
Navigating the Samsung TrustZone and
Cache-Attacks on the Keymaster Trustlet

Ben Lapid and Avishai Wool(B)

School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
ben.lapid@gmail.com, yash@eng.tau.ac.il

Abstract. The ARM TrustZone is a security extension helping to move
the “root of trust” further away from the attacker, which is used in
recent Samsung flagship smartphones. These devices use the TrustZone
to create a Trusted Execution Environment (TEE) called a Secure World,
which runs secure processes called Trustlets. The Samsung TEE is based
on the Kinibi OS and includes cryptographic key storage and functions
inside the Keymaster trustlet.

Using static and dynamic reverse engineering techniques, we present
a critical review of Samsung’s proprietary TrustZone architecture. We
describe the major components and their interconnections, focusing on
their security aspects. During this review we identified some design
weaknesses, including one actual vulnerability. Next, we identify that
the ARM32 assembly-language AES implementation used by the Key-
master trustlet is vulnerable to cache side-channel attacks. Finally, we
demonstrate realistic cache attack artifacts on the Keymaster crypto-
graphic functions, despite the recently discovered Autolock feature on
ARM CPUs.

1 Introduction

1.1 Motivation

The ARM TrustZone [3] is a security extension helping to move the “root of
trust” further away from the attacker. TrustZone is a separate environment that
can run security dedicated functionality, parallel to the OS and separated from
it by a hardware barrier.

Recent Samsung flagship smartphones rely on Samsung’s Exynos SoC archi-
tecture cf. [28]. This architecture incorporates an ARM CPU, as well as a GPU,
memory and peripherals. The ARM cores in Exynos support the TrustZone
security extension to create Trusted Execution Environments (TEEs). On their
Exynos-based platforms, Samsung uses Trustonic’s Kinibi OS as the Secure
World kernel.

These TEEs are often used in scenarios which require a higher level of security
or privacy guarantees, such as application of cryptographic functions, secure
payments and more. Therefore, these environments present a high value target

c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 175–196, 2018.
https://doi.org/10.1007/978-3-319-99073-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_9&domain=pdf


176 B. Lapid and A. Wool

for attackers. However, the security practices in these environments were not
thoroughly studied by the research community yet.

In order to support cryptographic modules, the Android OS includes a mech-
anism for handling cryptographic keys and functions called the Keystore [11].
Keystore is used for several privacy related features such as full disk encryption
and password storage. The Keystore depends on a hardware abstraction layer
module to implement the underlying key handling and cryptographic functions;
and many OEMs, including Samsung, choose to implement this module using
the TrustZone.

1.2 Related Work

Lipp et al. [16] implemented cache attack techniques to recover secret keys from
Java implementation of AES-128 on ARM processors, and exfiltrate additional
execution information. In addition they were able to monitor cache activity in
the TrustZone.

Zhang et al. [38] demonstrated a successful cache attack on a T-Table imple-
mentation of AES-128 that runs inside the TrustZone—however, their target
was a development board lacking a real Secure World OS rather than a stan-
dard device. Ryan et al. [18] demonstrated reliable cache side-channel techniques
that require loading a kernel module into the Normal World—which is disabled
or restricted to OEM-verified modules on modern devices. To our knowledge
no previous cache attacks on ARM TrustZone have been published on standard
devices using publicly available vulnerabilities.

Recently, Green et al. [14] presented AutoLock, an undocumented feature in
certain ARM CPUs which prevent eviction of cross-core cache sets. This feature
severely reduces the effectiveness of cache side-channel attacks. The authors
listed multiple CPUs that include AutoLock, and among them are the A53 and
A57 used in the device we used (Samsung Galaxy S6).

Cache side-channel attacks on AES were first demonstrated by Bernstein [5]
with the target being a remote encryption server with an x86 CPU. Osvik
et al. [25] demonstrated the Prime+Probe technique to attack a T-Table imple-
mentation of AES which resides in the Linux kernel on an x86 CPU. Xinjie
et al. [37] and Neve et al. [19] presented techniques which improve the effective-
ness of cache side-channel attacks. Spreitzer et al. [31] demonstrated a special-
ization of these attacks on misaligned T-Table implementations. Neve et al. [20]
discussed the effectiveness of these attacks on AES-256 and demonstrated a suc-
cessful specialized attack for AES-256.

Little is publicly known about the design and implementation of the propri-
etary closed-source Kinibi OS [32] used as a Secure World by Samsung.

1.3 Contributions

Our first contribution is a critical review of Samsung’s TrustZone architecture
on the Exynos SoC platform, including the Kinibi OS. Through a combination of



Navigating the Samsung TrustZone and Cache-Attacks 177

firmware disassembly, open-source code review and dynamic instrumentation of
system processes, we are able for the first time to provide a description of all the
major subsystems, with their interconnections and communication paths, of this
complex proprietary system. Our review focuses on the security aspects of the
architecture, and in particular on the Keymaster trustlet, which is responsible
for many critical cryptographic functions. During this review we identified some
design weaknesses, including one actual vulnerability.

Our next contribution is identifying that the ARM32 assembly-language AES
implementation used by the Keymaster trustlet is vulnerable to cache side-
channel attacks. We also identify that the Keymaster uses AES-256 in GCM
mode. In a separate paper [15] we show successful cache attacks against the
implementation.

Our final contribution is demonstrating realistic cache attack artifacts on
the Keymaster cryptographic functions embedded in the Secure World and pro-
tected by the ARM TrustZone architecture. Contrary to prior assumptions, we
found that the cache is not flushed upon entry to the Secure World. On the
other hand, the recently discovered “AutoLock” ARM feature is a serious limi-
tation. Nonetheless, we are able to successfully demonstrate cache side-channel
effects on “World Shared Memory” buffers, and we show compelling evidence
that full-blown cache attacks against the AES implementation inside the Key-
master trustlet are plausible.

Organization: In the next section we introduce some background about the
ARM TrustZone and its use in Android. Section 3 describes our discoveries about
the Exynos secure boot and the Kinibi secure OS. Section 4 describes the Nor-
mal World components interfacing with the secure OS. Section 5 describes our
achievements in mounting cache attacks against the Keymaster trustlet, and we
conclude with Sect. 6.

2 Preliminaries

2.1 ARM TrustZone Overview

ARM TrustZone security extensions [4] enable a processor to run in two states,
called Normal World and Secure World. This architecture extends the concept
of “privilege rings” and adds another dimension to it. In the ARMv8 ISA, these
rings are called “Exception Levels” (ELs). The most privileged mode is the
“Secure Monitor” which runs in EL3 and sits “above” the Secure and Normal
Worlds. In the Secure World, the Secure OS kernel runs in EL1 and the Secure
userspace runs in EL0. In the Normal World, an optional hypervisor may be
run in EL2, the Normal OS kernel runs in EL1 and the Normal userspace runs
in EL0. On the Galaxy S6 there is no hypervisor, and the Normal World OS is
Android.

The separation of Secure and Normal World means that certain RAM ranges
and bus peripherals may be indicated as “secure” and only be accessed by the
Secure World. This means that compromised Normal World code (in userspace,



178 B. Lapid and A. Wool

kernel or hypervisor) will not be able to access these memory ranges or devices
and thus pose a threat to them as well.

To allow a controlled method of passing information between the worlds, a
mechanism called “World Shared Memory” allows memory pages to be accessible
by both worlds. These physical memory pages reside in the Normal World, and
the Secure World maps them into its processes’ virtual memory as needed.

Additionally, communication may be initiated between worlds by means of
SMC calls. SMC calls are basically “system calls” made by a kernel in EL1 or
EL2 (either Secure or Normal) to the EL3 “Secure Monitor”. These SMCs, use
the “Secure Monitor” to pass information between the worlds. In particular, a
common SMC is used by one world to notify the other of pending work; such
SMC is implemented in the “Secure Monitor” by triggering a software interrupt
in the other world. Note that ARM CPUs also have SVC calls: regular system
calls from EL0 to EL1 within the same world.

It is important to note that the world separation is completely “virtual”.
The same cores are used to run both Secure and Normal Worlds and they use
the same RAM. Therefore, they use the same cache used by the core to improve
memory access times; as we shall see in Sect. 5.3, this design decision may be
used to mount cache side-channel attacks.

2.2 TrustZone Usage in Android

In the Samsung/Android ecosystem, there are two major players in field of Trust-
Zone implementations. One is Qualcomm, with the QSEE operating system [27]
which is compatible with the Snapdragon SoC architecture used on many Sam-
sung devices. The other is Trustonic, with the Kinibi operating system [32] which
is used by Samsung in their popular Exynos SoC architecture as a part of the
KNOX security system [29].

These Trusted Execution Environments (TEEs) are used for various activi-
ties within the smart device: Secure boot (see Sect. 3), Keymaster implementa-
tion (see Sect. 4.4), secure UI, kernel protections, secure payments, digital rights
management (DRM) and more. Because their usage is often linked to security
of privacy-critical applications, they are a high-value target. In our research we
focused on the Trusted Execution Environment present in Samsung’s Exynos
SoC (in particular in Samsung’s Galaxy S6): Secure Boot, Trustonic’s Kinibi
OS, Trusted Drivers and Trustlets.

2.3 Attack Model

The fundamental reason for the existence of the TrustZone is to provide a
hardware-based root of trust for a trusted execution environment (TEE)—that
is designed to resist even a compromised Normal World kernel.

Since the Normal World kernel, and all the kernel modules on Samsung’s
smartphones are signed by Samsung and verified before being loaded, injecting
code into the kernel is challenging for the attacker. Our goal in this work is



Navigating the Samsung TrustZone and Cache-Attacks 179

to demonstrate that weaker attacks, that do not require a compromised kernel,
are sufficient to exfiltrate Secure World information—in particular secret key
material.

In our attack mode we assume an attacker is able to execute code on a
Samsung Galaxy S6 device, under root privileges and relevant SELinux per-
missions. Note that these privileges are significantly less than kernel privileges,
since the attack code runs in EL0.

Root privileges are needed to access the /proc/self/pagemap to identify cache
sets, as described by Lipp et al. [16]. Our attack can theoretically be mounted
without access to this file, but it will be substantially more difficult. SELinux
permissions are needed to connect to the mcDriverDaemon process (see Sect. 4.2)
through the Unix domain socket, and to access the /dev/mobicore device (see
Sect. 4.1), as Samsung’s Keymaster HAL module uses these interfaces to load
and communicate with the trustlet (see Sect. 4.4).

To achieve root privileges and the necessary SELinux permissions in our
investigation we used the publicly known vulnerability called dirtycow. The root-
ing process is based on Trident [6], which uses dirtycow.

3 The Exynos Secure World Components

In our research we explored the inner workings of the trusted execution envi-
ronment implemented in Samsung’s Exynos SoC platform [28]. This platform is
present in many of its flagship phones; of which we focused on the Galaxy S6.
Several security researchers have previously presented different pieces of infor-
mation about the TEE in this environment, but to our knowledge there is no
publication which covers the TEE in a systematic manner. This section describes
our findings regarding the platform’s Secure Boot mechanism (which includes a
series of bootloaders, the trusted OS and several trustlets). In Sect. 4 we describe
how the Normal World OS (Android Linux) communicates with the secure OS.

Secure Boot (sboot). We started our exploration by reverse-engineering
firmware images for the Galaxy S6 smartphone. We observed that these images
contain several distinct files, including the Android Linux image, the system
partition, the Secure Boot partition and more. Samsung does not provide much
information about the Secure Boot apart from one short page [29]. According
to that page, the boot process consists of a chain of bootloaders, starting with
a primary bootloader which resides in read only memory, and each link of the
chain verifies the next bootloader. Hence the remainder of this section is based
on our own discoveries.

The Secure Boot partition lies within the sboot.bin file, of size 1.6 MB. Open-
ing the file with a disassembler reveals several distinct parts. All of the parts
seem to include a code segment and data segment, some are in ARM64 and some
are in ARM Thumb mode. In our research we identified them as follows:



180 B. Lapid and A. Wool

– EL3 bootloader and Monitor Code (SMC handler) (ARM64).
– Normal World bootloader (ARM64).
– The Kinibi Secure World operating system (ARM Thumb), which contains:

the OS itself, Trustlet and Driver API library and what appears to be an
init-like first user-land process.

– Three Secure World Drivers: SecDrv, Crypto Driver and STH Driver (ARM
Thumb).

The EL3 Monitor. The first part in sboot.bin contains instructions which
are reserved for EL3 execution only, such as setting the interrupt vector base
and several other ARM special registers. While reverse-engineering this part,
we found many similarities with ARM’s reference implementation of TrustZone
boot sequence. This lead us to conclude that the responsibilities of this part are:
Architectural initialization, Platform initialization, Runtime services initializa-
tion and Normal World bootloader execution (See the ARM reference documents
[1]).

Based on [21], we found that the registered runtime services (rt svc desc t
array [2]) gives us insight into what functionality is made available by the monitor
code which runs in EL3.

It is important to note that the EL3 monitor binary is verified by an earlier
bootloader and is responsible for verifying the binaries of the parts it loads: the
Normal World bootloader and the secure OS.

The Normal World Bootloader. The second part we found in sboot.bin
is the Normal World bootloader. This part runs in Normal World EL1 and
has several responsibilities: booting the Android Linux kernel (after verifying
its binary), requesting secure OS initialization from the monitor code, handling
firmware flash requests (“Download mode”), handling “Recovery mode” requests
and presenting relevant user interfaces for these modes. This part executes only
on device start-up and therefore was less interesting to us. Others [8,21] have
presented their research on this part.

The Kinibi Secure Operating System. The third part we found in sboot.bin
is the Kinibi secure operating system which includes the OS, a user-space API
library and an init-like user-space process. For the Exynos platform, Samsung
has chosen to use Trustonic’s Kinibi [32] as the base of their trusted execu-
tion environment. Note that Kinibi was previously called t-base or MobiCore;
much of the internal naming still uses the “mobicore” name: e.g., the device
/dev/mobicore etc. Hence when we discuss the Kinibi internals we often use the
name mobicore.

Surprisingly, we found that the binary code for the operating system runs
in Thumb (32bit) mode even though the platform has a 64bit processor. Fur-
thermore, we found that while the Kinibi OS is protected by the TrustZone
architecture, internally it does not protect itself very well. Lacking were defenses



Navigating the Samsung TrustZone and Cache-Attacks 181

such as Address Space Randomization (ASLR), non-executable (NX) stack, or
stack canaries, which are all present in stock Android since version 4.0. Our
observations about the Kinibi OS are as follows:

– Privileges are separated to: OS code—which runs in Secure World EL1;
Trusted Applications (or Trustlets)—which run in Secure World EL0 as pro-
cesses and have access to a limited set of system calls; and Drivers—which
run in Secure World EL0 and have access to a broader set of system calls.

– Kinibi supports processes and virtual memory isolation. In addition, Drivers
may spawn additional threads.

– Kinibi uses a priority based scheduler. Time quanta are made available by
having the Normal World issue specific SMCs which are transfered to the
Secure World OS. Without them, the secure OS would not run at all. Two
methods of entry are available after initialization: SIQ - which signals the
Kinibi OS that an interrupt (or an asynchronous notification) was issued by
the Normal World and needs to be handled; and Yield - which means the
secure OS may continue any work it chooses.

– Processes may request memory allocation. Furthermore, Drivers may request
memory mapping to physical memory for integration with platform devices.

– Kinibi supports World Shared Memory for communication between Normal
World and the Secure World—recall Sect. 2.1. In particular, Kinibi uses World
Shared Memory to define the TCI (Trustlet Connector Interface) memory,
which plays an important part of our research, see Sect. 5.3.

– Kinibi supports inter (secure)-process RPC-like communication. Trustlets
may send requests to Drivers and receive responses via a message queue.
Requests and responses are routed by an IPCH (covered below) which receives
the requests from Trustlets and routes them to Drivers and vice versa.
Furthermore, a notification system is supported which allows Drivers and
Trustlets to wait until the Normal World has issued them a notification.

– Kinibi supports a circular buffer logging mechanism which can be read by the
Normal World.

It is important to note that Kinibi OS is bound to a specific CPU core (which
can be changed at runtime), and discards interrupts issued on other cores: On
our device, Kinibi boots on core 0 and is later switched by default to core 1.

Analyzing the Kinibi OS reveals several distinct segments: (i) the interrupt
vector base, interrupt handlers and the OS kernel initialization code; (ii) a user-
space code which appears to be a shared library that is injected into Trustlets
and Drivers and presents an interface to the OS. (iii) the rest of the OS kernel
code; and (iv) an init-like secure-world user-land process which is spawned at
OS kernel initialization. We omit the details.

Kinibi Drivers. The fourth part of sboot.bin consists of three Secure World
Drivers: SecDrv, Crypto Driver and STH Driver. We note that the crypto driver
implements various cryptographic functions over an IPC mechanism—however
the Keymaster trustlet we discuss in Sect. 4.4 includes its own cryptographic
implementations. We omit the details.



182 B. Lapid and A. Wool

Fig. 1. Secure World/Normal World layering around the Keymaster trustlet. TCI
stands for Trustlet Connector Interface, SIQ for Software Interrupt Queue. The num-
bers in parenthesis mark the actions illustrated in Appendix A.

4 The Exynos Normal World Components

In this section we explore the way the Normal World communicates with the
Secure World and what APIs are made available to Android applications. We
start by describing the MobiCore kernel module which implements the inter-
face between the Secure World and Normal World users (other kernel modules
and user-land processes). We then present our findings on the user-land pro-
cess mcDriverDaemon and Samsung’s implementation of the Keymaster HAL
interface (see Fig. 1 as reference). In Appendix A we present an example of com-
munication between the Normal World and the Secure World and trace the
execution path between them.

4.1 The MobiCore Kernel Module

The MobiCore kernel module is statically linked into the Android Linux kernel
image and is initialized on kernel startup. The module is licensed under “GPL
V2” and therefore is open-source (source code can be found under many Android
Kernel tree publications such as [9]). By reading the source code one can see that
the module’s responsibilities are:

– Register device files (/dev/mobicore and /dev/mobicore-user) which allow
user-space programs to interact with the driver (through ioctl, read and mmap
syscalls). The mobicore-user device is used by user-land processes that wish
to interact with the kernel module, and exposes a limited set of APIs (only
mapping and registration of World Shared Memory). The mobicore device
is used only by the mcDriverDaemon, is considered the admin device and
allows for broader functionality such as: Initializing the MCI shared memory



Navigating the Samsung TrustZone and Cache-Attacks 183

(discussed in Sect. 4.2), issuing Yield or SIQ SMC calls, locking shared mem-
ory mappings and receiving notifications of interrupts from the Secure World
OS. It is important to note that only one process may open the mobicore
device at any point in time: if another process tries to open it, an error will
be returned. Usually, the mcDriverDaemon opens this device first; however,
if the mcDriverDaemon process dies for any reason, the next process to open
the mobicore device will receive admin status as far as the kernel module
is concerned. This means that an attacker within our attack model (recall
Sect. 2.3) can hijack the mobicore device and act as the admin.

– Register an interrupt handler which receives completion notifications from the
Secure World OS. These notifications are forwarded to the active daemon.

– In order to trigger interrupts to the right core (so that Kinibi OS will not
discard them), the kernel module starts a dedicated thread which is bound
to the core on which the Kinibi OS is running. This thread issues SMC calls
requested by other processes.

– Perform additional tasks such as initializing and periodically reading log
messages from the Secure World (via a work queue and a dedicated kernel
thread), migrating the Secure OS to different CPU cores if needed, manag-
ing the World Shared Memory buffers that were registered by the Normal
World, handling power management notifications, and suspending/resuming
the Secure OS as needed.

4.2 The mcDriverDaemon Process

The mcDriverDaemon binary is located within the system partition of the
device’s firmware under /system/bin/mcDriverDaemon. A version of the dae-
mon source code is available online [36], however we noticed some discrepancies
between the online version and the binary on our device (the device probably
has a newer version). The binary is executed by init at system startup; it imme-
diately opens the /dev/mobicore device and receives admin status. We analyzed
this daemon by conducting both static analysis (reading the source code) and
dynamic analysis: We killed the original daemon and quickly executed it from
a root shell with a LD PRELOAD directive. This directive injected our library
(which is based on ldpreloadhook [26]) into the process and allowed us to hook
libc functions which the daemon is using. These hooks gave us execution traces
and raw parameters used by the running daemon, and helped us understand its
inner workings. By this method, we identified the following responsibilities:

– Initialize the MobiCore Communication Interface (MCI) through the Mobi-
Core kernel module. This maps a virtual address range in the daemon’s mem-
ory to a World Shared Memory which is accessible to the Secure OS (in
particular to the secure init-like process). As mentioned above, this allows
the daemon to access the Secure OS API: Opening/Closing Trustlets, Map
and Unmap World Shared Memory, Suspend and Resume the Secure OS and
more.

– Periodically allow the Secure OS time quanta by calling the Yield or SIQ ioctl
which the kernel module implements as SMC calls.



184 B. Lapid and A. Wool

– Create and listen on netlink and abstract unix domain (“#mcdaemon”) sock-
ets as servers which act as an interface for other user-land processes. This
interface has a defined protocol [34] for serializing requests and responses
and implements the following API: General information requests, Open/Close
TrustZone device, Open/Close Trustlets (via UUID or sent data), send a
Notification to trustlets and register World Shared Memory with Trustlets.
A client library is available [33] for other processes to easily use.

– The mcDriverDaemon creates an instance of the File System Daemon [35]
(we omit the details).

In particular, when handling openSession commands from Normal World clients
the command receives the Trustlet UUID as an argument. The mcDriverDaemon
then looks for the correct Trustlet to load in the Normal World file system. The
daemon has two locations it looks in: /system/app/mcRegistry (which is a read-
only partition and verified at boot by dm-verity) and /data/app/mcRegistry
(which is a read-write partition). This request is then passed to the Secure
OS which (as mentioned in Sect. 3) verifies the Trustlet’s binary structure and
signature before loading it into the Secure World.

The ability to load files from the read-write partition was previously exploited
[7] to load old versions of trustlets which had vulnerabilities in them; thereby
“bringing the attack surface to the device”.

4.3 Keystore and Keymaster Hardware Abstraction Layer (HAL)

The Android Keystore system [11], which was introduced in Android 4.3, allows
applications to create, store and use cryptographic keys while attempting to
make the keys themselves hard to extract from the device. The documentation
advertises the following security features:

– Extraction Prevention: The keys themselves are never present in the applica-
tion’s memory space. The applications only know of key-blobs which cannot
be used by themselves. The key-blobs are usually the keys packed with extra
meta-data and encrypted with a secret key by the Keymaster HAL. In the
Samsung implementation we explored, the keys are bound to the secure hard-
ware controlled by the Kinibi OS, which makes them even harder to extract:
the keys themselves never leave the secure hardware unencrypted.

– Key Use Authorizations: The Keystore system allows the application to place
restrictions on the generated keys to mitigate the possibility of unauthorized
use. Restrictions include the choice of algorithms, padding schemes, and block
modes, the temporal validity of the key, or requiring the user to be authenti-
cated for the key to be used.

The Keystore system is implemented in the keystored daemon [12], which exposes
a binder interface that consists of many key management and cryptographic
functions. Under the hood, the keystored holds the following responsibilities:

– Expose the binder interface, listen and respond to requests made by applica-
tions.



Navigating the Samsung TrustZone and Cache-Attacks 185

– Manage the application keys. The daemon creates a directory on the filesys-
tem for each application; the key-blobs are stored in files in the application’s
directory. Each key-blob file is encrypted with a key-blob encryption key (dif-
ferent per application) which is saved as the masterkey in the application’s
directory. The masterkey file itself is encrypted when the device is locked,
and the encryption employs the user’s password and a randomly generated
salt to derive the masterkey encryption key.

– Relay cryptographic function calls to the Keymaster HAL device (covered
below).

The Keymaster hardware abstraction layer (HAL) [10] is an interface between
Android’s keystored and the OEM implementation of a secure-hardware-backed
cryptographic module. It requires the OEM to implement several cryptographic
functions such as: key generation, init/update/final methods for various cryp-
tographic primitives (public key encryption, symmetric key encryption, and
HMAC), key import, public key export and general information requests. The
implementation is a library that exports these functions and is implemented by
relaying the request to the secure hardware runtime. The secure runtime usually
encrypts generated keys with some key-encryption key (which is usually derived
by a hardware-backed mechanism). Therefore, the non-secure runtime does not
know the actual key that is used, but may still save it in the filesystem and
subsequently use it through the Keymaster to invoke cryptographic functions
with the key. In practice - this is exactly how the keystored daemon uses the
Keymaster HAL (with the aforementioned addition of an additional encryption
of the key blobs).

An example of the usage of the Keymaster HAL is the Android Full Disk
Encryption feature, implemented by the userspace daemon vold [13], which uses
the Keymaster HAL as part of the key derivation.

4.4 Samsung’s Keymaster HAL and Trustlet

Samsung’s Keymaster HAL library exposes the aforementioned Keymas-
ter interface and implements its functions by making calls to the Key-
master trustlet (through mcDriverDaemon). The trustlet itself has UUID:
ffffffff00000000000000000000003e, and is located in the system partition (/sys-
tem/app/mcRegistry/<UUID>.tlbin). The Trustlet code handles the following
tasks:

– Listen to various requests that are sent over the World Shared Memory and
handle them.

– Key generation of RSA/EC, AES and HMAC keys. Keys are generated
using random bytes from the OpenSSL FIPS DRBG module, which seeds its
entropy either from keymaster add rng entropy calls from the Normal World
or from a secure PRNG made available by the Secure World Crypto Driver.
Key generation requests receive a list of key characteristics (as defined by
the Keymaster HAL), which describe the algorithm, padding, block mode



186 B. Lapid and A. Wool

and other restrictions on the key. The generated keys (concatenated with
their characteristics) are encrypted by a key-encryption key (KEK) which is
unique to the Keymaster trustlet. The trustlet receives this key by making
an IPC request along with a constant salt to a driver which uses a hardware-
based cryptographic function to drive the key. The encryption used for key
encryption is AES256-GCM128. The GCM IV and authentication tag are
concatenated to the encrypted key before being returned to the user as a key
blob. Therefore, an attacker that is able to obtain this KEK is able to decrypt
all the key blobs stored in the file system—i.e., the KEK can be viewed as
the “key to the kingdom”, and is our target in the attacks in Sect. 5.

– Execution of cryptographic functions. The trustlet can handle begin/update/
final requests for given keys created by the trustlet. It first decrypts the key-
blobs and verifies the authentication tag, then verifies that the key (and the
trustlet) supports the requested operation, and then executes it. The crypto-
graphic functions are implemented using the OpenSSL FIPS Object Module
[24]. In particular, we discovered that the AES code is a pure ARMv4 assem-
bly implementation that uses a single 1KB T-Table. In general, AES imple-
mentations based on T-Tables are vulnerable to cache attacks [25]. However,
as we shall see in Sect. 5, mounting the attack in practice is not trivial.

– The trustlet handles requests for key characteristics and requests for informa-
tion on supported algorithms, block modes, padding schemes, digest modes
and import/export formats.

Leaking the KEK Through Vulnerabilities in Other Trustlets. One of
the many trustlets created by Samsung to provide secure computations to devices
is the OTP trustlet. This trustlet implements a mechanism which creates One
Time Passwords on the device. Exploiting a vulnerability in the OTP trustlet
discovered by Beniamini [7], we were able to recover the Keymaster KEK. The
OTP vulnerability gives us the ability to read and write 4-byte words into arbi-
trary OTP trustlet memory and branch execution to arbitrary OTP trustlet
code. We used these primitives to imitate the way the Keymaster trustlet makes
a request to derive the KEK: use the write primitive to fill the request struct and
the fixed Keymaster salt (which we discovered via disassembly) into the OTP
trustlet memory, then used the branch primitive to call a specific trustlet API
function which is available on both the OTP and Keymaster code, and finally
we used the read primitive to read the result—the KEK.

We argue that another trustlet’s ability to imitate the Keymaster request
and receive its KEK is a vulnerability in the API design and, in particular, in
the driver that implements this request. Due to the lack of even basic mitigation
techniques (ASLR, stack canaries, etc.) in the Kinibi OS and userspace, we
believe more vulnerabilities may well be discovered in trustlets in the future.
Therefore, critical keys, such as the Keymaster KEK, should be more protected.
We propose a simple countermeasure: Have the handler of the key derivation
IPC request concatenate the client UUID to the salt; this will prevent different



Navigating the Samsung TrustZone and Cache-Attacks 187

trustlets from deriving the same keys, and then a compromised trustlet will not
immediately compromise the Keymaster KEK.

This vulnerability was reported to Samsung (CVE-2018-8774, SVE-2018-
11792) on February 2018 and was labeled by Samsung as a “critical vulnera-
bility.” It was patched in Samsung’s Android security update [30] in June 2018.
In Sect. 5 we discuss an attack which aims at recovering the Keymaster key via
a cache side-channel without relying on other trustlets being compromised.

5 Attacking the Keymaster Trustlet

Since Secure World computations (such as the AES implementation in the Key-
master trustlet) use the same cache as the Normal World, it is theoretically
possible to mount cache attacks against the Secure World. Lipp et al. [16] sug-
gested that the Samsung Galaxy S6 (which is built on the Exynos platform)
flushes the cache when entering the TrustZone, thereby making the attack much
more difficult. In contrast, we did not see any cache flushing operations when
entering the TrustZone: none were present in the sources we reviewed or binaries
we disassembled. Moreover, as we shall see, we were able to reliably infer execu-
tion information of Trustlets through cache side-channel artifacts. However, we
encountered other hurdles. In this section we will discuss our proposed attack
model, method and results.

5.1 The Target of the Attack

In our research we focused on recovery of the Keymaster KEK. Recovering
this key would lead to compromise of all past, present and future Keystore
keys and data encrypted by these keys on the device on which the attack was
mounted on. The trustlet uses this key in several request handlers, which include:
key generation, begin operation on keys and get key characterstics. Of these
three, get key characterstics does the least amount work that’s not related to
key encryption; therefore we focused on this request. The request receives a
buffer which should hold a key blob that consists of the encrypted key bytes and
key characteristics followed by an IV and GCM authentication tag; the trustlet
returns the key characteristics serialized in a buffer. Valid key blobs often include
over 100 bytes of encrypted data (e.g., 32 key bytes of a stored AES-256 plus
many required key characteristics), therefore the request uses the AES-256 block
function at least 9 times (2 for initialization and at least 7 subsequent blocks).
If we measure cache access effects only after the trustlet completes its work, the
9 block function invocations will induce too much noise and render our attacks
infeasible. Therefore, instead we send invalid requests: having the key blob hold
just one byte, a random IV, and zeros for the authentication tag. Such requests
induce the two block function calls for initialization, and a single additional call
to decrypt the single byte. The request then fails, therefore we do not have access
to any ciphertext; but possibly, side-channel information may leak.



188 B. Lapid and A. Wool

5.2 Challenges in Mounting the Attack

In our attempts at mounting the attack we encountered three major difficulties:
(i) finding the cache sets which correspond to the trustlet’s T-Table memory,
(ii) Keymaster request execution times, (iii) facing AutoLock [14] behavior.

Searching for the T-Table. Before a cache attack can be mounted, the cache
sets which correspond to the T-Table need to be identified. Our research suggests
that the secure OS usually resides in either core 0 or 1 - both of them in the
A53 CPU. The A53 CPU in the Galaxy S6 has a 256 KB L2 cache, with 64 byte
cache lines and 16-way associativity; this means it has 256 different cache sets
(8 bits used in set addressing). The index of a cache set is determined by the
physical address of the memory which is being accessed. Because the cache lines
are 64 bytes long, the 6 least significant bits are not used in the index calculation.
Therefore the index calculation uses bits 6 through 13 of the address.

The T-Table used in the AES implementation inside the Keymaster trustlet
is 256 4-byte entries long. We also know (through analysis of the trustlet binary)
that the T-Table resides at virtual address 0x364c8, so it is misaligned by 8
bytes, which means the T-Table spans 17 cache sets. We learn two things from
this information: (a) the entire T-Table resides in a single page of memory and
(b) that it starts at an offset of 0x4c8 inside the page. Knowing that the entire
table resides in a single page ensures that its cache set indexes are contiguous
(if it had spanned two pages, those pages could have been mapped to different
physical pages, resulting in a potential discontinuity).

These points allow us to narrow down the possible cache set containing the
beginning of the T-Table down to 4 options: Recall that the cache set index
calculations use bits 6 through 13 of the physical address. The in-page offset
(bits 0 through 11) of the physical address are equal to those in the virtual
address, which we have. Therefore, only bits 12 and 13 remain unknown and the
only candidates for the cache set index are: {19, 83, 147, 211}. Because we know
the T-Table cache sets are contiguous, knowing the beginning cache set should
give us complete information about the indexes of all the other sets.

A Synchronous Attack. Our initial attempts at discovering the T-Table loca-
tion in the cache followed the synchronous attack model described by Osvik
et al. [25]: prime the cache set candidates, call the AES encryption operation
and then probe these cache sets and take measurements of the time it took
to access them. Unfortunately, these measurements were too noisy. We noticed
that the time it takes for the requests to complete is very long: 5–10 ms; this is
enough time for many other processes to cause cache activity which taints our
measurements.

An Asynchronous Attack. We then attempted to implement an asynchronous
attack model. This technique primes and probes the cache sets in a loop on a



Navigating the Samsung TrustZone and Cache-Attacks 189

different core than the one which runs the secure OS. However, these measure-
ments were not helpful either: the 17 contiguous cache sets following the result
of the measurements did not present activity as expected of a T-Table. We
believe the AutoLock feature described by Green et al. [14], is preventing us
from making correct measurements with this approach since it blocks evictions
that are induced by cache activity on a different core. Therefore, both attacks
we described in this section failed to detect cache access effects that reveal the
true cache set index of the T-Table.

5.3 Tracing Trustlet Execution Using Flush+Reload

Lipp et al. [16] also suggested using a Flush+Reload attack on ARM CPUs [16],
which allows cache side-channel leakage of accesses of other processes to shared
memory. While this attack is less relevant to leak information on the trustlet’s
T-Table, it is relevant to the “TCI memory”. TCI memory is World Shared
Memory which is accessible by both the Secure World and the Normal World. It
is, in fact, a physical memory range which is mapped to virtual addresses in both
the Normal World and the Secure World. Because the same underlying physical
memory is shared, the Flush+Reload attack is relevant in leaking information
about accesses to this memory by the Secure World.

Our disassembly of the Keymaster trustlet binary code points to three dis-
tinct World Shared Memory regions which are used by the trustlet. The first
is the TCI memory itself, which contains the request identifier and pointers to
two additional World Shared Memory buffers; the other two are the input buffer
(filled by the Normal World) and the output buffer (filled by the Secure World).
Upon receiving notifications of a pending request, the trustlet accesses the TCI
memory, copies the relevant information from the input buffer to private memory,
executes the request, if the request was successful it fills the output buffer, and
finally fills the return code in the TCI memory. Therefore, by monitoring these
three addresses with the Flush+Reload technique, we expect to see the follow-
ing hit pattern: TCI → Input → Output(if successful) → TCI. Note that this
pattern leaks fairly precise timing information about when the cryptographic
operations take place within the 5–10 ms the request takes to complete: AES
invocations occur after the input buffer is accessed and before the output buffer
is accessed (or before the second TCI access on error).

Indeed, using this method we were able to recover timestamps of these events.
Figure 2 shows multiple sets of timestamps recovered through this method. In the
scenario illustrated by the figure we sent malformed requests and detected three
events: 1st TCI access, Input access and finally a 2nd TCI access. Figure 2 shows
the 1st TCI accesses (blue asterisks) happen around 2.5 ms into the measurement.
This is followed by the Input access (red dots) about 1.5 ms later—we believe
the delay is caused by the IPC requests the trustlet makes before handling the
incoming request. Finally, about 30µs after the Input access, we see the 2nd TCI
access (black crosses). During this 30µs period the encryption, along with the
rest of the handler logic, takes place.



190 B. Lapid and A. Wool

Fig. 2. Keymaster trustlet world shared memory (WSM) access timings (Color figure
online)

These results strengthen our belief that leaking information from the Secure
World is indeed possible through cache side-channel attacks.

5.4 Designing an Improved Attack

Moghimi et al. [17] demonstrated CacheZoom, an attack on Intel’s secure exe-
cution environment - SGX. They use kernel mode privileges to trigger multiple
clock interrupts while a secured computation is executed; these interrupts pause
the secure execution and pass control to their kernel code which performs cache
measurements with high temporal resolution - resulting in overall high resolution
for the attack.

A similar attack is theoretically possible on ARM CPUs, since it would not be
susceptible to AutoLock restrictions if it runs on the same core as the secure code.
However, the attack as described requires running kernel code, which is outside
our attack model (Sect. 2.3). As stated before, running kernel code is extremely
difficult on modern devices since loading kernel modules is either disabled or
requires OEM signatures. Therefore, we attempted to create an attack that tries
to imitate CacheZoom without running kernel code.

We began by binding a single thread to the core which runs the Kinibi OS
and let the thread run in a loop that measures time differences between itera-
tions. As long as there is no work pending for the TrustZone, the Kinibi OS does
not receive many execution time slices, and so our thread measures small time
differences between iterations (under a microsecond). However, when requests
are made to the secure OS, we notice considerably higher measurements. Usu-
ally these measurements are single gaps of hundreds of microseconds to several



Navigating the Samsung TrustZone and Cache-Attacks 191

Fig. 3. Kinibi interrupted - measurements from the Normal World. Top: histogram of
time difference between successive loop iterations where the difference exceeds 50µs.
Bottom: histogram of number of fragments per TrustZone call.

milliseconds—see Fig. 3 (top). This means that our thread is interrupted and
the Secure World is scheduled.

Interestingly, on some occasions we observed more than one “gap fragment”
per request; we believe this means that while the Secure World was running, a
Normal World interrupt switched to the Linux kernel for handling that interrupt.
After handling that interrupt, regular Linux scheduling took place, which first
gave our iterating thread a time slice. Some time later, our thread was preempted
by the kernel and execution was passed to the kernel thread which is responsible
for translating Yield or SIQ requests from the mcDriverDaemon (which are
periodically queued) to SMC calls. This kernel thread runs on the same core
that the secure OS runs on (the secure OS rejects running interrupt handlers
on other cores) and therefore our looping thread only resumes after the Secure
World work was done or another interrupt is triggered on our core.



192 B. Lapid and A. Wool

In Fig. 3 (bottom) we present the results mentioned above. The figure shows a
histogram of the number of “gap fragments” we measured during a single call to
the Keymaster. Most of the calls resulted in a single fragment, which means the
Secure World was not interrupted; however, about 25% of calls resulted in two
or more fragments, which implies that the Secure World was indeed interrupted.
We grouped the measurements by those fragments and calculated their sum,
as shown in the top graph. We see a clear peak around 10 ms—the total time
it takes for the TrustZone to complete a request—even if the execution was
interrupted and fragmented into two sessions or more. Crucially, we see that our
looping thread gets control while the Keymaster work is paused, on the same
core.

This evidence leads us to believe that this phenomenon can be leveraged to
mount an attack on TrustZone. Our proposed attack consists of 4 Normal World
user-land (EL0) threads:

1. A thread which makes Keymaster requests in a loop from one of the cores
that the Kinibi OS is not bound to.

2. A looping thread running on the same core as the Secure World, which primes
the cache sets and measures time differences between iterations. When a
significant time difference is measured, it probes the cache sets and saves this
measurement.

3. A thread running the Flush+Reload attack on the TCI memory, as described
in Sect. 5.3 to trace the execution of the Keymaster trustlet as it handles
the requests of thread #1. This allows us to select relevant measurements
made by thread #2 by discarding Prime+Probe measurements made before
the input buffer was accessed or after the output buffer (or the second TCI
memory) was accessed. Thread #3 must run on a different core than thread
#2.

4. A thread responsible for creating as many Normal World interrupts as pos-
sible, to increase the likelihood of interrupting the secure execution. Possible
methods of doing this include creating network requests, in hope that the
network card interrupts will be handled on our target core, or playing a video
sequence causing graphic or sound card interrupts.

6 Conclusions

In this paper we provided, for the first time, a critical review of Samsung’s
proprietary TrustZone architecture. We described the major components and
their interconnections, focusing on their security aspects. We discovered that
the binary code for the Kinibi operating system runs in ARM32/Thumb mode
even though the platform has a 64bit processor, and common OS defenses such
as Address Space Randomization (ASLR), non-executable (NX) stack, or stack
canaries are lacking. During this review we identified some design weaknesses,
including one actual vulnerability.

We also found that the ARM32 assembly-language AES implementation
used by the Keymaster trustlet is vulnerable to cache side-channel attacks. In



Navigating the Samsung TrustZone and Cache-Attacks 193

a separate paper we demonstrated successful cache attacks on a real device,
against AES-256, on the Keymaster implementation, and presented a technique
for mounting side-channel attacks against AES-256 in GCM mode.

Finally, we demonstrated realistic cache attack artifacts on the Keymaster
cryptographic functions, despite the recently discovered “AutoLock” ARM fea-
ture. We successfully demonstrated cache side-channel effects on “World Shared
Memory” buffers, and showed compelling evidence that full-blown cache attacks
against the AES implementation inside the Keymaster trustlet are plausible.

We conclude that despite the architectural protections offered by the Trust-
Zone, cache side-channel effects are a serious threat to the current AES imple-
mentation. However, side-channel-resistant implementations, that do not use
memory accesses for round calculations, do exist for the ARM platform, such
as a bit-sliced implementation [23] or one using ARMv8 cryptographic exten-
sions [22]. Using such an implementation would render most cache attacks,
including ours, ineffective.

A End-to-End Keymaster Communication Example

In the following section we describe an example of end-to-end communication
between the normal and Secure World, that demonstrates how the entities men-
tioned above are chained together. In this section, numbers in parenthesis refer
to their respective markers in Fig. 1:

1. In the Normal World user-space (NWd EL0), an application issues an encryp-
tion request to keystored through the binder interface (1). The kernel binder
subsystem relays this request to keystored, which receives the request, loads
the requested key file (and decrypts it with the relevant masterkey, recall
Sect. 4.3) and calls the relevant function in the Keymaster HAL interface.
Samsung’s Keymaster HAL module writes a Keymaster trustlet request to
TCI memory (2) and requests a trustlet notification from the mcDriverDae-
mon through the unix domain socket subsystem (3). The mcDriverDaemon
calls the SIQ ioctl on the mobicore device (4).

2. In the Normal World kernel (NWd EL1), the Mobicore Kernel Module handles
the ioctl by issuing a SIQ SMC (5).

3. Monitor code (EL3) is triggered to handle the SMC, it is deferred to the
Mobicore SMC handler which issues an interrupt to the Kinibi OS and passes
execution to it (6).

4. In the Secure World kernel (SWd EL1), the Kinibi OS interrupt handler
schedules the init-like process and informs it of the interrupt (7).

5. In the Secure World userspace (SWd EL0), the init-like process handles the
interrupt by sending an IPC message to the Keymaster trustlet (8). The
Keymaster trustlet receives the IPC message, reads the TCI memory (9),
parses and executes the request (e.g., encryption of data) (10). It then writes
the output of the request to the TCI memory (11) and issues an IPC request
to the init-like process to notify the Normal World (12). The init-like process
then calls the SIQ SVC system call (13).



194 B. Lapid and A. Wool

6. The Kinibi OS (SWd EL1) handles the SVC call by issuing a Normal World
interrupt SMC call (14).

7. Monitor code (EL3) is triggered to handle the SMC, it is deferred to the
Mobicore SMC handler which issues an interrupt to the Android Linux kernel
and passes execution to it (15).

8. The Android Linux kernel (NWd EL1) interrupt handler is triggered, it calls
the interrupt handler that the Mobicore kernel module registered. The Mobi-
core handler wakes up the mcDriverDaemon due to the interrupt (16).

9. Back in the Normal World userspace (NWd EL0), the mcDriverDaemon noti-
fies its client of the interrupt through the unix domain socket subsystem
(17). The Samsung’s Keymaster HAL module receives the interrupt notifica-
tion, reads and parses the response from TCI memory (18) and resumes the
keystored function. keystored sends a response to the requesting application
through the binder (19). Finally, the application execution resumes with the
result.

References

1. ARM. ARM trusted firmware - firmware design documentation. https://github.
com/ARM-software/arm-trusted-firmware/blob/v1.4/docs/firmware-design.rst#
aarch64-bl31

2. ARM. ARM trusted firmware - runtime SVC code. https://github.com/ARM-
software/arm-trusted-firmware/blob/v1.4/include/common/runtime svc.h#L60

3. ARM. Building a secure System using TrustZone Technology. http://infocenter.
arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C
trustzone security whitepaper.pdf

4. ARM. ARM trustzone (2018). https://www.arm.com/products/security-on-arm/
trustzone

5. Bernstein, D.J.: Cache-timing attacks on AES (2005). https://cr.yp.to/
antiforgery/cachetiming-20050414.pdf

6. freddierice. Trident - temporary root for the Galaxy S7 active. https://github.com/
freddierice/trident

7. Beniamini, G.: Trust issues: exploiting TrustZone TEEs (2017). https://
googleprojectzero.blogspot.co.il/2017/07/trust-issues-exploiting-trustzone-tees.
html

8. Ge0n0sis. How to lock the Samsung download mode using an undocumented fea-
ture of aboot (2016). https://ge0n0sis.github.io/posts/2016/05/how-to-lock-the-
samsung-download-mode-using-an-undocumented-feature-of-aboot/

9. Giesecke & Devrient. Android kernel tree - mobicore kernel module.
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-
marshmallow-mr2/drivers/gud/MobiCoreDriver/

10. Google. Android keymaster HAL. https://source.android.com/security/keystore/
implementer-ref

11. Google. Android keystore. https://developer.android.com/training/articles/
keystore.html

12. Google. Android keystore - source code. http://androidxref.com/6.0.0 r1/xref/
system/security/keystore/keystore.cpp

https://github.com/ARM-software/arm-trusted-firmware/blob/v1.4/docs/firmware-design.rst#aarch64-bl31
https://github.com/ARM-software/arm-trusted-firmware/blob/v1.4/docs/firmware-design.rst#aarch64-bl31
https://github.com/ARM-software/arm-trusted-firmware/blob/v1.4/docs/firmware-design.rst#aarch64-bl31
https://github.com/ARM-software/arm-trusted-firmware/blob/v1.4/include/common/runtime_svc.h#L60
https://github.com/ARM-software/arm-trusted-firmware/blob/v1.4/include/common/runtime_svc.h#L60
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://github.com/freddierice/trident
https://github.com/freddierice/trident
https://googleprojectzero.blogspot.co.il/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.co.il/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.co.il/2017/07/trust-issues-exploiting-trustzone-tees.html
https://ge0n0sis.github.io/posts/2016/05/how-to-lock-the-samsung-download-mode-using-an-undocumented-feature-of-aboot/
https://ge0n0sis.github.io/posts/2016/05/how-to-lock-the-samsung-download-mode-using-an-undocumented-feature-of-aboot/
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-marshmallow-mr2/drivers/gud/MobiCoreDriver/
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-marshmallow-mr2/drivers/gud/MobiCoreDriver/
https://source.android.com/security/keystore/implementer-ref
https://source.android.com/security/keystore/implementer-ref
https://developer.android.com/training/articles/keystore.html
https://developer.android.com/training/articles/keystore.html
http://androidxref.com/6.0.0_r1/xref/system/security/keystore/keystore.cpp
http://androidxref.com/6.0.0_r1/xref/system/security/keystore/keystore.cpp


Navigating the Samsung TrustZone and Cache-Attacks 195

13. Google. Android vold cryptfs. http://androidxref.com/6.0.0 r1/xref/system/vold/
cryptfs.c

14. Green, M., Rodrigues-Lima, L., Zankl, A., Irazoqui, G., Heyszl, J., Eisenbarth, T:
Autolock: why cache attacks on ARM are harder than you think. In: 26th USENIX
Security Symposium (2017)

15. Lapid, B., Wool, A.: Cache-attacks on the ARM TrustZone implementations of
AES-256 and AES-256-GCM via GPU-based analysis. Cryptology ePrint Archive,
Report 2018/621 (2018). http://eprint.iacr.org/2018/621

16. Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: ARMageddon: cache
attacks on mobile devices. In: USENIX Security Conference (2016). https://www.
usenix.org/system/files/conference/usenixsecurity16/sec16 paper lipp.pdf

17. Moghimi, A., Irazoqui, G., Eisenbarth, T.: CacheZoom: how SGX amplifies the
power of cache attacks. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS,
vol. 10529, pp. 69–90. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66787-4 4

18. nccgroup. Cachegrab. https://github.com/nccgroup/cachegrab
19. Neve, M., Seifert, J.-P.: Advances on access-driven cache attacks on AES. In:

Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 147–162. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74462-7 11

20. Neve, M., Tiri, K.: On the complexity of side-channel attacks on AES-256 - method-
ology and quantitative results on cache attacks. Technical report (2007). https://
eprint.iacr.org/2007/318

21. Artenstein, N., Goldman, G.: Exploiting android s-boot: getting arbitrary code
exec in the Samsung bootloader (2017). http://hexdetective.blogspot.co.il/2017/
02/exploiting-android-s-boot-getting.html

22. OpenSSL. ARM AES implementation using cryptographic extensions. https://
github.com/openssl/openssl/blob/master/crypto/aes/asm/aesv8-armx.pl

23. OpenSSL. ARMv7 AES bit sliced implementation. https://github.com/openssl/
openssl/blob/master/crypto/aes/asm/bsaes-armv7.pl

24. OpenSSL. OpenSSL FIPS. https://www.openssl.org/docs/fips.html
25. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the

case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). https://doi.org/10.1007/11605805 1

26. Oliva, P.: ldpreloadhook. https://github.com/poliva/ldpreloadhook
27. Qualcomm. Snapdragon security (2018). https://www.qualcomm.com/solutions/

mobile-computing/features/security
28. Samsung. Mobile processor: Exynos 7 Octa (7420) (2018). http://www.samsung.

com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-7-octa-
7420/

29. Samsung. Platform security (2018). http://developer.samsung.com/tech-insights/
knox/platform-security

30. Samsung. Android security updates, June 2018. https://security.samsungmobile.
com/securityUpdate.smsb

31. Spreitzer, R., Plos, T.: Cache-access pattern attack on disaligned AES T-tables. In:
Prouff, E. (ed.) COSADE 2013. LNCS, vol. 7864, pp. 200–214. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40026-1 13

32. Trustonic. Trustonic Kinibi technology. https://developer.trustonic.com/discover/
technology

33. Trustonic. Trustonic mobicore driver daemon - client library. https://github.com/
Trustonic/trustonic-tee-user-space/tree/master/MobiCoreDriverLib/ClientLib

http://androidxref.com/6.0.0_r1/xref/system/vold/cryptfs.c
http://androidxref.com/6.0.0_r1/xref/system/vold/cryptfs.c
http://eprint.iacr.org/2018/621
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_lipp.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_lipp.pdf
https://doi.org/10.1007/978-3-319-66787-4_4
https://doi.org/10.1007/978-3-319-66787-4_4
https://github.com/nccgroup/cachegrab
https://doi.org/10.1007/978-3-540-74462-7_11
https://eprint.iacr.org/2007/318
https://eprint.iacr.org/2007/318
http://hexdetective.blogspot.co.il/2017/02/exploiting-android-s-boot-getting.html
http://hexdetective.blogspot.co.il/2017/02/exploiting-android-s-boot-getting.html
https://github.com/openssl/openssl/blob/master/crypto/aes/asm/aesv8-armx.pl
https://github.com/openssl/openssl/blob/master/crypto/aes/asm/aesv8-armx.pl
https://github.com/openssl/openssl/blob/master/crypto/aes/asm/bsaes-armv7.pl
https://github.com/openssl/openssl/blob/master/crypto/aes/asm/bsaes-armv7.pl
https://www.openssl.org/docs/fips.html
https://doi.org/10.1007/11605805_1
https://github.com/poliva/ldpreloadhook
https://www.qualcomm.com/solutions/mobile-computing/features/security
https://www.qualcomm.com/solutions/mobile-computing/features/security
http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-7-octa-7420/
http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-7-octa-7420/
http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-7-octa-7420/
http://developer.samsung.com/tech-insights/knox/platform-security
http://developer.samsung.com/tech-insights/knox/platform-security
https://security.samsungmobile.com/securityUpdate.smsb
https://security.samsungmobile.com/securityUpdate.smsb
https://doi.org/10.1007/978-3-642-40026-1_13
https://developer.trustonic.com/discover/technology
https://developer.trustonic.com/discover/technology
https://github.com/Trustonic/trustonic-tee-user-space/tree/master/MobiCoreDriverLib/ClientLib
https://github.com/Trustonic/trustonic-tee-user-space/tree/master/MobiCoreDriverLib/ClientLib


196 B. Lapid and A. Wool

34. Trustonic. Trustonic mobicore driver daemon - command header. https://github.
com/Trustonic/trustonic-tee-user-space/blob/master/MobiCoreDriverLib/
Daemon/public/MobiCoreDriverCmd.h

35. Trustonic. Trustonic mobicore driver daemon - FSD. https://github.com/
Trustonic/trustonic-tee-user-space/tree/master/MobiCoreDriverLib/Daemon/
FSD

36. Trustonic. Trustonic mobicore driver daemon - source code. https://github.com/
Trustonic/trustonic-tee-user-space/tree/master/MobiCoreDriverLib/Daemon

37. Xinjie, Z., Tao, W., Dong, M., Yuanyuan, Z., Zhaoyang, L.: Robust first two rounds
access driven cache timing attack on AES. In: 2008 International Conference on
Computer Science and Software Engineering, vol. 3, pp. 785–788. IEEE (2008)

38. Zhang, N., Sun, K., Shands, D., Lou, W., Thomas Hou, Y.: TruSpy: cache side-
channel information leakage from the secure world on ARM devices. IACR Cryp-
tology ePrint Archive, 2016(980) (2016)

https://github.com/Trustonic/trustonic-tee-user-space/blob/master/MobiCoreDriverLib/Daemon/public/MobiCoreDriverCmd.h
https://github.com/Trustonic/trustonic-tee-user-space/blob/master/MobiCoreDriverLib/Daemon/public/MobiCoreDriverCmd.h
https://github.com/Trustonic/trustonic-tee-user-space/blob/master/MobiCoreDriverLib/Daemon/public/MobiCoreDriverCmd.h
https://github.com/Trustonic/trustonic-tee-user-space/tree/master/MobiCoreDriverLib/Daemon/FSD
https://github.com/Trustonic/trustonic-tee-user-space/tree/master/MobiCoreDriverLib/Daemon/FSD
https://github.com/Trustonic/trustonic-tee-user-space/tree/master/MobiCoreDriverLib/Daemon/FSD
https://github.com/Trustonic/trustonic-tee-user-space/tree/master/MobiCoreDriverLib/Daemon
https://github.com/Trustonic/trustonic-tee-user-space/tree/master/MobiCoreDriverLib/Daemon

	Navigating the Samsung TrustZone and Cache-Attacks on the Keymaster Trustlet
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Contributions

	2 Preliminaries
	2.1 ARM TrustZone Overview
	2.2 TrustZone Usage in Android
	2.3 Attack Model

	3 The Exynos Secure World Components
	4 The Exynos Normal World Components
	4.1 The MobiCore Kernel Module
	4.2 The mcDriverDaemon Process
	4.3 Keystore and Keymaster Hardware Abstraction Layer (HAL)
	4.4 Samsung's Keymaster HAL and Trustlet

	5 Attacking the Keymaster Trustlet
	5.1 The Target of the Attack
	5.2 Challenges in Mounting the Attack
	5.3 Tracing Trustlet Execution Using Flush+Reload
	5.4 Designing an Improved Attack

	6 Conclusions
	A  End-to-End Keymaster Communication Example
	References




