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Abstract. In this paper, we propose a new sound method to synthesize
a permissive monitor using boolean supervisory controller synthesis that
observes a Java program at certain checkpoints, predicts information flow
violations and applies suitable countermeasures to prevent violations. To
improve the permissiveness, we train the monitor and remove false pos-
itives by executing the program along with its executable model. If a
security violation is detected, the user can define sound countermeasures,
including declassification to apply in the checkpoints. We implement a
tool that automates the whole process and generates a monitor. We eval-
uate our method by applying it on the Droidbench benchmark and one
real-life Android application.

1 Introduction

Confidentiality of secret information manipulated by a program is usually formal-
ized as a noninterference baseline policy [13], which demands that low-sensitive
outputs should not be influenced by high-sensitive inputs. Several methods and
tools (e.g., JFlow JIF [19], Caml-based FlowCaml [25]) have been developed in
the last decades to analyze or enforce confidentiality. Information flow monitors
are a technique to enforce noninterference dynamically [4,7,11,14,15,22]. The
idea is to monitor the executions of a program at runtime and control its com-
pliance to security policies. As dynamic monitors only decide about the current
execution, for which more information is available at runtime, they enable us to
do a more precise analysis, and are usually more permissive compared to static
methods [18], e.g. [21] proved that dynamic monitors are more permissive in
the flow-insensitive case, where variables are assigned the security levels at the
beginning of the execution and the security levels don’t change during the execu-
tion. Hybrid monitors [14,20,24] are a class of dynamic monitors that combine
static and dynamic analysis.

Consider the following program where h is secret and the rest of variables
and objects are public:

obj1.x=h;

if(a>0)

while(b>0){obj1.x=0;b=b-1;}

else obj1.x=1;

f(l); l=obj1.x; obj2.att=l; print(obj2);
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If a > 0 ∧ b ≤ 0 holds, then the value of h will flow to l through obj1.x and
the program is insecure, otherwise the program is secure. Security type systems,
one of the main techniques for static analysis, reject this program completely,
while dynamic monitors allow the secure executions, i.e., if a > 0 ∧ b ≤ 0 does
not hold, the program is secure and executes normally, otherwise, the program
is permitted to run and a certain strategy is designed to protect the system.
The existing strategies either (a) manipulate the attacker’s observation as soon
as a violation is detected, i.e. at the observation point (e.g. print(obj2) in the
above example) [14,20], (b) run several instances of the program simultaneously
with various inputs to ensure that the program does not reach an insecure state
[5,11], or (c) control assignment of low sensitive data in high contexts (i.e. a
branch on high sensitive data) [4,26]. The approaches in category (b) are expen-
sive and have a huge overhead, due to running several instances of the program
simultaneously [12]. The methods in the categories (a) and (c) detect security
violations one-step before their occurrence [20], and as a result, it becomes com-
plicated and expensive, if possible at all, to apply a proper countermeasure to
avoid information leakage.

In the above example, if executing f(l) results in modifying the database
or sending data over a network and we detect the violation immediately before
print(obj2), then a suitable countermeasure to fix the violation might require us
to recover the system to a state where a proper countermeasure can be applied,
which is difficult, if possible at all. On the other hand if we know that the
condition a > 0 ∧ b ≤ 0 leads to a violation before executing the program, then
we are able to apply a countermeasure before f(l).

Although, dynamic monitors are usually more permissive than static meth-
ods, they still can produce false positives and are not always the most permissive
monitor. Hence, it is crucial to construct sound dynamic and hybrid monitors
that allow as many paths as possible. In addition, to the best of our knowledge,
there is no dynamic monitor that can predict confidentiality violations at runtime
before the violation points and allows applying user-defined countermeasures, in
particular declassification, to avoid security violations.

To tackle the above challenges, we propose a new approach based on boolean
supervisory controller synthesis [6] to synthesize a hybrid monitor that monitors
a program written in a subset of Java at certain checkpoints, predicts security
violations and applies suitable countermeasures in checkpoints to avoid future
leakages. Given a program, a set of checkpoints from where the program can
be observed by the monitor, a set of observation points where the attacker can
observe the application in (See Fig. 2), we use the controller synthesis method
proposed in [6] to synthesize a set of security guards for the checkpoints that
guarantee no information leakage in future, up to the next checkpoint.

To improve the permissiveness of the monitor, we construct an executable
model of the monitored program that contains only observation points and check-
points. In the training phase, we run the program along with its executable model
to train the monitor and improve its permissiveness; if a violation is predicted
at runtime in a checkpoint, we execute the program model to check whether the
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security guard of the current checkpoint is restrictive or not. If it is restrictive,
we learn and relax the security guard to allow the current (symbolic) execution
path in future. After the monitor training, we construct a more lightweight mon-
itor that controls and predicts information flow using the learnt security guards
in the checkpoints to protect the program.

Furthermore, we design a set of secure countermeasures to be applied in the
checkpoints in case of security violations that prevent the program from reaching
an insecure state. A user-defined countermeasure can be applied at runtime,
provided that it satisfies certain conditions. One of the main countermeasures
that can be applied is to declassify information, i.e. degrade the security level
of variables. In [16], we proved that the method is sound and enforces localized
delimited release [2]. If the monitor does not perform any declassification, it
enforces termination-insensitive noninterference. Furthermore, we implement a
tool-set to support our method and conduct some experiments to evaluate the
method. Our contributions are the following:

– Permissive Sound Monitor. We propose a new approach using boolean con-
troller synthesis to efficiently construct a hybrid flow-sensitive security moni-
tor that predicts future information flow at a few predefined checkpoints in a
Java program. To improve the monitor permissiveness, we train the monitor
in a testing environment and eliminate false positives as far as possible.

– Supporting User-Defined Countermeasures. In contrast to the existing
dynamic monitors that apply a few fixed countermeasures, detecting a vio-
lation multiple steps ahead of its occurrence enables the user to design and
apply various countermeasures in the checkpoints, provided that they intro-
duce no information leakage. Our method is the first method that allows
dynamic correct-by-construction information disclosure, even though the
declassification policies are simple. While existing approaches enforce a vari-
ation of noninterference, our method guarantees localized delimited release,
and enforces termination-insensitive noninterference in case of no information
release.

– Tool Support. Our method is supported by a tool-set to control information
flow in programs written in a sub-language of Java. We also conducted exper-
iments to evaluate the effectiveness of the method.

This paper is organized as follows. We briefly introduce the controller synthe-
sis problem in Sect. 2, and give an overview of the approach in Sect. 3. Section 4
presents the program syntax, the security control flow model and the program
executable model. We introduce our monitor construction approach in Sect. 5. In
Sect. 6, we present the toolset and evaluate the approach. In Sect. 7, we discuss
related work and Sect. 8 concludes the paper.

2 Preliminaries

In this section, we briefly review the symbolic supervisory controller synthesis
method proposed in [6], the goal of which is to construct a controller to control a
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system behavior, so that the bad states are avoided. In this method, the system
behavior is represented by a symbolic control flow graph. Let V = 〈v1, . . . , vn〉
be a tuple of variables, Dvi

be the (infinite) domain of a variable vi, and DV =∏
i∈[1,n] Dvi

. A valuation ν of V is a tuple 〈ν1, . . . ,νn〉 ∈ DV , and we show the
value of vi in ν by ν(vi), 1 ≤ i ≤ n. A predicate P over a tuple V is defined as a
subset P ⊆ DV (a state set for which the predicate holds). We show the union
of two vectors V1 and V2 by V1 � V2.

Definition 1 (Symbolic Control Flow Graphs). A symbolic control flow
graph (SCFG) is a tuple G = 〈L, V, I, lo, v0,Δ〉 where L is a finite non-empty
set of locations, V = 〈v1, . . . , vn〉 is a tuple of variables, I is a vector of inputs,
l0 is the initial location, v0 ∈ DV shows the initial valuation of the variables,
and Δ is a finite set of symbolic transitions δ = 〈Gδ, Aδ〉 where Gδ ⊆ DV �I is
a predicate on V � I, which guards the transition, and Aδ : DV 	→ DV �I is the
update function of δ, defined as a set of assignments.

Initially, G is in its initial state. A transition can only be fired if its guard
is satisfied and when fired, the variables are updated according to its update

function. Let l and l′ be two locations. We use the notation l
〈Gδ,Aδ〉−−−−−→ l′ to

represent a symbolic transition 〈Gδ, Aδ〉 with the source l and target l′. The
semantics of a SCFG G is defined in terms of a deterministic finite state machine.

In this method, the inputs are partitioned into two sets of controllable and
uncontrollable inputs: an input is uncontrollable if it can not be prevented from
occurring in a system, while controllable inputs are issued by the controller to
control the system behaviour. Let ψ : L → DV be the invariants defined for
the locations (i.e. an invariant ψ(l) is a condition on the valuation of variables
that must always hold when the system enters the location l), and Ic ⊆ I be
the set of controllable inputs. Given an invariant ψ and a SCFG G, a controller
C : L → DV �Ic

is synthesized to observe the system and allow or prohibit the
controllable inputs, so that the system G avoids entering a bad state, i.e. a state
that does not satisfy its invariant.

3 The Method Overview

Figure 1 shows an overview of our method. The Java program is annotated with
checkpoints, observations points (can be avoided), initial security labels and
entry points (See Fig. 2 and Sect. 4). A checkpoint is essentially a method call
in which we monitor the program, and can apply a countermeasure if needed.
The checkpoints are not permitted to exist under branch statements. An obser-
vation point is a point that leads to an observation by the attacker, that is
either a method call or the exit point of a branch of a conditional/loop whose
other branch contains a method call observation point. We construct a boolean
symbolic control flow graph that describes the program control flow enriched
with security typing information (See Sect. 4) which is fed to the Reax controller
synthesis tool [6]. For each checkpoint, the tool generates the abstract security
guards in terms of program paths and security types that in principle show the



52 N. Khakpour and C. Skandylas

Fig. 1. The method overview

paths that do not lead to insecure states (See Sect. 5). We also express the (secu-
rity) semantics of the program in terms of a symbolic control flow graph that
includes both the program behaviour and the security typing information. Given
the security semantics, we construct a model called program model that includes
only observation points in addition to checkpoints (See Sect. 4). We propose a
framework to construct a secure monitor in Sect. 5 that applies the countermea-
sures either in the checkpoints and/or in the observation points, depending on
the user preferences.

The program is observed by the monitor in the checkpoints (e.g. the run
method in Fig. 2) at runtime. The monitor checks the security guards of the cur-
rent checkpoint to determine whether the program will reach an insecure state
(e.g. in the println method in Fig. 2) or not. If not, the program will continue
its execution. Otherwise, if the learning feature is enabled (e.g. in the training
phase), the monitor executes its program model using a model execution engine
to ensure that the generated security guard is not restrictive. If the generated
security guard of the current checkpoint is restrictive, it is relaxed to allow this
secure path henceforth, i.e. the security guards are learned and improved over
time. Afterwards, the program continues its execution by applying a countermea-
sure. This monitor will be the most permissive monitor, if we train it sufficiently,
as it will never block a secure path.

4 Security Control Flow Model

We consider a sub-language of Java whose simplified syntax of statements is
shown in Fig. 3, that includes loop statements, conditional statements, assign-
ments, a return command, constructors and method calls. In this figure, v is
a variable of primitive type, e is an expression, stm is a statement, o is an
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Fig. 2. Java code snippet

object, stms is a sequence of statements, o.m(
→
e ) is a method call with arguments

→
e = e1 . . . em, and

√
shows an empty sequence of statements. The statements

in a bracket are optional and ε shows no argument.
We follow a type-based flow-sensitive method and assign a security type to

each variable, i.e. the security type of a variable may change during the program
execution. A variable is either a primitive variable or an instance variable of a
user-defined type. We consider a two-level security lattice 〈L,�,〉 where L =
{H,L} is the set of security types, � is a partial order defined over L and  is an
operator that gives the least upper bound of two elements in L (i.e. disjunction).
The function var(e) returns the variables that appear in the expression e, and if
e is an object, it returns the object itself along with all its accessible attributes
( i.e. its own attributes, the attributes of its attributes, etc). The notation ē
represents the security type of an expression e, defined as 

v∈var(e)
v̄, i.e. the

security type of an instance variable is defined based on the security types of all
its attributes.

We define an abstract security semantics for our language in terms of boolean
symbolic control flow graphs partially shown in Fig. 4. We abstract away the
program variables in this semantics and only consider the program control flow
in addition to the variables’ security types. We assign a unique abstract boolean
variable called a branch variable to each branch that denotes if that branch is
enabled or not. A loop body might change the loop guard, and subsequently, the
value of its branch variable might change in each iteration. Since, we don’t model
the program variables and consequently the loop body behaviour, we consider an
uncontrollable boolean input called uncontrollable loop guard for each loop and
each of its internal branches that non-deterministically takes a boolean value in
each state and is assigned to the corresponding branch variable after execution
of the loop body.

Let G = 〈L, V, I, lo, v0,Δ〉 represent a SCFG that shows the security seman-
tics of a program where Δ is defined using the rules in Fig. 4. The locations L are
the set of configurations where a configuration is defined as a stack σ0 : . . . : σn

of currently active contexts. A context σk, 0 ≤ k ≤ n shows the statements of
a method body that remain to be executed or a block of instructions (e.g. loop
body), and pcσk

shows the security type of the context σk. The state variables V
include the branch variables, the security types assigned to the program variables
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c ::= o | new m(
→
e ) | o.m(

→
e )

stm ::= v = e | o = c | o.m(
→
e ) | if (e) stms [else stms ] | while (e) stms | return [e] | √

stms ::= stm; stms | stm;

Fig. 3. The statements syntax

and the set of variables representing whether two instance variables point to the
same object or not. The uncontrollable inputs of I include the uncontrollable
loop guards and τ that is a boolean variable associated with the non-checkpoint
transitions, and its controllable inputs are boolean inputs associated with each
checkpoint transition.

The rule assignL defines the semantics of a variable of primitive type where
e is a method call free expression. The security type of v is modified to the
upper bound of e’s security level (ē) and the security level of current context
pcσn

. To handle object aliasing in our pure boolean SCFG, for each two arbitrary
object instance variables of the same type, we consider a boolean variable called
points-to variable to indicate whether they point to the same object or not. The
function alias returns a boolean variable to show if two instance variables are
in aliasing relation or not, where for all o, o′, alias(o, o′) = alias(o′, o). When an
instance variable is updated, the points-to variables in addition to the security
types of the associated instance variables are updated. The rule assignO defines
the semantics of an assignment where the assignee is not an attribute instance
variable. This rule relates the assignee to the assigner and all the instance vari-
ables related to the assigner (i.e. UpdatePointsToVars sets their corresponding
points-to variables), and changes the type of assignee to the upper bound of the
assigner’s type and pcσn

. It will update the security types of the attributes of
instance variables newly related to the assigner (UpdateAttributesLabels) (more
details in [16]).

The rule cond defines the semantics of conditional statements, and the rule
while1 defines the semantics of loops. In these rules, the function mc(stms)
shows the variables that might be modified by stms and basically returns all
left-hand side variables of the assignments in stms, and [stms] indicates that the
code stms is executing under a branch. When the program enters a branch, a new
context σn+1 is created whose security type is defined as the upper bound of the
current context security label (pcσn

) and the security label of e. In addition, the
security labels of all variables of the unexecuted branch in the new context are
updated in order to detect indirect implicit flows. The function χ(σ0 : . . . : σn)
returns two unique branch variables, assigned to each branch from a configu-
ration σ0 : . . . : σn. When a program exits a branch or finishes the execution
of the loop body, the latest context is removed (the rule exit and the rule
while2). In addition, the branch variables of a loop body (bv(c)) are updated
to their corresponding uncontrollable loop guard variables (LoopGuard the rule
while2).
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assignL
U = {v̄ = ē � pcσn

}
〈σ0 : . . . : σn = {v = e; }〉 �,U−−−→ 〈σ0 : . . . : σn = {√}〉

assignO

¬Attribute(o),
U = {ō = ō′ � pcσn

, alias(o, o′) = �} ∪ UpdatePointsToVars(o, o′) ∪ UpdateAttributesLabels(o, o′)

〈σ0 : . . . : σn = {o = o′; }〉 �,U−−−→ 〈σ0 : . . . : σn = {√}〉

cond

U1 := {pc{[c1]} = ē � pcσn
} ∪ ⋃

x∈mc(c2)
x̄ = x̄ � pcσn

,

U2 := {pc{[c2]} = ē � pcσn
} ∪ ⋃

x∈mc(c1)
x̄ = x̄ � pcσn

, (φ1, φ2) = χ(σ0 : . . . : σn)

〈σ0 : . . . : σn = {if (e) c1 else c2}〉 φ1,U1−−−−→ 〈σ0 : . . . : {√} : {[c1]}〉
〈σ0 : . . . : σn = {if (e) c1 else c2}〉 φ2,U2−−−−→ 〈σ0 : . . . : {√} : {[c2]}〉

while1

U1 := {pcσn+1
= ē � pcσn

} , U2 :=
⋃

x∈mc(c)
x̄ = x̄ � pcσn

, (φ1, φ2) = χ(σ0 : . . . : σn)

〈σ0 : . . . : σn = {while (e) c; }〉 φ1,U1−−−−→ 〈σ0 : . . . : {√} : σn+1 = {[c;while (e) c]}〉
〈σ0 : . . . : σn = {while (e) c; }〉 φ2,U2−−−−→ 〈σ0 : . . . : {√}〉

while2

U :=
⋃

φi∈bv(c)
φi = LoopGuard(φi)

〈σ0 : . . . : {stms} : {[while (e) c]}〉 �,∅−−→ 〈σ0 : . . . : {while (e) c; }〉

exit
〈σ0 : . . . : {stms} : {[√]}〉 �,U−−−→ 〈σ0 : . . . : {stms}〉

callNT
NonThirdParty(m), U := {pcσn+1

= pcσn
} ,

〈σ0 : . . . : σn = {v = o.m(
→
e )}〉 �,U−−−→ 〈σ0 : . . . : {return v} : σn+1 = {body [→e /pr(m)]}〉

return
〈σ0 : . . . : {return v; } : {return x; }〉 �,∅−−→ 〈σ0 : . . . {v = x; }〉

callT

ThirdParty(m) , l = ē1 � . . . � ēm � ō � pcσn
, U1 = {v̄ = l} ∪ ⋃

0≤i≤m

ēi = l

〈σ0 : . . . : σn = {v = o.m(
→
e )}〉

→̄
e ,U1−−−→ 〈σ0 : . . . : σn = {√}〉

〈σ0 : . . . : σn = {v = o.m(
→
e )}〉 ¬→̄

e ,∅−−−→ 〈σ0 : . . . : σn = {√}〉

Fig. 4. The security control flow semantics

The rule callNT describes the security semantics of a non-third party pub-
lic method invocation defined for a class of type t that creates a new context
with the statements body [

→
e /pr(m)] that is obtained by substituting the method

parameters pr(m) in the method body with the arguments
→
e . The return state-

ment pops the context and populates the variable v with the return value x
(the rule return) where x is a variable. For third-party methods, we set the
security labels of all pass-by-reference arguments and the caller to high, if the
method is invoked with a high-sensitive argument or the caller is high-sensitive
(rule callT). We assume that the caller has no static attribute.

Example 1. Figure 5(a) shows the simplified security control flow model of the
while loop in Fig. 2 generated by our tool. In this figure, the conditions WA41 and
NA41 are branch variables and EWA41 and ENA41 are uncontrollable loop guards.
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ti
<NA41 and not woracle41, U5>

<WA41 and woracle41,LPC1=LPC;
LPC=false or L_pack_Class2_run_w5 or LPC;>

41

<true, U2>43

47

<true, U3>44

<true, U1>

42

<true, U4>
45

<true, LPC=LPC1;WA41=EWA41;
woracle41=EWA41;NA41=ENA41;>

46

<true,U0>

40

Insecure
States B

Extended Insecure 
States

Application
State Space

Program
Model 

Transitions

Checkpoints

Controllable
transition

Observation
points

Uncontrollable
transition

(a) (b)

Fig. 5. (a) Security control flow model example; (b) Insecure state avoidance

Program Model. From the program semantics that is obtained by adding pro-
gram variables to the security control flow semantics, we construct a program
model that contains only the checkpoints and the observation points by merging
the transitions (See Fig. 5(b)). We remove an unmonitorable transition t (i.e.
its source is not a checkpoint or an observation point) by first propagating the
transitions’ guard and updates backwards to its incoming transitions, and then
eliminating it. If there is no other transition from the source location of t, we
remove the source location as well. The propagation continues until there is no
further unmonitorable transition to process. We proved the soundness of the
propagation algorithm [16].

5 Monitor Synthesis

The monitor synthesis process consists of two steps discussed in this section.

Step 1 - Generating Checkpoint Security Guards

A program is in an insecure state if it is in an observation point whose security
policies have been violated, i.e. leaks information. An observation point is either a
third-party method call, or the exit point of the unexecuted branch of a branch
statement where the executed branch contains an observation point that is a
method call. We consider the latter to be able to detect indirect information
flows. For example, consider the following program where print is an observation
point:

if(h>0) print(l0) else h=1;

If h>0, then the attacker observes l0 in output and will know that h was
greater than 0. If the else branch executes, since nothing is printed out, the
attacker will know that h<=0 holds. It is obvious that executing either of the
branches causes information leakage. To prevent any leakage, we consider two
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points in this program that must be avoided: print(l) that should always be
called with low-sensitive data, and the outgoing transition of the else branch
that should be in a low-sensitive context. Insecure states are formally specified
as boolean expressions defined over security labels for the locations, e.g. ¬ l0 in
the configuration print(l0) in the above example.

Given the (boolean) security control flow semantics described in Sect. 4 and
the specification of insecure states, we use the boolean controller synthesis
method described in Sect. 2 to obtain the abstract security guards (See Fig. 5(b)).
An abstract security guard describes the execution paths and security types that
lead to an insecure state. The guard of a checkpoint’s transition is restricted to
allow only execution paths that do not cause a security violation, and the insecure
paths are controlled by applying countermeasures to avoid a violation. Observe
that in the security control flow model, all the transitions from the checkpoints
are considered controllable and the rest of the transitions are uncontrollable
(Fig. 5(b)).

To obtain the security guards in terms of program variables, we propagate
each branch guard along its path to its controlling checkpoint. For instance, in
our example, the simplified generated guard for the checkpoint run is ¬ ad ∧
¬WA41. To be able to evaluate this condition in the checkpoint, we propagate
WA41 to the checkpoint run that results in 0<(d+3).

If there is a conditional statement after the loop in our example, we cannot
propagate its conditions to the checkpoint run, as we need to propagate the
conditions through the loop which is not always possible. To solve this problem,
we assume a dummy checkpoint after the loop body, called loop checkpoint that
is used to propagate the conditions to, instead of the controlling checkpoint (e.g.
the transition from 46 to 41 in Fig. 5(a)).

Step 2 - Monitor Construction

In the second step, we design a monitor to observe a program in the checkpoints
and control the information flow. In the checkpoints, if the security guard of
the current checkpoint, produced in the first step, allows the execution, the
program will continue its execution and the monitor state will also be updated
and evolved to the next checkpoint. Otherwise, a countermeasure will be applied
to protect the program. One of the main countermeasures that the user can apply
is to declassify the high-sensitive information to prevent reaching insecure states.
Declassifying a variable leads to downgrading its security label.

We represent a program state by 〈c,ν〉 where c is the configuration and ν
indicates the program variables valuation. A monitor state is represented by
〈ρ,mode, I,pc, Γ 〉 where ρ is the current checkpoint of the monitor, mode is a
variable that shows the monitoring mode (will be discussed later), I is the set of
variables declassified so far, pc is the stack of security contexts, and the function
Γ shows the valuation of security type variables. We represent the state of the
monitored program by 〈c,ν〉 ‖ 〈ρ,mode, I,pc, Γ 〉.

Let C be the set of checkpoint configurations, L be the set of observation
point configurations, P be the set of security policies and ρ

G,A−−→ ρ′ represent
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ncp-sec
〈c, ν〉 −→ 〈c′, ν′〉 , c 	∈ C , c 	∈ L

〈c, ν〉 ‖ 〈ρ,mode, I, pc, Γ 〉 −→ 〈c′, ν′〉 ‖ 〈ρ,mode, I, pc, Γ 〉

cp-insec1

〈c, ν〉 〈→− c′, ν′〉, c
G,A−−−→ ρ , ν |= G , (ν, Γ ) �|= Guard(c) , ¬Restrictive(c, ν, Γ,C, P) ,

cmeasure(ν, I) = 〈ν′′, I′〉 , Γ ′ = Γ ↓ (I′\I) , secure(cmeasure)

〈c, ν〉 ‖ 〈c,mode, I, pc, Γ 〈→−〉 c, ν′′〉 ‖ 〈c,mode, I ′, pc, Γ ′〉

cp-insec2
〈c, ν〉 〈→− c′, ν′〉, c

G,A−−−→ ρ , ν |= G , (ν, Γ ) �|= Guard(c) , ¬Restrictive(c, ν, Γ,C, P) , pc′ = A(pc) , Γ ′ = A(Γ )

〈c, ν〉 ‖ 〈c,mode, I, pc, Γ 〉 −→ 〈c′, ν′〉 ‖ 〈ρ, �, I, pc′, Γ ′〉

cp-insec3
〈c, ν〉 〈→− c′, ν′〉, c

G,A−−−→ ρ , ν |= G , (ν, Γ ) �|= Guard(c) , Restrictive(c, ν, Γ,C, P) , pc′ = A(pc) , Γ ′ = A(Γ )

〈c, ν〉 ‖ 〈c,mode, I, pc, Γ 〈→−〉 c′, ν′〉 ‖ 〈ρ,mode, I′, pc′, Γ ′〉
Guard(c) = Guard(c) ∧ ¬path(c, ρ, ν)

op-linsec
〈c, ν〉 〈→− c′, ν〉 , pc = pc1 : . . . : pcσn

, pcσn
= L , c 	= ρ , c 	∈ C , c ∈ L

〈c, ν〉 ‖ 〈ρ, �, I, pc, Γ 〉 −→ 〈c′′, ν〉 ‖ 〈ρ, �, I, pc, Γ 〉

op-hinsec
pc = pc1 : . . . : pcσn

, pcσn
= H , c 	= ρ , c 	∈ C , c ∈ L

〈c, ν〉 ‖ 〈ρ, �, I, pc, Γ 〉 −→ 〈√, ν〉 ‖ 〈ρ, �, I, pc, Γ 〉
cp-sec

〈c, ν〉 〈→− c′, ν′〉 , c
G,A−−−→ ρ′ , ν |= G , (ν, Γ ) |= Guard(c) , pc′ = A(pc) , Γ ′ = A(Γ )

〈c, ν〉 ‖ 〈c,mode, I, pc, Γ 〉 −→ 〈c′, ν′〉 ‖ 〈ρ′, ⊥, I, pc′, Γ ′〉

Fig. 6. The behaviour of a monitored program

a symbolic transition from a checkpoint ρ to ρ′ of the program model. The
behavior of the monitored program is described by the rules in Fig. 6. The first
rule states that if c is neither a checkpoint nor an observation point, then the
program continues its normal execution. When a security violation is predicted
in a checkpoint, we propose three general strategies for protection and the system
administrator should apply the proper one to react to a security violation. We
say a security violation is predicted in a checkpoint c in a state, if the propagated
security guard generated for that checkpoint (Guard(c)) is not satisfied in that
state.

The guards generated in the first step can sometimes be restrictive. To check
if a violation prediction is restrictive or not, we execute the program model up to
the next checkpoint and check if the security policies have been violated along
the path or not. If there is a violated security policy along the path, it means
that the prediction is correct, otherwise, the security guard is restrictive for this
specific path and must be relaxed. The predicate Restrictive(c,ν, Γ,C,P) states
that no security policy of P is violated in the states along the path from the
program state 〈c,ν〉 to the next checkpoint.

When a violation is predicted, the monitor can apply a user-defined counter-
measure cmeasure provided that this countermeasure is secure and the prediction
is not restrictive (the rule cp-insec1 in Fig. 6). Let Γ ↓ V be a typing environment
that degrades the security level of the variables of V in Γ . The countermeasure
cmeasure should not change the value of the low-variables. In addition, it can
only declassify variables that have not been modified by the program so far, i.e.
I ′\I ∩ν(mv) = ∅ where I ′\I is the set of declassified variables and mv is the set
of variables modified so far. For instance, consider the following program:
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h1=h2; f(); if (l1<10) {l2=h1;} else l2=l1; print(l2);

where l1 and l2 are low-sensitive, and h1 and h2 are high-sensitive. Let f()
be the checkpoint and initially Γ (h1) = Γ (h2) = H. If we declassify h1 in the
checkpoint, it also reveals h2. The reason is that the value of h1 is set to h2
before the checkpoint and if the if branch executes, h1 (and h2) will be copied
to l2 that will be printed and revealed. Hence, we only allow declassification of
variables that have not been modified. In addition, the variables declassified by
applying a countermeasure shouldn’t depend on the program state except for
the program location. For instance, consider the following program

if(h3) { h1=5;} else h2=l1; f(); l=h1; print(l1);

If h3 is true, h1 becomes modified and we cannot declassify it. If h3 is false, even
though h1 does not change, we do not allow it to be declassified, as it leads to
the disclosure of h3 as well. Furthermore, the countermeasure should not lead
the program into an insecure state again. Consider the program

f(); if(l1<10) {l2=h;} else l2=l1; print(l2);

If l1<10 ∧ Γ (h) = H holds in the checkpoint, the program is insecure, oth-
erwise it’s secure. As mentioned above, cmeasure cannot change any low-
sensitive variable such as l1. Hence, a countermeasure that prevents the program
from reaching an insecure state should include declassification of h, otherwise,
l1<10 ∧ Γ (h) = H holds infinitely and this leads to a live lock situation where
the program makes no progress and keeps constantly applying the same coun-
termeasure. To avoid this situation, applying a countermeasure should lead to
triggering a permissible transition, i.e. after applying the countermeasure, there
should be a transition in the monitor that can be triggered.

Based on the above issues, a countermeasure cmeasure is secure, if for all ν
that cmeasure(ν, I) = 〈ν ′, I ′〉, (i) applying cmeasure does not lead the program
into an insecure state, i.e. a transition from the location c in the monitor with
a guard G′ exists such that ν′ |= G′, (ii) the condition ν =Γ ν′ ∧ I ′ ∩
ν′(mv) = ∅ holds, and (iii) for all ν1 and ν2, if cmeasure(ν1, I) = 〈ν ′

1, I
′
1〉

and cmeasure(ν2, I) = 〈ν ′
2, I

′
2〉, then I ′

1 = I ′
2. We say two memories ν and ν′

are low-equal w.r.t. Γ , denoted by ν =Γ ν′, if their low variables according to
the security typing function Γ are identical, i.e. ν(v) = ν′(v) where Γ (v) = L,
∀v ∈ V and V is the set of program variables.

If a prediction about a violation is incorrect in a checkpoint c, the program
will be allowed to execute and the security guard of the checkpoint (Guard(c))
will be weakened (the rule cp-insec3). The function path(c, ρ,ν) returns the
conditions in the state ν that enable the path from c to ρ.

If the violation is predicted correctly but there is no countermeasure to apply
in that checkpoint and all the future observation points up to the next check-
points are side-effect free (i.e. return void), the execution mode is changed to
secure (mode = �) and a countermeasure is applied in the observation points,
as done in [20] (the rule cp-insec2). The rule cp-sec states that if the program is
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in a checkpoint, and the monitor allows its transition (ν |= G), then the monitor
and the program evolve into their new states, and the monitoring mode changes
to normal (⊥). In the secure mode execution, if the context is low and execut-
ing a statement in an observation point leads to a security policy violation, a
default side-effect-free action c′′ is performed, e.g. sending default data (the rule
op-linsec), otherwise nothing happens (the rule op-hinsec). We assume that the
observation points are side-effect free so that the countermeasures do not change
the program semantics. The rules for the case that the learning feature is inactive
are defined similarly.

In [16], we proved that a monitored program satisfies localized delimited
release property [2], which states that, for any initial memory states s and s′

whose secret parts may only differ, if the value of all declassified variables is the
same in both s and s′, then the observation sequence of the program running in
state s and s′ will be the same, or one is a prefix of the other. The reason for
the latter case is that our method guarantees a termination-insensitive property.
This notion disallows data release before it is declassified but allows release after
declassification. In the case of no information release, it satisfies termination-
insensitive non-interference.

6 Implementation and Evaluation

The Tool Set. We have implemented a tool to demonstrate the proposed method
targeting Java applications. The tool consists of two main components: the static
analysis component and the model execution engine. The static analysis requires
the annotated Java application as input and (i) generates security guards for
the checkpoints by employing the Reax [6] synthesis tool, (ii) automatically
constructs the program model, and (iii) instruments the code for the monitoring
purpose. The model execution engine executes symbolic control flow graphs and
is used to run the program models.

Two versions of the monitor have been implemented. In the first version, we
use the aforementioned engine to run the program model and train the monitor
to eliminate false positives. In the entry point, the monitor initiates its state and
loads the required information for it to function. On each of the checkpoints, the
engine executes the program model until the next checkpoint, and checks if
a violation has been predicted correctly. If the security guards of the current
checkpoint are restrictive, it then relaxes the security guards.

In the second version, called model-execution free monitor, the program
model is not executed and subsequently the monitor cannot learn new security
guards. In this monitor, the security guards are checked at the checkpoints and
the proper follow-up is executed if needed. If there is no violation, the security
labels are updated to their values in the next checkpoint.

To assess the permissiveness of our method and the performance of tool, we
applied it to a real world android application as well as multiple test cases of the
Droidbench test suite. The application used is pedometer [1] with 1483 lines of
code. The static experiments were performed on a Intel i7-6700 at 3.4 GHz and
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32 GB of DDR4 Ram running a 64bit version of Ubuntu Linux. The dynamic
experiments were performed on a Galaxy Tab S3 running android version 7.0.

We used 70 test cases from the Droidbench benchmark to evaluate the permis-
siveness of our method. We have achieved a precision of 100% and had 4(5%) false
positives. The static analysis performance depends on the size of code, number
of variables, the number of checkpoints and the average distance between them.
The more checkpoints the program contains, the shorter the distance between
the checkpoints and the more performant the static analysis usually should be.
Figure 7(a) shows the performance results for static analysis of pedometer. That
is mainly due to the guards being propagated along shorter paths when con-
structing the program model. The analysis of test cases in the Droidbench
benchmark takes a fraction of second, as they are very small programs. Due to
the small size of test cases in the Droidbench benchmark, it was not possible to
have more than one checkpoint in a test case to evaluate the affect of number
of checkpoints on the performance. In general, since we use boolean controller
synthesis and state space partitioning to tackle complexity, we believe that static
analysis should not be expensive, as confirmed by our current experiments so
far.

The performance of the runtime monitor with learning feature is dependent
on the number of the lines of code of the original program (See Fig. 7(b) for
pedometer). For each instruction in the original program the monitor has to
execute that instruction and update the security labels. Additionally the check-
point guards have to be checked. As a result, we expect the runtime monitor
to incur a significant performance overhead compared to the program with no
monitor.

The monitor-execution free instance only checks the guards at each check-
point and usually outperforms the runtime monitor. Its performance depends on
the number of checkpoints; it sounds that the more the checkpoints the program
has, the fewer checks have to be run at each one which improves performance.
Note that the guards are propagated and simplified statically. An outside factor
that seems to impact the monitor’s performance is the JVM’s optimization; when
the checkpoints run many times, we noticed that the performance increases by
at least an order of magnitude, e.g. from a 30% monitor running time to <1%.

Discussion. We believe that the results of static analysis are promising, mainly
because the method uses boolean analysis and state partitioning. However, the
performance overhead of dynamic monitor for our current test cases is scat-
tered in quite a wide interval, e.g. from less than 1% to 40% for the model-
execution free monitoring. We believe that we need to conduct many more
experiments on different programs with various sizes, number of checkpoints,
number of branches, number of variables etc, to be able to make a valid con-
clusion about the performance of the dynamic monitor. To this end, we should
extend the method and tool to support exceptions, to be able to apply it on more
real-life case studies. Furthermore, we are working on a new solution to run the
monitor concurrently with the original program that is expected to improve the
performance.
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Fig. 7. Performance results

7 Related Work

There is a large body of work on verification and enforcement of noninterference
as a policy to enforce confidentiality [13]. We have compared our approach with
the related work in [16]. In this section, we discuss some related work.

The authors in [8] present a taxonomy of existing dynamic and hybrid
monitors: no-sensitive-upgrade (NSU), permissive-upgrade (PU), hybrid monitor
(HM), secure multi-execution (SME), and multiple facets (MF). The NSU [3,26]
approach generates a purely dynamic monitor, that controls only one execution
and disallows any upgrade of a low sensitive variable in a high context. This app-
roach is improved in [4] by using a less-restrictive strategy in upgrading low vari-
ables in a high context, called permissive upgrade. In SME [11,17] and MF [5],
multiple versions of a program are executed simultaneously, one for each secu-
rity level, and the variable updates are controlled in a way that there will be no
information leakage. These two categories of approaches introduce no information
flow, however, they suffer from high performance overhead at runtime [5,12] that
increases with the number of used security levels. Moreover, some repairable exe-
cutions get blocked and the only applicable countermeasure is replacing the value
of violating variables with some low-secure and safe constants.

In [9,14], the authors apply a flow-sensitive type system to instrument seman-
tics of a program and consider unexecuted paths to detect indirect flows. Then,
they statically construct a monitoring automaton that is traversed at runtime
to detect security violations and apply countermeasures. In [20], the authors
proposed a framework for hybrid monitors that is proven to be sound and guar-
antees termination insensitive noninterference for a simple language with output.
It uses the countermeasures stop, suppress, or rewrite to react to a violation in
output points. We extended their flow-sensitive type system with objects and
method calls to instrument the program semantics. We predict violations at cer-
tain checkpoints which allows us to enforce a wider range of countermeasures
at runtime to handle and resolve a security violation. Our “monitor mode” is
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inspired from this work as well. Taint checking is another dynamic mechanism
to control information flow, by tracking data dependencies as data is propa-
gated in the system, that is well-surveyed in [23]. However, as it only tracks
explicit flows [10] and ignores implicit flows, it enforces a weaker property than
noninterference.

In contrast to the existing hybrid and dynamic monitors (e.g. [3,9,11,12,14,
14,17,20,24,26]), (i) our framework provides a learning feature that enables us
to train the monitor and improve its permissiveness, (ii) it supports declassifica-
tion and enforces localized delimited declassification while the existing monitors
usually enforce a noninterference property, and (iii) we detect a violation in the
checkpoints, in several steps before its occurrence, that allows us to enforce a
wider range of countermeasures at runtime to protect against leakages. The main
drawback of our method is its performance overhead that we are currently trying
to improve by providing concurrent versions and optimizing the security guards.

8 Concluding Remarks

In this paper, we proposed an approach and its supporting tool for generating
a hybrid security monitor for a subset of Java programs. This method syn-
thesizes a sound symbolic monitor to predict undesired information flows and
apply secure (user-defined) countermeasures to prevent information leakage and
enforce localized delimited declassification. Given an annotated Java program,
we implemented a tool-set to automatically generate a monitor. We also carried
out some preliminary experiments to assess the method.

The results of our static analysis technique are promising in terms of both
performance and the number of false positives. Hence, it can be used by the users
to re-design their programs to fix information leakage problems at design time. In
general, dynamic and hybrid monitors suffer from performance overhead [5,12],
and so does our method. To improve its performance overhead, we are working
on extending the method to support concurrent execution of monitors with the
program, as well as simplifying the generated guards. We will also extend the
supported sub-language of Java and conduct more experiments to evaluate the
effectiveness of the tool properly.
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