Approaches
Steg detection has two principal use cases: (i) discrimination of a

normal image from a stego image; and (ii) identification of a file that
can be associated with a steganographic process. While steganalysis
commonly refers to the first use case, the second use case covers the
identification of executable files and other non-image files involved in
producing stego images. Digital forensic practitioners are interested in
both use cases.

There are three basic types of steg detection approaches: (i) signature-
based detection; (ii) hash-based detection: and (iii) machine-learning-
based detection:

Signature-Based Detection: Signature-based detection identi-
fies possible signatures that a steganography program writes to an
output stego image. Following this, stego files are detected using
the signatures.

Stego signatures exist in various forms. A program could embed
the same fixed bit string along with a payload; or, the embedding
path could visit the same pixel locations in the same order regard-
less of payload content, leaving a repeated pattern in the stego
file.

The commercial tool, StegoHunt [28], and the academic tool, Steg-
Detect, perform signature-based steg detection. If the signature of
the steganography program is known, then a signature-based ap-
proach can accurately identify stego images and, possibly, extract
the hidden payloads. However, this approach requires continual
updating of the detection code. This is because a change to the
steganography program produces a different signature from the
previous one, resulting in the failure to detect stego files created
with the new program.

Hash-Based Detection: Hash-based steg detection involves the
identification of a previous, identical stego file, such as an image
identified as child pornography. In this scenario, copies of the
stego image that hide the payload are available; thus, all the stego
images are identical in a bit-by-bit comparison and have identical
hashes. This enables comparisons of the hash values of unknown
images against a database of hash values of known stego images.
New images that need to be analyzed are only required to have
their hash values compared against the hash values of known stego
images in the database.
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Machine-Learning-Based Detection: Machine-learning-based
steg detection is a more complex task. In theory, a machine learn-
ing classifier can be constructed to identify an unknown stego im-
age, if training data is available along with other caveats. The de-
tails of this type of approach are omitted because they are beyond
the scope of this research. However, two machine-learning-based
classifiers are discussed in [8, 16]. They require large amounts of
training data – 700 to 6,000 cover images, the same number of
corresponding stego images and a representative feature set and
classifier. With these items and enough computing power, it is
possible to create a machine classifier that detects stego images.

2.2 Reverse Engineering Android Applications
The approach for detecting stego images produced by an Android app

involves the inspection of the app code. This so-called reverse engineer-
ing task attempts to understand the logic and other code details with
the ultimate goal of exploiting certain characteristics of how the code
processes images.

Reverse engineering is commonly used for program analysis. Analyz-
ing an Android app often requires a reverse engineering tool that converts
application binaries (APK) to a human-readable format. Android apps
are developed in the Java programming language and compiled to Dalvik
bytecode [3], which is similar to Java bytecode. The Dalvik bytecode is
then encoded and written to a DEX file in the APK.

Several tools are available for extracting and decoding DEX files from
an Android APK, and recreating the app code in the source or inter-
mediate code format. Apktool [24] is designed for reverse engineering
Android APK files; it decodes a DEX file to an intermediate code format
called Smali [9]. The tool can also decode resource XML files, including
the graphical interface definition and manifest file. Although Apktool
does not translate DEX files into Java code, it provides accurate repre-
sentations of binaries by avoiding translation loss.

The dex2jar tool [18] converts DEX to Java bytecode. Java Decom-
piler [13] can then be used to decompile the Java bytecode into Java
source code, with possible loss of metadata and certain irreversible DEX
code blocks. Using dex2jar and Java Decompiler in combination makes
it possible to recreate the Java source code from an APK file. However,
due to inconsistencies in Java Decompiler, the output source code can
only be used as a reference for application analysis.
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Figure 1. User input sequence for the PixelKnot app.

3. Android App Reverse Engineering
Steganography apps developed for Android devices have certain com-

mon characteristics that can be exploited during the reverse engineering
process. These characteristics can be leveraged to reduce the scope of
code analysis and provide clues that help locate the core embedding al-
gorithm. This section analyzes the common characteristics of Android
steganography apps and describes the technical details involved in re-
verse engineering the apps.

3.1 Common Characteristics
The first common characteristic of Android steganography apps is

the user interface components. At a minimum, a user interface should
enable a user to: (i) select a cover image; (ii) input a payload; and
(optionally) (iii) input a password. As such, an app must provide the
user interface components to enable these interactions. Figures 1 and 2
show the similarities of the user input sequences (select a cover image,
input a message to embed and input a password) for the PixelKnot and
Da Vinci Secret Image apps, respectively.

Additionally, as shown in Figure 3, in order to enable a user to select
an image or take a picture, the app must request the corresponding
“permissions” in the program code and manifest file.
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Figure 2. User input sequence for the Da Vinci app.

Figure 3. Permission request code from the Android app manifest.

Another common characteristic is the use of image processing li-
braries. Although there are several Android image processing libraries,
the image pixels are always loaded into a bitmap object that stores all
the pixel values. Therefore, the embedding algorithm always has an
instruction that instantiates a bitmap object and a method call that
accesses the bitmap object, e.g., Bitmap.getPixel(x,y).

3.2 Reverse Engineering Process
Reverse engineering the Android steganography apps involved three

steps:

Step 1. Extracting the App Code: In this step, Apktool was
used to extract the app code along with the resource files in order to
search for the location of the core embedding algorithm. Apktool
was selected over other tools because it provides the most accurate
representation of binary code. It does not attempt to transform or
optimize the original binaries, and increases code readability using
a one-to-one mapping from DEX instructions to Smali instructions.
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Although Smali is more difficult to read than other instruction
formats, it guarantees the integrity of the code.

Step 2. Locating the Core Embedding Algorithm: Locat-
ing the core embedding algorithm involved two parts. The first
part involved an inspection of the embedding workflow in the user
interface domain. This was accomplished by executing the app on
a test device and recording the user input sequence during the em-
bedding task. Next, the Android debugger UIAutomator [2] was
used to search for the resource ID of each user interface compo-
nent in the input sequence. The resource IDs were then used to
locate the Smali code of the callback method for each user inter-
face component. The callback methods may contain the code for
image processing, payload processing and payload embedding.

However, due to the flexibility of Android user interface program-
ming, the user interface components could have empty ID fields.
Since Android enables authors to register the callback methods
for user interface components created at runtime, the resource IDs
were not required. Therefore, the search for the embedding algo-
rithm employed keywords. As mentioned above, certain libraries
and objects would most likely be used during embedding. Key-
words such as BitmapFactory and Bitmap.getPixel(x,y) could
be employed to trace the execution flow and eventually locate the
entry point of the embedding algorithm.

Step 3. Analyzing the Embedding Algorithm: After the
embedding algorithm code was located, it was inspected manually
to find the lines of code that perform the embedding. Generally, an
embedding algorithm starts by defining the order in which pixels
are visited; this is called the embedding path. Next, the payload
is divided into bits or bytes that are embedded in a certain man-
ner along the embedding path. Other embedding tasks such as
payload encryption and random path generation also must be an-
alyzed. Since almost every steganography app has a unique way of
embedding a bit stream, embedded algorithm analysis varies based
on the app and relies greatly on the experience of the analyst.

4. Case Study
This section presents detailed results of the reverse engineering efforts

on the PixelKnot and Da Vinci Secret Image Android apps. These two
Google Play Store apps have similar user interfaces and functionality.
However, they employ very different embedding processes.
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Figure 4. PixelKnot embedding process workflow.

4.1 PixelKnot
PixelKnot [10] is an Android implementation of the F5 steganography

algorithm [27] with some modifications. The PixelKnot user interface
was examined by running the app on an Android test device (Google
Pixel phone). The embedding algorithm code was downloaded from
Github [9]. The academic version of F5 is distinguished from the Pixel-
Knot version of F5 by calling it standard F5.

Figure 4 shows the workflow of the PixelKnot embedding process.
PixelKnot has three user inputs: (i) cover image; (ii) payload (text
message); and (iii) password. It produces the stego image in the JPG
format. The F5 algorithm uses the quantized discrete cosine transform
technique to embed bits.

The PixelKnot algorithm performs two preparatory steps before exe-
cuting the bit embedding process. First, the input image must be resized
by downsampling if its width or height exceed 1,280 pixels. In this case,
the larger side is scaled to 1,280 pixels and the other side is scaled in
proportion to the original dimensions. For example, a 1, 920 × 1, 280
input image is downsampled to 1, 280× 853 pixels. The resized image is
then loaded into a bitmap object, which is a matrix array of the pixel
values. In the second step, the bit string to be embedded is created by
concatenating four strings: (i) length string; (ii) constant string; (iii)
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Length PixelKnot Prefix AES IV AES Ciphertext

4 bytes 38 bytes 17 bytes minimal 25 bytes

minimal 84 bytes

Figure 5. Format of the PixelKnot embedded message payload.

initialization vector for AES encryption; and (iv) ciphertext produced
by encrypting the payload text using AES encryption:

Length String: The length string indicates the number of bits in
the ciphertext. It is 4 bytes long.

Constant String: The constant string is 38 bytes long and has the
characters: ‘‘----* PK v 1.0 REQUIRES PASSWORD ----*’’.

Initialization Vector: The initialization vector is always 17 bytes
long. It is a randomly-generated string used by AES to produce
the ciphertext. The initialization vector is stored in the image so
that it can be used to extract the message later.

AES-Encrypted Payload: The payload is the AES ciphertext
of the payload text input by the user.

The ciphertext generated by PixelKnot’s AES encryption has a mini-
mum length of 25 bytes. Therefore, the bit string embedded in the input
image has a minimum length of 84 bytes (Figure 5).

The algorithm used by PixelKnot to produce ciphertext adds security
over and above the standard F5 algorithm. First, an AES key is gen-
erated using PBKDF2 with HMAC and SHA1, where the first third of
the password is the key and the second third of the password is the salt.
Next, the AES-GCM-NoPadding cipher is used to encrypt the plaintext
with the AES key and a random initialization vector; the initialization
vector is stored in the image because it is needed to decrypt the cipher-
text. Finally, a pseudorandom visitation of the pixel sites in the image
is generated using the last third of the password. The random path
through the image visits a pixel and embeds a bit at the site using the
F5 algorithm. The random spreading of the embedded bits around the
image ensures that even if a constant string is embedded, it can only be
found if the password is known. Note that even if the same password,
input image and payload text are used, different ciphertext is generated
each time the app is run. This is because the initialization vector, which
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is randomly generated, is different for each execution of the app. Thus,
the security of the PixelKnot implementation of F5 depends largely on
the strength of the password.

Thousands of stego images had to be generated in order to evalu-
ate the effectiveness of the evaluated stego detection programs. This
was accomplished by installing PixelKnot on multiple Android emula-
tors running on a computer to batch-generate stego images. To verify
that the emulator environment was identical to a real Android device
when running PixelKnot, a test was devised that compared the stego
images produced by an emulator with the stego images from a real de-
vice. Due to the randomness of the initialization vector, even with the
same plaintext message and password, PixelKnot produces different ci-
phertext in different runs, resulting in different stego images. Therefore,
the verification test used a slightly modified version of PixelKnot called
PK.v1, which disabled AES encryption to eliminate randomness.

PK.v1 was installed on two Android emulators and a Google Pixel
phone. Identical stego images were obtained upon providing identical
cover images, payload text and passwords to PK.v1 on the emulators
and on the Pixel phone. This test was performed ten times using ten
different combinations of images, payloads and passwords.

After it was verified that the emulator exactly mimicked code running
on the Pixel phone, a second version of the PixelKnot source code, called
PK.v2, was created to efficiently generate large numbers of stego images.
PK.v2 removed all the user interface portions from the original app while
adding functionality such as saving an intermediate cover image and
saving embedding stats, including the embedding rate. PK.v2 read input
images from a folder and used different passwords, payloads and pre-
determined embedding rates to generate the corresponding stego images.
This procedure generated more than 4,000 stego images at the rate of
about 100 images per minute.

4.2 Da Vinci Secret Image
Da Vinci Secret Image is a steganography application that uses a

simpler embedding algorithm than PixelKnot. Because its source code
is not available to the public, Smali code was extracted from its APK
file using Apktool. The embedding algorithm code was then located
using the two-step approach described above. Following this, analysis
was performed on the target Smali code.

The Da Vinci Secret Image app provides similar functionality as Pix-
elKnot. It enables a user to select a cover image, input the payload text
and, optionally, enter a password. The user can also select one of a fixed
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4 bytes 4 bytes 4 bytes

length “t2i” or “t2ip” password in plaintext

payload string in plaintext

The rest of the image is unchanged

length length

Figure 6. Embedding process of the Da Vinci Secret Image app.

number of image dimensions for the output image, including maintaining
the original image size. Depending on the selected size, the input image
may be resized before the embedding process. While several different
formats are supported for the input image, the stego output is always in
the PNG format.

Figure 6 shows the embedding process of the Da Vinci Secret Image
app. The embedding is performed in the alpha channel of the PNG
image. During the embedding process, pixel sites are visited in a lexi-
cographical manner from top left to bottom right. This is very different
from PixelKnot, where the pixel site visitation is random.

The image is first pre-processed to prepare for the embedding. The
input image file is decoded and loaded into a bitmap object using the An-
droid API BitmapFactory.decodeFile(path/to/image). If the user
selects a size that is different from the original size, the bitmap object
is adjusted to match the target size.

Next, a series of six strings are generated:

String 1: This string indicates the number of bits in the string t2i
or t2ip, depending on whether or not the user entered a password.
The string is always 4 bytes long. If a password was supplied by
the user, then the string comprises the bits 100000 preceded by 26
zeros (because there are 32 bits in the length string); otherwise,
the string comprises the bits 10100 preceded by 27 zeros.

String 2: This string is the bit representation of t2i or t2ip. If a
password was supplied, then the string t2i is embedded; otherwise,
t2ip is embedded. This string is always 4 bytes long.
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String 3: This string, which is always 4 bytes long, indicates the
length of the password.

String 4: This string contains the bit representation of the plain-
text password.

String 5: This string, which is always 4 bytes long, indicates the
length of the payload.

String 6: This string contains the bit representation of the plain-
text payload.

The remaining bits of the image are unchanged should the payload
string be shorter than the remaining bits. The six strings are concate-
nated and then embedded into the alpha channel. The alpha channel
can be viewed as the fourth 8-bit plane of the RBG color image in the
PNG format. The bit value “zero” of the string to be embedded is given
the value 254 in the alpha channel whereas the bit value “one” is given
the value 255. If the input image contains information in the alpha chan-
nel and the original size is unchanged, then information in the alpha is
overwritten. However, changing pixels in the alpha channel does not
change the RGB values representing the image content and, thus, the
image scene is untouched.

After the embedding process is known, it is relatively straightforward
to analyze a PNG image and determine if it was produced by the Da
Vinci Secret Image app. First, the alpha channel is inspected for the
characters t2i or t2ip in bytes 5–8. This identifies the stego file as
being produced by Da Vinci, so the first 64 bits of the alpha channel
serves as a signature.

The app uses the password only to verify that the extraction of the
payload can proceed, not to encrypt the payload. If an incorrect pass-
word is provided, the app does not extract the payload. However, since
it is known that information resides in the alpha channel, upon observ-
ing the characters t2i or t2ip, the length of the payload can be read
and the payload extracted and reconstructed into plaintext.

Despite the similarities in their user interfaces and functionality, Da
Vinci and PixelKnot employ very different embedding processes. Da
Vinci uses a fixed embedding path whereas PixelKnot uses a random
embedding path. Da Vinci embeds bits directly into the alpha channel
whereas PixelKnot embeds bits into the quantized discrete cosine trans-
form domain of JPG. Most importantly, Da Vinci neither uses encryption
nor randomness. The analysis of the Da Vinci algorithm reveals that its
stego images have easily detectable signatures. Due to the embedding of
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a signature message and absence of encryption and randomness, merely
reading the first 64 pixels is enough to identify a Da Vinci stego image.

5. Performance Evaluation
This section presents the results of evaluating three steganography

detection programs: (i) StegDetect (from DC3); (ii) StegoHunt [28]
(commercially-available); and (iii) StegDetect (by Provos) [20] (free-
ware). The evaluation sought to assess the effectiveness of the programs
at detecting stego images generated by various Android apps.

5.1 Experimental Setup
StegDetect from DC3 is a software program that detects stego-related

files on a computer. It has a graphical user interface that provides several
options, including identifying the programs to be detected. The program
can be applied to several types of files, including executable files and
stego images. In the experiments, StegDetect was applied to image files
and executable files. It uses signatures for detection, and attempts to
extract a password, decrypt it and extract the payload. StegDetect was
last updated in the mid 2000s, so it does not contain the signatures of
new and updated programs.

StegoHunt, commercial software from WetStone [28], is advertised as
the “leading software tool for discovering the presence of data hiding ac-
tivities.” It can “generate case specific reports for management or court
presentation” and “identify suspect carrier files: program artifacts, pro-
gram signatures, statistical anomalies.” No details are provided, but it
appears that the program uses hash tables for lookups and file signatures
and statistics to perform its analysis. The software has ten possible de-
tection responses for a given file and the results are provided in a report.

StegDetect by Provos [20] only accepts JPG images as input. It is
designed to detect stego images produced by three steganography pro-
grams: (i) jsteg [26]; (ii) jphide [26]; and (iii) outguess 0.13b [19].
All three steg embedding programs output JPG images. If a file is de-
tected as containing steganography, then StegDetect proceeds to identify
the most likely embedding algorithm used.

In the experiments, the three detection programs were executed on
cover and stego images. The images were in the JPG and PNG formats.
Since StegDetect cannot handle PNG files, these files were not used when
evaluating the program.
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Table 1. Image sets used in the evaluation.

Image Image Image Embedding
Format Type Quantity Algorithm

Set 1 PNG Cover 2,090 None
Set 2 JPG Cover 1,606 None
Set 3 JPG Stego 4,818 PixelKnot
Set 4 JPG Stego 421 Standard FS
Set 5 PNG Stego 10 Camouflage

5.2 Detection Results
A set of cover images was first created. The images were acquired

using a set of mobile phones [4]. The cover images were created in the
JPG and PNG formats.

Table 1 describes the image sets used in the evaluation. The test
images were grouped into five sets, each indicating a different file type
or embedding algorithm.

Table 2. Detection results for cover images.

Image StegoHunt StegDetect StegDetect
Quantity DC3 Provos

Set 1 2,090 1,304 Carrier 0 Suspicious N/A
Anomalies

Set 2 1,606 0 Anomalies 0 Suspicious 380 Stegos (24%)

First, the three detection programs were applied to the cover images
in Sets 1 and 2. Table 2 presents the detection results. Note that
StegoHunt identified more than half of the cover PNG images as having
“anomalies,” which may be due to the different type of file formatting
applied to produce the PNG images. StegDetect by Provos identified
24% of the cover JPGs images as stego images.

Next, the detection programs were tested on the stego images in Sets 3
and 4. The stego images from Set 3 were generated by PixelKnot using
scripts executing on Android emulators. Note that this set of stego im-
ages was generated using different embedding rates. Generally, a longer
payload means that more bits were changed, which makes detection eas-
ier; this topic is not discussed further because it outside the scope of this
research. The stego images in Set 4 were generated by the standard F5
steganography algorithm executing on a desktop computer [7].
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Table 3. Detection results for PixelKnot and Standard F5 stego images.

Image Algorithm StegoHunt StegDetect StegDetect
Quantity DC3 Provos

Set 3 4,818 PixelKnot 0 Anomalies 0 Suspicious 1,160 Stegos
(24%)

Set 4 421 Standard F5 399 Carrier 421 Marked 223 Stegos
Anomalies as F5 (53%)

Table 3 shows the detection results for Sets 3 and 4. Neither Stego-
Hunt nor the DC3 StegDetect properly detected a single stego image
created using PixelKnot. Note that PixelKnot was created around 2012
and, thus, is not in the DC3 StegDetect database. However, Provos
StegDetect correctly identified around 24% of the PixelKnot stego im-
ages without, of course, the correct identifying algorithm (because the
F5 algorithm was not one of the three labeled algorithms). In the case
of the standard F5 stego images in Set 4, StegoHunt identified almost
the images as having anomalies, but not as stego. In contrast, DC3
StegDetect properly identified all 421 stego images as being embedded
by the standard F5 algorithm. However, Provos StegDetect identified
only 53% of the stego images correctly, about the same percentage as
random guessing.

Table 4. Detection results for Camouflage stego images.

Image Algorithm StegoHunt StegDetect StegDetect
Quantity DC3 Provos

Set 5 10 Camouflage 0 out of 10 10 out of 10 N/A
Data added Detected as
after EOF Camouflage

For the final set of experiments, the older Camouflage steganography
software [25] was used to create ten stego images (Set 5). Table 4 shows
the detection results. Both StegoHunt and DC3 StegDetect correctly
identified all ten images as stego, with StegoHunt correctly warning that
data was appended past the end-of-file marker and DC3 StegDetect rec-
ognizing the images as having been created by Camouflage. Additionally,
DC3 StegDetect extracted the passwords and payloads for all ten stego
images.



Chen et al. 309

5.3 Discussion
In the evaluation, DC3 StegDetect performed better than StegoHunt

and Provos StegDetect on the image sets. StegoHunt identified Cam-
ouflage stegos and detected anomalies in most standard F5 stegos, but
they were not detected correctly as stego images. DC3 StegDetect iden-
tified all the F5 stegos, and also identified and extracted the messages
in all the Camouflage stegos. Neither StegoHunt nor DC3 StegDetect
identified PixelKnot stegos. As shown in Table 2, Provos StegDetect
had a high false alarm rate of 24% and a high missed detection rate of
75% (Table 3). Of the 223 stegos in Set 4 that were detected by Provos
StegDetect, 219 were correctly identified as standard F5 stegos while the
other four were incorrectly identified as Outguess and jphide. Finally,
Provos StegDetect identified the tested (cover and stego) images with a
rate between 25% and 50%, which is rather poor.

Since StegoHunt and DC3 StegDetect can be employed to identify
steganography programs, they were also used to scan the standard F5
and Camouflage executables and the source code of standard F5. How-
ever, neither program was able to correctly identify any of the files.

6. Conclusions
This research has analyzed the common characteristics and key fea-

tures of the well-known PixelKnot and Da Vinci Secret Image apps for
Android devices. The analysis has revealed that, despite having sim-
ilar user interfaces, the two apps have completely different embedding
processes. PixelKnot is based on the F5 steganography algorithm that
hides payloads in the quantized discrete cosine transform domain and
implements anti-analysis measures such as encryption and randomness.
Da Vinci Secret Image, on the other hand, is simple and straightfor-
ward to analyze. Since it does not employ encryption or randomness,
the Da Vinci Secret Image app exhibited a signature that readily iden-
tifies its stego images. Other newer stego apps may also have their own
signatures.

The evaluation has demonstrated that current steganography detec-
tion software is inadequate at identifying stego images created by Pixel-
Knot, which is a relatively recent steganography app. Clearly, detecting
steg files created by mobile steg apps is in its infancy, but it is an inter-
esting and most important research area.
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