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Abstract. Outsourcing machine learning algorithms helps users to deal
with large amounts of data without the need to develop the expertise
required by these algorithms. Outsourcing however raises severe security
issues due to potentially untrusted service providers. Verifiable comput-
ing (VC) tackles some of these issues by assuring computational integrity
for an outsourced computation. In this paper, we design a VC pro-
tocol tailored to verify a sequence of operations for which no existing
VC scheme is suitable to achieve realistic performance objective for the
entire sequence. We thus suggest a technique to compose several spe-
cialized and efficient VC schemes with a general purpose VC protocol,
like Parno et al.’s Pinocchio, by integrating the verification of the proofs
generated by these specialized schemes as a function that is part of the
sequence of operations verified using the general purpose scheme. The
resulting scheme achieves the objectives of the general purpose scheme
with increased efficiency for the prover. The scheme relies on the underly-
ing cryptographic assumptions of the composed protocols for correctness
and soundness.
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1 Introduction

While achieving excellent results in diverse areas, machine learning algorithms
require expertise and a large training material to be fine-tuned. Therefore, cloud
providers such as Amazon or Microsoft have started offering Machine Learning
as a Service (MLaaS) to perform complex machine learning tasks on behalf of
users. Despite these advantages, outsourcing raises a new requirement: in the
face of potentially malicious service providers the users need additional guaran-
tees to gain confidence in the results of outsourced computations. As an answer
to this problem, verifiable computing (VC) provides proofs of computational
integrity without any assumptions on hardware or on potential failures. Exist-
ing VC systems can theoretically prove and verify all NP computations [8].
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Nevertheless, despite the variety of existing solutions, existing VC schemes have
to make trade-offs between expressiveness and functionality [20] and therefore
cannot efficiently handle the verifiability of a sequence of operations with a high
variance in nature and complexity, like the ones involved in machine learning
techniques. Even if expressive VC schemes such as Pinocchio [16] can ensure the
verifiability of a machine learning algorithm, the cryptographic work required
to produce the proof prevents from dealing with large but simple computations
such as matrix multiplications. On the other hand, some schemes like Cormode
et al.’s CMT [6] are very efficient and can deal with large computations, e.g.
large matrix multiplications, but cannot handle the variety of even very simple
operations such as number comparisons. Hence there is a need for a VC scheme
that achieves both efficiency by handling complex operations and expressiveness
through the variety of types of operations it can support. In this paper, we pro-
pose a scheme that combines a general purpose VC scheme like Pinocchio [16]
or Groth’s scheme [13] and various specialized VC schemes that achieve efficient
verification of complex operations like large matrix multiplications.
Thanks to our proof composition scheme, the resulting VC scheme:

1. efficiently addresses the verifiability of a sequence of operations,
2. inherits the properties of the outer scheme, notably a short and single proof

for a complex computation and privacy for inputs supplied by the prover.

In order to highlight the relevance of our proposal, we sketch the application
of the resulting scheme on a neural network, which is a popular machine learning
technique achieving state of the art performance in various classification tasks
such as handwritten digit recognition, object or face recognition. Furthermore
we propose a concrete instance of our scheme, using a Pinocchio-like scheme
[13] and the Sum-Check protocol [15]. Thanks to our composition techniques,
we are able to achieve unprecedented performance gains in the verifiability of
computations involving large matrix multiplication and non-linear operations.

1.1 Problem Statement

Most applications involve several sequences of function evaluations combined
through control structures. Assuring the verifiability of these applications has
to face the challenge that the functions evaluated as part of these applications
may feature computational characteristics that are too variant to be efficiently
addressed by a unique VC scheme. For instance, in the case of an application that
involves a combination of computationally intensive linear operations with simple
non-linear ones, none of the existing VC techniques would be suitable since
there is no single VC approach that can efficiently handle both. This question
is perfectly illustrated by the sample scenario described in the previous section,
namely dealing with the verifiability of Neural Network Algorithms, which can
be viewed as a repeated sequence of a matrix product and a non-linear activation
function. For instance, a two layer neural network, denoted by g, on an input x
can be written as:

g(x) = W2 · f(W1 · x) (1)
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Here W1 and W2 are matrices and f is a non-linear function like the frequently
chosen Rectified Linear Unit (ReLU) function: x �→ max(0, x). For efficiency,
the inputs are often batched and the linear operations involved in the Neural
Network are matrix products instead of products between a vector and a matrix.
Denoting X a batch of inputs to classify, the batched version of (1) therefore is:

g(X) = W2 · f(W1 · X) (2)

In an attempt to assure the verifiability of this neural network, two alternative
VC schemes seem potentially suited: the CMT protocol [6] based on interactive
proofs and schemes deriving from Pinocchio [16]. CMT can efficiently deal with
the matrix products but problems arise when it comes to the non-linear part of
the operations since, using CMT, each function to be verified has to be repre-
sented as a layered arithmetic circuit (i.e. as an acyclic graph of computation
over a finite field with an addition or a multiplication at each node, and where
the circuit can be decomposed into layers, each gate of one layer being only con-
nected to an adjacent layer). Nevertheless the second component of the neural
network algorithm, that is, the ReLU activation function, does not lend itself
to a simple representation as a layered circuit. [6,11] have proposed solutions
to deal with non-layered circuits at the cost of very complex pre-processing,
resulting in a substantial increase in the prover’s work and the overall circuit
size. Conversely, Pinocchio-like schemes eliminate the latter problem by allowing
for efficient verification of a non-linear ReLU activation function while suffering
from excessive complexity in the generation of proofs for the products of large
matrices (benchmarks on matrix multiplication proofs can be found in [20]).

This sample scenario points to the basic limitation of existing VC schemes
in efficiently addressing the requirements of common scenarios involving several
components with divergent characteristics such as the mix of linear and non-
linear operations as part of the same application. The objective of our work
therefore is to come up with a new VC scheme that can efficiently handle these
divergent characteristics in the sub-components as part of a single VC protocol.

1.2 Idea of the Solution: Embedded Proofs

Our solution is based on a method that enables the composition of a general
purpose VC scheme suited to handle sequences of functions with one or several
specialized VC schemes that can achieve efficiency in case of a component func-
tion with excessive requirements like very large linear operations. We apply this
generic method to a pair of VC schemes, assuming that one is a general purpose
VC scheme, called GVC, like Pinocchio [16], which can efficiently assure the verifi-
ability of an application consisting of a sequence of functions, whereas the other
VC scheme, which we call EVC, assures the verifiability of a single function in a
very efficient way, like, for instance, a VC scheme that can handle large matrix
products efficiently. The main idea underlying the VC composition method is
that the verifiability of the complex operation (for which the GVC is not efficient)
is outsourced to the EVC whereas the remaining non-complex functions are all



Efficient Proof Composition for Verifiable Computation 155

t1 = f(x)
+ proof π1

t2 = g(t1)

y = h(t2)
+ proof π2

Proof that:⎧⎪⎨
⎪⎩
Verify(π1, t1, x) = 1
t2 = g(t1)
Verify(π2, y, t2) = 1

t1 , π1

t2

t3, π3

P1 (EVC1)

P2 (EVC2)

P (GVC)

Fig. 1. High level view of the embedded proofs

handled by the GVC. In order to get the verifiability of the entire application by
the GVC, instead of including the complex operation as part of the sequence of
functions handled by the GVC, this operation is separately handled by the EVC
that generates a standalone verifiability proof for that operation and the verifica-
tion of that proof is viewed as an additional function embedded in the sequence
of functions handled by the GVC. Even though the verifiability of the complex
operation by the GVC is not feasible due to its complexity, the verifiability of the
proof on this operation is feasible by the basic principle of VC, that is, because
the proof is much less complex than the operation itself.

We illustrate the VC composition method using as a running example the
Neural Network defined with formula (2) in Sect. 1.1. Here, the application con-
sists of the sequential execution of three functions f , g and h (see Fig. 1), where
f and h are not suitable to be efficiently proved using GVC while g is. Note that
we consider that g cannot be proved correct by any EVC systems or at least
not as efficiently as with the GVC system. The ultimate goal therefore is to ver-
ify y = h(g(f(x))). In our example, f : X �→ W1 · X, h : X �→ W2 · X and
g : X �→ max(0,X), where X, W1 and W2 are matrices and g applies the max
function element-wise to the input matrix X.

In order to cope with the increased complexity of f and h, we have recourse
to EVC1 and EVC2 that are specialized schemes yielding efficient proofs with such
functions. πEVC1 denotes the proof generated by EVC1 on f , πEVC2 denotes the
proof generated by EVC2 on h and ΠGVC denotes the proof generated by GVC.
For the sequential execution of functions f , g and h, denoting t1 = f(x) and
t2 = g(t1), the final proof then is:

ΠGVC

((
VerifEVC1(πEVC1 , x, t1)

?= 1
) ∧ (

g(t1)
?= t2

) ∧ (
VerifEVC2(πEVC2 , t2, y) ?= 1

))
.

(3)
Here the GVC system verifies the computation of g and the verification algo-

rithms of the EVC1 and EVC2 systems, which output 1 if the proof is accepted
and 0 otherwise. We note that this method can easily be extended to applica-
tions involving more than three functions, Sect. 3 describes the embedded proof
protocol for an arbitrary number of functions. Interestingly, various specialized
VC techniques can be selected as EVC based on their suitability to the special
functions requirements provided that:
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1. The verification algorithm of each EVC proof is compatible with the GVC
scheme.

2. The verification algorithm of each EVC proof should have much lower com-
plexity than the outsourced computations (by the basic VC advantage).

3. The EVC schemes should not be VC’s with a designated verifier but instead
publicly verifiable [8]. Indeed, since the prover of the whole computation is
the verifier of the EVC, no secret value should be shared between the prover of
the EVC and the prover of the GVC. Otherwise, a malicious prover can easily
forge a proof for EVC and break the security of the scheme.

In the sequel of this paper we present a concrete instance of our VC com-
position method using any Pinocchio-like scheme as the GVC and an efficient
interactive proof protocol, namely the Sum-Check protocol [15] as the EVC. We
further develop this instance with a Neural Network verification example.

1.3 Related Work

Verifying computation made by an untrusted party has been studied for a long
time, but protocols leading to practical implementations are recent, see [20]
and the references therein for details. Most of these proof systems build on
quadratic arithmetic programs [8] and we focus on zero-knowledge succinct non-
interactive arguments of knowledge (zk-SNARKs) schemes [3]. Proof composi-
tion for SNARKs have been proposed by Bitansky et al. [5] and the implemen-
tation of SNARKs recursive composition has later been proposed by Ben-Sasson
et al. in [4]. The high level idea of the latter proof system is to prove or verify
the satisfiability of an arithmetic circuit that checks the validity of the previous
proofs. Thus, the verifier should be implemented as an arithmetic circuit and
used as a sub-circuit of the next prover. However, SNARKs verifiers perform
the verification checks using an elliptic curve pairing and it is mathematically
impossible for the base field to have the same size as the elliptic curve group
order. Ben-Sasson et al. therefore propose a cycle of elliptic curves to enable
proof composition. When two such elliptic curves form a cycle, the finite field
defined by the prime divisor in the group order of the first curve is equal to the
base field (or field of definition) of the second curve and vice versa. Although
proofs can theoretically be composed as many times as desired, this method has
severe overhead. Our method has a more limited spectrum than Ben-Sasson et
al.’s but our resulting system is still general purpose and enjoys the property of
the GVC system, such as succinctness or efficiency for the prover. Furthermore,
our proposal improves the prover time, replacing a part of a computation by
sub-circuit verifying the sub-computation that can then be executed outside the
prover.

In SafetyNets [9], Ghodsi et al. build an interactive proof protocol to verify
the execution of a deep neural network on an untrusted cloud. This approach,
albeit efficient, has several disadvantages over ours. The first is that expressiv-
ity of the interactive proof protocol used in SafetyNets prevents using state of
the art activation functions such as ReLU. Indeed, Ghodsi et al. replace ReLU
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functions by a quadratic activation function, namely x �→ x2, which squares the
input values element-wise. This solution unfortunately causes instability dur-
ing the training phase of the network compared to ReLU functions. A second
disadvantage is the impossibility for the prover to prove a non-deterministic
computation, i.e. to prove the correctness of a computation while hiding some
inputs. As a consequence, the verifier and the prover of SafetyNets have to share
the model of the neural network, namely the values of the matrices (e.g. W1 and
W2 in formula (1)). This situation is quite unusual in machine learning: since
the training of neural networks is expensive and requires a large amount of data,
powerful hardware and technical skills to obtain a classifier with good accuracy,
it is unlikely that cloud providers share their models with users. In contrast, with
our proposed method the prover could keep the model private and nonetheless
be able to produce a proof of correct execution.

1.4 Paper Organization

The rest of the paper is organized as follows: we first introduce the building
blocks required to instantiate our method in Sect. 2. Following our embedded
proof protocol, we first describe a VC scheme involving composition in Sect. 3
and then present a specialized instance of the GVC and EVC schemes to fit the
Neural Network use-case in Sect. 4. We report experimental results on the imple-
mentation of the latter scheme in Sect. 5 and conclude in Sect. 6. A security proof
of our scheme is given in Appendix A and prover’s input privacy are considered
in Appendix B.

2 Building Blocks

2.1 GVC: Verifiable Computation Based on QAPs

Quadratic Arithmetic Programs. In [8], Gennaro et al. defined Quadratic
Arithmetic Programs (QAP) as an efficient object for circuit satisfiability. The
computation to verify has first to be represented as an arithmetic circuit, from
which a QAP is computed. Using the representation based on QAPs, the cor-
rectness of the computation can be tested by a divisibility check between poly-
nomials. A cryptographic protocol enables to check the divisibility in only one
point of the polynomial and to prevent a cheating prover to build a proof of a
false statement that will be accepted.

Definition 1 (from [16]). A QAP Q over field F contains three sets of m + 1
polynomials V = {(vk(x))}, W = {(wk(x))}, Y = {(yk(x))} for k ∈ {0, . . . , m}
and a target polynomial t(x). Let F be a function that takes as input n elements
of F and outputs n′ elements and let us define N as the sum of n and n′. A
N-tuple (c1, . . . , cN ) ∈ F

N is a valid assignment for function F if and only if
there exists coefficients (cN+1, . . . , cm) such that t(x) divides p(x), as follows:

p(x)=

(
v0(x)+

m∑
k=1

ck · vk(x)

)
·
(
w0(x)+

m∑
k=1

ck ·wk(x)

)
−

(
y0(x)+

m∑
k=1

ck ·yk(x)

)
.

(4)
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A QAP Q that satisfies this definition computes F . It has size m and its degree
is the degree of t(x).

In the above definition, t(x) =
∏

g∈G(x − rg), where G is the set of multiplica-
tive gates of the arithmetic circuit and each rg is an arbitrary value labeling a
multiplicative gate of the circuit. The polynomials in V, W and Y encode the
left inputs, the right inputs and the outputs for each gate respectively. By defi-
nition, if the polynomial p(x) vanishes at a value rg, p(rg) expresses the relation
between the inputs and outputs of the corresponding multiplicative gate g. An
example of a QAP construction from an arithmetic circuit is given in [16]. It is
important to note that the size of the QAP is the number of multiplicative gates
in the arithmetic circuit to verify, which also is the metric used to evaluate the
efficiency of the VC protocol.

VC Protocol. Once a QAP has been built from an arithmetic circuit, a cryp-
tographic protocol embeds it in an elliptic curve. In the verification phase, the
divisibility check along with checks to ensure the QAP has been computed with
the same coefficients ck for the V, W and Y polynomials during p’s computation
are performed with a pairing. This results in a publicly verifiable computation
scheme, as defined below.

Definition 2. Let F be a function, expressed as an arithmetic circuit over a
finite field F and λ be a security parameter.

– (EKF , V KF ) ← KeyGen(1λ, F ): the randomized algorithm KeyGen takes as
input a security parameter and an arithmetic circuit and produces two public
keys, an evaluation key EKF and a verification key V KF .

– (y, π) ← Prove(EKF , x): the deterministic Prove algorithm, takes as inputs
x and the evaluation key EKF and computes y = F (x) and a proof π that y
has been correctly computed.

– {0, 1} ← Verify(V KF , x, y, π): the deterministic algorithm Verify takes the
input/output (x, y) of the computation F , the proof π and the verification key
V KF and outputs 1 if y = F (x) and 0 otherwise.

Security. The desired security properties for a publicly verifiable VC scheme,
namely correctness, soundness and efficiency have been formally defined in [8].
Costs. In QAP-based protocols, the proof consists of few elliptic curve elements,
e.g. 8 group elements in Pinocchio [16] or 3 group elements in Groth’s state of
the art VC system [13]. It has constant size no matter the computation to be
verified, thus the verification is fast. In the set-up phase, the KeyGen algorithm
outputs evaluation and verification keys that depend on the function F , but
not on its inputs. The resulting model is often called pre-processing verifiable
computation. This setup phase has to be run once, the keys are reusable for
later inputs and the cost of the pre-processing is amortized over all further
computations. The bottleneck of the scheme is the prover computations: for an
arithmetic circuit of N multiplication gates, the prover has to compute O(N)
cryptographic operations and O(N log2 N) non-cryptographic operations.
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Zero-Knowledge. QAPs also achieve the zero-knowledge property with little
overhead: the prover can randomize the proof by adding multiples of the tar-
get polynomial t(x) to hide inputs he supplied in the computation. The proof
obtained using Parno et al.’s protocol [16] or Groth’s scheme [13] is thus a zero-
knowledge Succinct Non-Interactive Argument (zk-SNARK). In the zk-SNARKs
setting, results are meaningful even if the efficiency requirement is not satisfied
since the computation could not have been performed by the verifier. Indeed,
some of the inputs are supplied by the prover and remain private, making the
computation impossible to perform by the sole verifier.

2.2 EVC: Sum-Check Protocol

The Sum-Check protocol [15] enables to prove the correctness of the sum of a
multilinear polynomial over a subcube, the protocol is a public coin interactive
proof with n rounds of interaction. Suppose that P is a polynomial with n vari-
ables defined over F

n. Using the Sum-Check protocol, a prover P can convince
a verifier V that he knows the evaluation of P over {0, 1}n, namely:

H =
∑

t1∈{0,1}

∑
t2∈{0,1}

. . .
∑

tn∈{0,1}
P (t1, . . . , tn) (5)

While a direct computation performed by the verifier would require at least
2n evaluations, the Sum-Check protocol only requires O(n) evaluations for the
verifier. P first computes P1(x) =

∑
t2∈{0,1} . . .

∑
tn∈{0,1} P (x, t2, . . . , tn) and

sends it to V, who checks if H = P1(0) + P1(1). If so, P’s claim on P1 holds,
otherwise V rejects and the protocol stops. V picks a random value r1 ∈ F and
sends it to P, who computes P2 =

∑
t3∈{0,1} . . .

∑
tn∈{0,1} P (r1, x, t3, . . . , tn).

Upon receiving P2, V checks if: P1(r1) = P2(0) + P2(1). The protocol goes on
until the nth round where V receives the value Pn(x) = P (r1, r2, . . . , rn−1, x). V
can now pick a last random field value rn and check that: Pn(rn) = P (r1, . . . , rn).
If so, V is convinced that H has been evaluated as in (5), otherwise V rejects H.
The Sum-Check protocol has the following properties:

1. The protocol is correct : if P’s claim about H is true, then V accepts with
probability 1.

2. The protocol is sound : if the claim on H is false, the probability that P can
make V accept H is bounded by nd/|F|, where n is the number of variables
and d the degree of the polynomial P .

Note that the soundness is here information theoretic: no assumption is made on
the prover power. To be able to implement the Sum-Check protocol verification
algorithm into an arithmetic circuit we need a non-interactive version of the
protocol. Indeed, QAP-based VC schemes require the complete specification of
each computation as input to the QAP generation process (see Sect. 2.1). Due to
the interactive nature of the Sum-Check protocol, the proof cannot be generated
before the actual execution of the protocol. We therefore use the Fiat-Shamir
transformation [7] to obtain a non-interactive version of the Sum-Check protocol



160 J. Keuffer et al.

that can be used as an input to GVC. In the Fiat-Shamir transformation, the
prover replaces the uniformly random challenges sent by the verifier by challenges
he computes applying a public hash function to the transcript of the protocol so
far. The prover then sends the whole protocol transcript, which can be verified
recomputing the challenges with the same hash function. This method has been
proved secure in the random oracle model [17].

2.3 Multilinear Extensions

Multilinear extensions allow to apply the Sum-Check protocol to polynomials
defined over some finite set included in the finite field where all the operations
of the protocol are performed. Thaler [18] showed how multilinear extensions
and the Sum-Check protocol can be combined to give a time-optimal proof for
matrix multiplication.

Let F be a finite field, a multilinear extension (MLE) of a function f :
{0, 1}d → F is a polynomial that agrees with f on {0, 1}d and has degree at
most 1 in each variable. Any function f : {0, 1}d → F has a unique multilinear
extension over F, which we will denote hereafter by f̃ . Using Lagrange interpo-
lation, an explicit expression of MLE can be obtained:

Lemma 1. Let f : {0, 1}d → {0, 1}. Then f̃ has the following expression:

∀(x1, . . . , xd) ∈ F
d, f̃(x1, . . . , xd) =

∑
w∈{0,1}d

f(w)χw(x1, . . . , xd) (6)

where : w = (w1, . . . , wd) and χw(x1, . . . , xd) =
d∏

i=1

(
xiwi+(1−xi)(1−wi)

)
(7)

2.4 Ajtai Hash Function

As mentioned in Sect. 1.1, our goal is to compute a proof of an expensive sub-
computation with the Sum-Check protocol and to verify that proof using the
Pinocchio protocol. The non-interactive nature of Pinocchio prevents from prov-
ing the sub-computation with an interactive protocol. As explained in Sect. 2.2,
we turn the Sum-Check protocol into a non-interactive argument using the Fiat-
Shamir transform [7]. This transformation needs a hash function to simulate the
challenges that would have been provided by the verifier. The choice of the hash
function to compute challenges in the Fiat-Shamir transformation here is crucial
because we want to verify the proof transcript inside the GVC system, which will
be instantiated with the Pinocchio protocol. This means that the computations
of the hash function have to be verified by the GVC system and that the verifi-
cation should not be more complex than the execution of the original algorithm
inside the GVC system. For instance the costs using a standard hash function such
as SHA256 would be too high: [2] reports about 27,000 multiplicative gates to
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implement the compression function of SHA256. Instead, we choose a function
better suited for arithmetic circuits, namely the Ajtai hash function [1] that is
based on the subset sum problem as defined below:

Definition 3. Let m,n be positive integers and q a prime number. For a ran-
domly picked matrix A ∈ Z

n×m
q , the Ajtai hash Hn,m,q : {0, 1}m → Z

n
q is

defined as:
∀x ∈ {0, 1}m, Hn,m,q = A × x mod q (8)

As proved by Goldreich et al. [10], the collision resistance of the hash function
relies on the hardness of the Short Integer Solution (SIS) problem. The function
is also regular : it maps an uniform input to an uniform output. Ben-Sasson et al.
[4] noticed that the translation in arithmetic circuit is better if the parameters are
chosen to fit with the underlying field of the computations. A concrete hardness
evaluation is studied by Kosba et al. in [14]. Choosing Fp, with p ≈ 2254 to be
the field where the computations of the arithmetic circuit take place leads to the
following parameters for approximately 100 bit of security: n = 3,m = 1524, q =
p ≈ 2254. Few gates are needed to implement an arithmetic circuit for this hash
function since it involves multiplications by constants (the matrix A is public):
to hash m bits, m multiplicative gates are needed to ensure that the input vector
is binary and 3 more gates are needed to ensure that the output is the linear
combination of the input and the matrix. With the parameters selected in [14],
this means that 1527 gates are needed to hash 1524 bits.

3 Embedded Proofs

3.1 High Level Description of the Generic Protocol

Let us consider two sets of functions (fi)1≤i≤n and (gi)1≤i≤n such that the fi do
not lend themselves to an efficient verification with the GVC system whereas the
gi can be handled by the GVC system efficiently. For an input x, we denote by
y the evaluation of x by the function gn ◦ fn ◦ . . . g1 ◦ f1. In our embedded proof
protocol, each function fi is handled by a sub-prover Pi while the gi functions
are handled by the prover P. The sub-prover Pi is in charge of the efficient VC
algorithm EVCi and the prover P runs the GVC algorithm. The steps of the proof
generation are depicted in Fig. 2. Basically, each sub-prover Pi will evaluate the
function fi on a given input, produce a proof of correct evaluation using the
EVCi system and pass the output of fi and the related proof πi to P, who will
compute the next gi evaluation and pass the result to the next sub-prover Pi+1.

In the Setup phase, the verifier and the prover agree on an arithmetic circuit
which describes the computation of the functions gi along with the verification
algorithms of the proof that the functions fi were correctly computed. The pre-
processing phase of the GVC system takes the resulting circuit and outputs the
corresponding evaluation and verification keys.

In the query phase, the verifier sends the prover an input x for the com-
putation along with a random value that will be an input for the efficient sub-
provers Pi.
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Verifier

r
$←− F

VerifyGVC(πGVC, y, x, r) ?= 1

Prover
t0 := x
For i = 1, . . . , n :⎧⎪⎨
⎪⎩

t2i−1 = fi(t2i−2)
compute proof πi for t2i−1

t2i = gi(t2i−1)
t2n := y

EVCi

Compute proof πGVC that:

For i = 1, . . . , n :{
Verify(πi, t2i−1, t2i−2) = 1
t2i = gi(t2i−1)

GVC

t0, . . . , t2n
π1, . . . , πn

x, r

y, πGVC

Fig. 2. Embedded proof protocol

In the proving phase, P1 first computes t1 = f(x) and produces a proof π1

of the correctness of the computation, using the efficient proving algorithm EVC1.
The prover P then computes the value t2 = g1(t1) and passes the value t2 to P2,
who computes t3 = f2(t2) along with the proof of correctness π2, using the EVC2
proving system. The protocol proceeds until y = t2n is computed. Finally, P
provides the inputs/outputs of the computations and the intermediate proofs πi

to the GVC system and, using the evaluation key computed in the setup phase,
builds a proof πGVC that for i = 1, . . . , n:

1. the proof πi computed with the EVCi system is correct,
2. the computation t2i = gi(t2i−1) is correct.

In the verification phase, the verifier checks that y was correctly computed
using the GVC’s verification algorithm, the couple (y, πGVC) received from the
prover, and (x, r).

Recall that our goal is to gain efficiency compared with the proof generation
of the whole computation inside the GVC system. Therefore, we need proof
algorithms with a verification algorithm that can be implemented efficiently as
an arithmetic circuit and for which the running time of the verification algorithm
is lower than the one of the computation. Since the Sum-Check protocol involves
algebraic computations over a finite field, it can easily be implemented as an
arithmetic circuit and fits into our scheme.

3.2 A Protocol Instance

In this section, we specify the embedded proofs protocol in the case where fi are
matrix products fi : X �→ Wi×X and where the functions gi cannot be efficiently
verified by a VC system except by GVC. We use the Sum-Check protocol to prove
correctness of the matrix multiplications, as in [18] and any QAP-based VC
scheme as the global proof mechanism. We assume that the matrices involved in
the fi functions do not have the same sizes so there will be several instances of
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the Sum-Check protocol. It thus makes sense to define different efficient proving
algorithms EVCi since the GVC scheme requires that the verification algorithms are
expressed as arithmetic circuits in order to generate evaluation and verification
keys for the system. As the parameters of the verification algorithms are different,
the Sum-Check verification protocols are distinct as arithmetic circuits. For the
sake of simplicity, the Wi matrices are assumed to be square matrices of size ni.
We denote di = log ni and assume that ni ≥ ni+1. We denote by H the Ajtai
hash function (see Sect. 2). The protocol between the verifier V and the prover
P, which has n sub-provers Pi is the following:

Setup:
– V and P agree on an arithmetic circuit C description for the computation.

C implements both the evaluations of the functions gi and the verification
algorithms of the Sum-Check protocols for the n matrix multiplications.

– (EKC , V KC) ← KeyGen(1λ, C)
Query

– V generates a random challenge (rL, rR) such that: (rL, rR) ∈ F
d1 × F

d1

– V sends P the tuple (X, rL, rR), where X is the input matrix.
Proof: for i = 1, . . . , n, on input (T2i−2, rL, rR),

Sub-prover Pi:
– computes the product T2i−1 = Wi × T2i−2, (denoting T0 := X)
– computes rLi

and rRi
(the di first component of rL and rR),

– computes the multilinear extension evaluation T̃2i−1(rLi
, rRi

)
– computes with serialized Sum-Check, the proof πi of Pi evaluation:

Pi(x) = W̃i(rLi
, x) · T̃2i−2(x, rRi

) where x = (x1, . . . , xdi
) ∈ F

di . (9)

– sends the tuple (T2i−2, T2i−1,Wi, πi, rLi
, rRi

) to prover P.
Prover P:

– computes T2i = gi(T2i−1) and sends (T2i, rL, rR) to sub-prover Pi+1

– receiving the inputs {(T2i−2, T2i−1,Wi, πi, rLi
, rRi

)}i=1,...,n from sub-
provers:

• Computes T̃2i−1(rLi
, rRi

).
• Parses πi as (Pi,1, ri,1, Pi,2, ri,2, . . . , Pi,d1 , ri,di

), where the proof con-
tains the coefficient of the degree two polynomials Pi,j that we denote
by (ai,j , bi,j , ci,j) if: Pi,j(x) = ai,jx

2 + bi,jx + ci,j

• Verifies πi:

∗ Checks: Pi,1(0) + Pi,1(1) ?= T̃2i−1(rLi
, rRi

)

∗ Computes: ri,1 =
(∑

j rLi
[j]

)
·
(∑

j rRi
[j]

)
∗ For j = 2, . . . , di:

· Check: Pi,j(0) + Pi,j(1) ?= Pi,j−1(ri,j−1)
· Computes: ri,j as the product of components of the Ajtai hash

function output, i.e. ri,j =
∏3

k=1 H(ai,j , bi,j , ci,j , ri,j)[k]
∗ From T2i−2 and Wi, computes the evaluated multilinear exten-

sions W̃i(rLi
, ri,1, . . . , ri,d1) and T̃2i−2(ri,1, . . . , ri,d1 , rRi

)
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∗ Checks that Pdi
(ri,di

) is the product of the multilinear extensions
W̃i(rLi

, ri,1,. . . , ri,di
) and T̃2i−2(ri,1,. . . , ri,di

, rRi
).

• Aborts if one of the previous checks fails. Otherwise, accepts T2i−1 as
the product of Wi and T2i−2.

• Repeat the above instructions until the proof πn has been verified.
• Using the GVC scheme, computes the final proof πGVC that all the EVCi

proofs πi have been verified and all the T2i values have been correctly
computed from T2i−1.

• Sends (Y, πGVC) to the Verifier.
Verification

– V computes Verify(X, rR, rL, Y, πGVC)
– If Verify fails, verifier rejects the value Y . Otherwise the value Y is

accepted as the result of: Y = gn(. . . (g2(W2(g1(W1 · X)))) . . .)

4 Embedded Proofs for Neural Networks

4.1 Motivation

In order to show the relevance of the proposed embedded proof scheme, we
apply the resulting scheme to Neural Networks (NN), which are machine learning
techniques achieving state of the art performance in various classification tasks
such as handwritten digit recognition, object or face recognition. As stated in
Sect. 1.1, a NN can be viewed as a sequence of operations, the main ones being
linear operations followed by so-called activation functions. The linear opera-
tions are modeled as matrix multiplications while the activation functions are
non-linear functions. A common activation function choice is the ReLU func-
tion defined by: x �→ max(0, x). Due to the sequential nature of NNs, a simple
solution to obtain a verifiable NN would consist of computing proofs for each
part of the NN sequence. However, this solution would degrade the verifier’s
performance, increase the communication costs and force the prover to send all
the intermediate results, revealing sensitive data such as the parameters of the
prover’s NN. On the other hand, even if it is feasible in principle to implement
the NN inside a GVC system like Pinocchio, the size of the matrices involved
in the linear operations would be an obstacle. The upper bound for the total
number of multiplications QAP-based VC schemes can support as part of one
application is estimated at 107 [19]. This threshold would be reached with a sin-
gle multiplication between two 220 × 220 matrices. In contrast, our embedded
proof protocol enables to reach much larger matrix sizes or, for a given matrix
size, to perform faster verifications of matrix multiplications.

4.2 A Verifiable Neural Network Architecture

We here describe how our proposal can provide benefits in the verification of a
neural network (NN) [12]: in the sequel, we compare the execution of a GVC
protocol on a two-layer NN with the execution of the embedded proof protocol on
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the same NN. Since NN involve several matrix multiplications, embedded proofs
enable substantial gains, see Sect. 5.2 for implementation report. We stress that
we consider neural networks in the classification phase, which means we consider
that all the values have been set during the training phase, using an appropriate
set of labeled inputs.

The NN we verify starts with a fully connected layer combined with a ReLU
activation layer. We then apply a max pooling layer to decrease the dimensions
and finally apply another fully connected layer. The execution of the NN can be
described as: input → fc → relu → max pooling → fc .

The fully connected layer takes as input a value and performs a dot product
between this value and a parameter that can be learned. Gathering all the fully
connected layer parameters in a matrix, the operation performed on the whole
inputs is a matrix multiplication. The ReLU layer takes as input a matrix and
performs the operation x �→ max(0, x) element-wise. The max pooling layer takes
as input a matrix and return a matrix with smaller dimensions. This layer applies
a max function on sub-matrices of the input matrix, which can be considered
as sliding a window over the input matrix and taking the max of all the values
belonging to the window. The size of the window and the number of inputs
skipped between two mapping of the max function are parameters of the layer
but do not change during the training phase nor on the classification phase.
Usually a 2 × 2 window slides over the input matrix, with no overlapping over
the inputs. Therefore, the MaxPool function takes as input a matrix and outputs
a matrix which row and column size have been divided by 2. Denoting by W1

and W2 the matrices holding the parameters of the fully connected layers, X the
input matrix, and Y the output of the NN computation, the whole computation
can be described as a sequence of operations:

X → T1 = W1 ·X → T2 = ReLU(T1) → T3 = MaxPool(T2) → Y = W2 ·T3 (10)

5 Implementation and Performance Evaluation

We ran two sets of experiments to compare the cost of execution between our
embedded proof scheme and a baseline scheme using the GVC scheme. The first
set focuses only on the cost of a matrix multiplication since these are a relevant
representative of complex operations whereby the embedded proof scheme is
likely to achieve major performance gains. The second set takes into account an
entire application involving several operations including matrix multiplications,
namely a small neural network architecture.

5.1 Matrix Multiplication Benchmark

We implemented our embedded proof protocol on a 8-core machine running at
2.9 GHz with 16 GB of RAM. The GVC system is Groth’s state of the art zk-
SNARK [13] and is implemented using the libsnark library1 while the EVC
1 Libsnark, a C++ library for zkSNARK proofs, available at https://github.com/

scipr-lab/libsnark.

https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
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Table 1. Matrix multiplication benchmark

(a) Matrix multiplication proving time

n 16 32 64 128 256 512
Baseline (GVC only) 0.23 s 1.34 s 9.15 s 71.10 s 697.72 −
Embedded proofs 0.281 s 0.924 s 3.138 s 11.718 s 43.014 s 168.347 s
Time division 0.28|0.001 0.92|0.004 3.12|0.018 11.65|0.068 42.71|0.304 166.88|1.467

(b) Matrix multiplication key generation time

n 16 32 64 128 256 512
Baseline (GVC only) 0.28 s 1.56 s 10.50 s 76.62 s 585.21 s −
Embedded proofs 0.37 s 1.03 s 3.54 s 12.95 s 47.52 s 176.41 s

(c) Matrix multiplication key generation size

n 16 32 64 128 256 512
Baseline (GVC only) PK 508 KB 5.60 MB 26.9 MB 208 MB 1.63 GB −
Embedded proofs PK 757 kB 2.24 MB 7.87 MB 30.1 MB 118.7 MB 472 MB

Baseline (GVC only) VK 31 kB 123 kB 490 kB 1.96 MB 7.84 MB −
Embedded proofs VK 32 KB 123 KB 491 KB 1.96 MB 7.84 MB 31.36 MB

system is our own implementation of Thaler’s special purpose matrix multipli-
cation verification protocol [18] using the NTL library2.

The proving time reported in Table 1a measures the time to produce the proof
using the EVC system and to verify the result inside the GVC system. The last
row of the table breaks down the proving time into the sumcheck proof time
and the embedded proof time. We note that the sumcheck proving time brings
a very small contribution to the final proving time. For the value n = 512, the
proof using the GVC is not feasible whereas the embedded proof approach still
achieves realistic performance. Table 1b compares the key generation time using
the embedded proof system with the one using the GVC. Table 1c states the sizes
of the proving key (PK) and the verification key (VK) used in the previous sce-
narios. The embedded proof protocol provides substantial benefits: the protocol
improves the proving time as soon as the matrix has a size greater than 32× 32,
giving a proving time 7 times better for 128 × 128 matrix multiplication and
16 times better for a 256 × 256 matrix multiplication. Embedded proofs also
enable to reach higher value for matrix multiplications: we were able to perform
a multiplication proof for 512 × 512 matrices whereas the computation was not
able to terminate due to lack of RAM for the baseline system.

2 V. Shoup, NTL – A Library for Doing Number Theory, available at http://www.
shoup.net.

http://www.shoup.net
http://www.shoup.net
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Table 2. Experiments on 2-layer networks

(a) NN-64-32

KeyGen PK size VK size Prove Verify
Baseline (GVC only) 59 s 148 MB 490 kB 25.48 s 0.011 s
Embedded proofs 44 s 123 MB 778 kB 16.80 s 0.016 s

(b) NN-128-64

KeyGen PK size VK size Prove Verify
Baseline (GVC only) 261.9 s 701.5 MB 1.96 MB 149.5 s 0.046 s
Embedded proofs 162.7 s 490 MB 3.1 MB 66.96 s 0.067 s

5.2 Two-Layer Verifiable Neural Network Experimentations

We implemented the verification of an example of 2-layer neural network, which
can be seen as one matrix multiplication followed by the application of two non-
linear functions, namely a ReLU and a max pooling function as described in
Sect. 4. For our experiments, the max pooling layers have filters of size 2×2 and
no data overlap. Thus, setting for instance the first weight matrix to 64 × 64,
the second weight matrix size is 32 × 32; we denote by NN-64-32 such a neural
network. Table 2a reports experiments on a 2-layer neural network with a first
64 × 64 matrix product, followed by a ReLU and a max-pooling function, and
ending with a second 32×32 matrix product. Experimental times for a NN-128-
64 network (with the same architecture as above) are reported in Table 2b.

Experiments show a proving time twice better than using the baseline proving
system. The overall gain is lower than for the matrix product benchmark because
the other operations (ReLU and max pooling) are implemented the same way
for the two systems. It should be noted that the goal of the implementation
was to achieve a proof of concept for our scheme on a complete composition sce-
nario involving several functions rather than putting in evidence the performance
advantages of the scheme over the baseline, hence the particularly low size of the
matrices used in the 2-layer NN and an advantage as low as the one in Table 2a
and b. The gap between the embedded proof scheme and the baseline using a
realistic scenario with larger NN would definitely be much more significant due
to the impact of larger matrices as shown in the matrix product benchmark.

6 Conclusion

We designed an efficient verifiable computing scheme that builds on the notion of
proof composition and leverages an efficient VC scheme, namely the Sum-Check
protocol to improve the performance of a general purpose QAP-based VC proto-
col, in proving matrix multiplications. As an application, our scheme can prove
the correctness of a neural network algorithm. We implement our scheme and
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provide an evaluation of its efficiency. The security is evaluated in Appendix A.
We stress that the composition technique described in the article can be extended
using other efficient VC schemes and an arbitrary number of sequential function
evaluations, provided that they respect the requirements defined in Sect. 1.2.
Our proposal could be integrated as a sub-module in existing verifiable comput-
ing systems in order to improve their performance when verifying computations
including high complexity operations such as matrix multiplications.
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(G.A. no 644412), funded by the European Union (EU) under the Information and
Communication Technologies (ICT) theme of the Horizon 2020 (H2020) research and
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A Appendix: Embedded Proofs Security

Our embedded proof system has to satisfy the correctness and soundness require-
ments. Suppose that we have a GVC and n EVC systems to prove the correct com-
putation of y = gn ◦ fn ◦ . . . ◦ g1 ◦ f1(x). We will denote by EVCi, i = 1, . . . , n the
EVC systems. We also keep notations defined in Sect. 3: the value ti, i = 0, . . . , 2n
represents intermediate computation results, t2i−1 being the output of the fi

function, t2i being the output of the gi function, t0 := x and t2n = y. The
EVCi and GVC systems already satisfy the correctness and soundness require-
ments. Let denote by εGVC the soundness error of the GVC system and εEVCi the
soundness error of the EVCi system. Note that while the EVCi systems prove that
t2i−1 = fi(t2i−2) have been correctly computed, the GVC system proves the cor-
rectness of 2n computations, namely that the verification of the EVCi proofs has
passed and that the computations t2i = gi(t2i−1) are correct. Furthermore, the
GVC system proves the correct execution of the function F that takes as input
the tuple (x, y, r, (ti)i=1,...,2n, (πi)i=1,...,n) and outputs 1 if for all i = 1, . . . , n,
VerifyEVCi(πi, t2i−1, t2i−2) = 1 and t2i = gi(t2i−1). F outputs 0 otherwise. For
convenience, we denote by compn the function gn ◦ fn ◦ . . . ◦ g1 ◦ f1.

A.1 Correctness

Theorem 1. If the EVCi and the GVC systems are correct then our embedded
proof system is correct.

Proof. Assume that the value y = compn(x) has been correctly computed. This
means that for i = 1, . . . , n, the values t2i−1 = fi(t2i−2) and t2i = gi(t2i−1) have
been correctly computed. Since the GVC system is correct, it ensures that the
function F will pass the GVC verification with probability 1, provided that its
result is correct. Now, since the EVCi systems are correct, with probability 1 we
have that: VerifyEVCi(t2i−1, t2i−2, πi) = 1.

Therefore, if y = compn(x) has been correctly computed, then the function
F will also be correctly computed and the verification of the embedded proof
system will pass with probability 1.
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A.2 Soundness

Theorem 2. If the EVCi and the GVC systems are sound with soundness error
respectively equal to εEVCi and εGVC, then our embedded proof system is sound with
soundness error at most ε :=

∑
εEVCi + εGVC.

Proof. Assume that a p.p.t. adversary Aemb returns a cheating proof π for
a result y′ on input x, i.e. y′ �= comp(x) and π is accepted by the verifier
Vemb with probability higher than ε. We then construct an adversary B that
breaks the soundness property of either the GVC or of one of the EVC systems.
We build B as follows: Aemb interacts with the verifier Vemb of the embed-
ded system until a cheating proof is accepted. Aemb then forwards the cheating
tuple (x, y, r, (ti)i=1,...,2n, (πi)i=1,...,n) for which the proof π has been accepted.
Since y′ �= comp(x), there exists an index i ∈ {1, . . . , n} such that either
t2i−1 �= fi(t2i−2) or t2i �= gi(t2i−1). B can thus submit a cheating proof to
the GVC system or to one of the EVCi system, depending on the value of i.
Case t2i−1 �= fi(t2i−2):
By definition of the proof π, this means that the proof πi has been accepted by
the verification algorithm of EVCi implemented inside the GVC system. Aemb can
then forward to the adversary B the tuple (t2i−1, t2i−2, πi). Now if B presents
the tuple (t2i−1, t2i−2, πi) to the EVCi system, it succeeds with probability 1.
Therefore, the probability that the verifier Vemb of the embedded proof system
accepts is superior to εEVCi , which breaks the soundness property of EVCi.

Pr[Vemb accepts π] =Pr[VEVCi accepts πi | Vemb accepts π]×Pr[Vemb accepts π]
= 1 × ε � εEVCi

Case t2i �= gi(t2i−1):
This means that the proof π computed by the GVC system is accepted by Vemb

even if t2i �= gi(t2i−1) has not been correctly computed. We proceed as in the
previous case: Aemb forwards B the cheating tuple and the cheating proof π. The
tuple and the proof thus break the soundness of the GVC scheme because:

Pr[Vemb accepts π] = ε ≥ εGVC

B Appendix: Prover’s Input Privacy

B.1 Prover’s Input Privacy

The combination of the proof of knowledge and zero knowledge properties in zk-
SNARK proofs enables the prover to provide some inputs for the computation
to be proved for which no information will leak. Gennaro et al. proved in [8] that
their QAP-based protocol (see Sect. 2.1) is zero-knowledge for input provided by
the prover: there exists a simulator that could have generated a proof without
knowledge of the witness (here the input privately provided by the prover). Sub-
sequent works on QAP-based VC schemes achieve the same goal, with differences
on the cryptographic assumptions and on the flavor of zero-knowledge achieved:
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for instance Groth’s scheme [13] achieves perfect zero-knowledge at the expense
of a proof in the generic group model while Gennaro et al.’s scheme achieves
statistical zero-knowledge with a knowledge of exponent assumption.

We now sketch how the zero-knowledge property is achieved for our embed-
ded proof protocol. We first have to assume that the QAP-based VC scheme
we consider for GVC can support auxiliary inputs (as in NP statements), which
is achieved for Pinocchio [16] or Groth’s scheme [13]. Leveraging the zero-
knowledge property, the GVC prover can hide from the verifier the intermediate
results of the computation provided by the sub-provers EVCi while still allowing
the verifier to check the correctness of the final result. Therefore, the overall VC
system obtained by composing the EVC systems inside the GVC achieves zero-
knowledge: the simulator defined for the GVC system is still a valid one. Note
that even if the simulator gains knowledge of the intermediate computations
performed by sub-provers EVCi, the goal is to protect the leakage of information
from outside, namely from the verifier. In detail, keeping the notations of Fig. 2,
the verifier only knows t0, i.e. x and t2n, i.e. y, which are the inputs and outputs
of the global computation. Intermediate inputs, such as ti, i = 1, . . . , 2n − 1,
are hidden from the verifier even though they are taken into account during the
verification of the intermediate proofs by the GVC prover. Therefore, thanks to
the zk-SNARKs, the intermediate results are verified but not disclosed to the
verifier.
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