
Deriving a Cost-Effective Digital Twin
of an ICS to Facilitate Security Evaluation

Ron Bitton1, Tomer Gluck1, Orly Stan1, Masaki Inokuchi2, Yoshinobu Ohta2,
Yoshiyuki Yamada2, Tomohiko Yagyu2, Yuval Elovici1, and Asaf Shabtai1(B)

1 Department of Software and Information Systems Engineering,
Ben-Gurion University of the Negev, Beersheba, Israel

shabtaia@bgu.ac.il
2 Security Research Laboratories, NEC Corporation, Minato, Japan

Abstract. Industrial control systems (ICSs), and particularly supervi-
sory control and data acquisition (SCADA) systems, are used in many
critical infrastructures and are inherently insecure, making them desir-
able targets for attackers. ICS networks differ from typical enterprise
networks in their characteristics and goals; therefore, security assess-
ment methods that are common in enterprise networks (e.g., penetra-
tion testing) cannot be directly applied in ICSs. Thus, security experts
recommend using an isolated environment that mimics the real one for
assessing the security of ICSs. While the use of such environments solves
the main challenge in ICS security analysis, it poses another one: the
trade-off between budget and fidelity. In this paper we suggest a method
for creating a digital twin that is network-specific, cost-efficient, highly
reliable, and security test-oriented. The proposed method consists of two
modules: a problem builder that takes facts about the system under test
and converts them into a rules set that reflects the system’s topology and
digital twin implementation constraints; and a solver that takes these
inputs and uses 0–1 non-linear programming to find an optimal solution
(i.e., a digital twin specification), which satisfies all of the constraints.
We demonstrate the application of our method on a simple use case of a
simplified ICS network.

Keywords: Industrial control systems
Supervisory control and data acquisition · Penetration test
Non linear integer programming

1 Introduction

Supervisory control and data acquisition (SCADA) is user to refer to a range
of industrial control systems (ICSs) which assist in overseeing complex indus-
trial processes. SCADA systems are used in a long list of industrial applications
and processes in facilities including electricity generation plants, chemical plants,
manufacturing plants, water and sewage treatment facilities, and industries such

c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 533–554, 2018.
https://doi.org/10.1007/978-3-319-99073-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_26&domain=pdf

534 R. Bitton et al.

as the transportation industry. SCADA systems have gained increasing popular-
ity, and industries have become heavily dependent on these systems for collecting
data from industrial processes in order to control and monitor their operations
to ensure that they are functioning properly. A failure in a SCADA system or
one of its elements may result in a failure of the industrial process being con-
trolled. In some cases those systems are life critical, and thus a successful attack
on them can jeopardize thousands of people’s lives [12,18]. Because of this, the
foremost design considerations of such systems have always included a high level
of reliability and availability. In general, modern SCADA systems are comprised
of a communication infrastructure and the following major elements:

The programmable logical controller (PLC) is one of the main com-
ponents of the SCADA system. Field devices, e.g., sensors and controllers, send
signals and status updates to the PLC and receive operational commands from
the PLC, usually without the direct involvement of a human operator. The PLC is
also responsible for reflecting the field device state to remote devices (e.g., HMI).

The engineering workstation (EWS) is a computer workstation used to
update the PLC software and program the PLC logic.

The human machine interface (HMI) is a computer workstation that
makes the industrial process controlled by a SCADA system accessible to a
human operator. The operator can monitor processes (e.g., the HMI may display
the current water level at an automated reservoir) and send commands to the
field devices through an HMI (e.g., stopping the operation of a pump).

Sensors are used in order to reflect the state of an industrial element (e.g.,
wind speed in a wind tunnel) or the environment (e.g., air temperature). The
information from sensors is used by the PLC to control the industrial elements.

Communication infrastructure includes switches, cables, wireless
receivers, etc. Contemporary SCADA systems are able to use Ethernet and
TCP/IP infrastructure in order to achieve connectivity; legacy SCADA systems
rely on older technologies and communication protocols. SCADA components
communicate by utilizing standard SCADA protocols, such as DNP3 and IEC
61850, or proprietary vendor-specific protocols, such as S7 and variants of Modbus.

Additional components such as controllers and actuators, databases
which store historical information (i.e., Historian), and security elements such
as Firewall and one-way traffic devices can also be found in a typical SCADA
system.

SCADA systems, especially legacy SCADA systems, are inherently insecure.
Initially they were designed and built using specialized and proprietary proto-
cols, implemented by old software and hardware which were rarely patched [11].
Security measures such as anti-viruses and encryption are usually not consid-
ered in ICSs. These security measures are not capable of identifying and defend-
ing against ICS-specific attacks (e.g., attacks against SCADA protocols such as
Modbus) and might harm the availability of the system, which is one of its most
important requirements [7,14].

The use of SCADA systems in critical infrastructures makes them desirable
targets for attackers. Attacks on such systems have been increasing in recent

Deriving a Cost-Effective Digital Twin of an ICS 535

years. As demonstrated by the Stuxnet worm, and more recently by the TRITON
malware, a successful SCADA attack can have serious impact on a nation’s
economy, safety, and stability. For this reason, continuous security evaluation of
ICSs is crucial for mitigating cyber-attacks.

Penetration testing (pen-testing) [1] is a commonly used security measure.
The goal of pen-testing is to detect weaknesses in the network such as hosts
running vulnerable software, misconfiguration of network components or security
countermeasures, usage of default passwords for login services, etc.

The security evaluation of an ICS is quite different from the security evalu-
ation of a typical enterprise network. Typical pen-testing activity focuses on an
enterprise’s IT environment, especially IT components that can be exploited via
the Internet. These kinds of tests usually represent a small part of a typical secu-
rity evaluation of an ICS [1]. Pen-testing for ICSs mainly focuses on the indus-
trial components (e.g., Historian, HMI, PLC, and sensors) which communicate
over dedicated industrial protocols (e.g., Modbus, DNP3). These components
and protocols were originally developed for serial communication based on the
assumption that ICSs are isolated from the IT environment (and thus not con-
nected to the Internet); therefore, security properties such as authentication and
encryption are usually not implemented in these protocols. Currently, industrial
protocols are commonly transmitted over TCP/IP; in addition, many ICSs are
connected to the Internet, thus making them easy targets for attackers.

The fact that SCADA systems are implemented in critical infrastructures also
makes it difficult to evaluate their security. A typical pen-testing activity (for a
non-industrial environment) is usually executed within the enterprise network,
however this cannot be done in the case of an ICS. Pen-testing activities involve
intrusive actions such as port scanning (e.g., using Nmap) and vulnerability
assessment (e.g., using OpenVAS or a Zeus scanner), which may crash industrial
components and therefore cannot be directly executed in operational industrial
environments. Given this, security experts have suggested the construction of a
dedicated testbed for evaluating the security of an ICS [5,7,9].

A testbed is an isolated environment which contains a generic implementa-
tion of the architecture of the system under test and allows safe execution of
penetration tests. The creation of a testbed requires significant investment of
funds and effort. Therefore, an efficient testbed should be able to mimic a vari-
ety of ICS setups [5]. For this reason, most testbeds are not designed to represent
a specific ICS environment, but are more generic so as to be able to address the
needs of multiple facilities in the same industry. Keeping the testbed generic can
compromise the fidelity (i.e., the requirement that a testbed should represent
the system under inspection as accurately as possible) [17].

In this paper, we introduce a new automated method for inferring the spec-
ification of a digital twin that is designed to facilitate the security evaluation of
a specific industrial environment. In contrast to testbeds, which are generic, a
digital twin is a replica of a specific ICS; i.e., a model that consists of all of the
components from the original industrial environment. Each replicated compo-
nent can either be implemented as a digital clone (e.g., by using simulation or

536 R. Bitton et al.

virtualization software), or alternatively can be physically installed in the twin
model. The components that are implemented within the digital twin, as well
as the level of implementation of each component, defines the specific security
tests that can be conducted on the digital twin (e.g., a digital twin without the
HMI implemented does not support the execution of security tests on the HMI).
The primary benefit of using a digital twin, as opposed to a testbed, is that it
reliably represents the real industrial environment. In other words, the results of
a pen-test conducted on the digital twin genuinely reflect the expected results
of conducting the same test in the real environment.

One of the most challenging tasks in the process of creating a digital twin
is determining the implementation level (specification) of its components. The
implementation level of the components in the digital twin directly affects the
overall cost of establishing the digital twin as well as the degree to which it
reflects the industrial environment (fidelity). For example, a twin model that is
completely identical to the real industrial environment (i.e., a physical clone) has
the highest fidelity (as it allows the execution of all possible tests), but imple-
menting such a model is extremely expensive. We present a method for deriving
the specification of a cost-effective digital twin that is specifically designed to
facilitate the security evaluation of a specific industrial environment. The pro-
posed method models the problem of deriving the digital twin for a specific
industrial environment as an optimization problem. The optimization problem
attempts to maximize the impact of the digital twin under strict budget con-
straints (i.e., allowing the execution of the most important penetration tests for
improving the security of the industrial environment).

The contributions of this paper are as follows:

– We introduce the concept of creating a cost-effective digital twin that is specif-
ically designed to facilitate the security evaluation of a specific industrial
environment.

– We propose a method that is based on a constrained optimization problem,
specifically, 0–1 non-linear programming, for deriving the configuration of the
digital twin model of a specific industrial environment.

– We demonstrate the application of our proposed method on a simplified ther-
mal power plant architecture.

2 Related Work

In order to conduct penetration testing on ICS networks, the use of a testbed has
been proposed. A testbed is an isolated environment that simulates the operation
of some real system.

According to a recent survey conducted by Qassim et al. [15] testbed imple-
mentation approaches can be categorized as follows:

Physical implementation: refers to a physical clone of the components. This
approach reflects the industrial environment at the highest degree. However,
physical implementation of all of the components of a specific factory is in

Deriving a Cost-Effective Digital Twin of an ICS 537

most cases, not feasible because of the high costs of such implementation. As
a result, the majority of physical testbeds are more generic, aimed at being
able to address the needs of multiple facilities in the same industry, rather
than specific facilities.

Virtualization/emulation software: eliminates the software’s dependency on
the hardware. Virtualization/emulation software enables the establishment
of large-scale testbeds, while requiring less hardware, thereby reducing the
implementation costs. This approach enables the testing of software compo-
nents and protocols, but it does not enable the testing of hardware compo-
nents. In addition, by eliminating software and hardware dependencies, some
of the penetration tests may not provide the expected results as tests per-
formed in the real environment.

Software simulation: designed to simulate the inputs, outputs, and behav-
ior of real components (e.g., temperature sensor). This approach can provide
large-scale implementation at a low cost, however, it provides very low fidelity.
Therefore, the main usage of simulation software is to enable the testing of
other components (e.g., to feed a virtual or physical component with simu-
lated inputs/outputs).

To avoid the high costs (as described above), as well as the maintenance
involved in a physical replication testbed, many researchers chose to implement
their testbed using the simulation, virtualization, or hybrid approaches.

Genge et al. [4] and Lemay et al. [8] presented testbeds for assessing the secu-
rity of ICS networks. Both works suggested the combination of emulated and
simulated components in order to reduce implementation costs. Lemay et al. [8]
provided the following methodology for component implementation: the compo-
nents that are relevant to the test objectives should be emulated; components
that directly interface with the emulated components should be implemented as
closely as possible to real life; the remaining components can be implemented at
any level, and can even be simulated.

Unlike Genge et al. [4] and Lemay et al. [8], Gao et al. [3] and Green et al.
[5] suggested the integration of physical devices in their testbeds.

Alves et al. [2] also addressed the discrepancies between different implemen-
tation levels. They established physical and virtual gas pipeline testbeds and
showed that the testbeds behave differently under a denial of service attack, and
behave similarly under a man-in-the-middle attack.

A digital twin is a concept from the product life-cycle management (PLM)
domain introduced by Grieves et al. [6]. It is a virtual representation of a specific
physical product. The idea behind this concept is that the digital twin should be
linked to the physical product throughout the product’s life-cycle and constantly
mirror it. By doing so, the digital twin enables the prediction of the future
behavior and performance of the real product.

Unlike the previously mentioned works that suggested general testbed archi-
tectures, we propose an adaptive method for deriving the configuration of
a cost-effective digital twin for a specific industrial environment. The cost-
effective digital twin defines the implementation level of the different industrial

538 R. Bitton et al.

components (physical implementation, virtualization/emulation software, and
simulation software) to allow the evaluation of the desired security tests.

3 Cost-Effective Digital Twin for ICS

In this section, we present an adaptive method for deriving a digital twin speci-
fication for a given ICS, under strict budget constraints. The proposed method
maximizes, within the budgetary limitations, the impact of the digital twin. The
impact of a digital twin is evaluated by the number and types of security pen-
etration tests that it supports. On one hand, each test has its own benefit i.e.,
security-wise, one test might be more important than another. On the other
hand, each test has its own cost. The cost of a test is determined by the costs
of the participating components (i.e., the direct cost of implementing them in
the digital twin), as well as the test’s execution costs (e.g., security expert’s
time/salary). Note that a component might be required for multiple security
tests.

Similar to the creation of testbeds, we consider three types of implemen-
tation levels for each element: physical, virtualization/emulation, and software
simulation. The output of the proposed method specifies the digital twin config-
uration, i.e., which components of the ICS should be implemented and at which
implementation level.

Our proposed method models the problem of deriving a cost-effective digital
twin as a 0–1 non-linear programming problem. Such problems optimizes a non-
linear target function (e.g., the overall benefit of the tests supported by the
digital twin), while being subjected to multiple related constraints (e.g., budget
limits).

3.1 Notations

In order to formally describe the problem and the method’s inputs, we define
the following notations.

General ICS Environment Information. The set of possible ICS compo-
nents is denoted by

C = {c1, . . . , cnC
}.

For example, C = {PLC,EWS,Historian, PC, . . .}.
We also define the following subsets of C:

– N ⊂ C - ICS component communicating over IP
– M ⊂ N - ICS components running modern operating systems (e.g., desktops,

Web servers, HMI, EWS, Historian)
– NC ⊂ N - Network components (e.g., router, switch, and firewall)
– F ⊂ C - Field devices (e.g., generator and boiler)

Deriving a Cost-Effective Digital Twin of an ICS 539

– D ⊂ N - ICS components which are part of the direct control layer (e.g.,
RTU and PLC)

– S ⊂ M - ICS components which are part of the supervision layer (e.g., HMI,
EWS, and Historian)

General Test Specification. The set of all possible tests is denoted by

T = {t1 . . . tnT
}

A list of possible tests for the penetration testing of electric utilities based
on the NESCOR methodology [16] is presented in AppendixC.

We denote the execution of test ti on component cj by ti(cj). For each test
ti ∈ T we specify three types of prerequisites in order to be able to execute ti
on cj : device implementation requirements (DIR), environment implementation
requirements (EIR), and prerequisite test (PT).

– DIR(ti, cj), ti ∈ T ∧ cj ∈ C - denotes the minimal implementation level of a
tested component cj , which enables the execution of test ti in the digital twin.
For example, disassembling an embedded device (test t4.1.1 in AppendixC)
cannot be performed on either an emulated or simulated device, thus a phys-
ical implementation of the component in the digital twin is essential for exe-
cuting this test. The formal representation of this requirement is as follows
(p stands for physical):

DIR(t4.1.1, f ∈ F) = fp

– EIR(ti, cj), ti ∈ T ∧ cj ∈ C - denotes the minimal implementation level of
components that communicate with cj and are required for executing ti. For
example, in order to perform functional analysis (test t4.2.1 in AppendixC) on
d ∈ D, such as a PLC, one must emulate the components that communicate
with the PLC from the direct control group, such as other PLCs (denoted by
Dd), and from the supervisory control group, such as HMI (denoted by Sd).
In addition, there is a need to simulate field devices that communicate with
the PLC (denoted by Fd). The formal representation of these requirements is
as follows (e stands for emulation, and s stands for simulation):

EIR(t4.1.1, d ∈ D) = {De
d, S

e
d, F

s
d }

– PT (ti, cj), ti ∈ T ∧ cj ∈ C - represents the dependencies between tests; for
example,

PT (t4.2.5, f ∈ F) = {t4.2.3, t4.2.2, t4.2.1}
indicates that tests t4.2.3, t4.2.2, t4.2.1 should be executed first in order to
execute test t4.2.5 on f .

Using these three types of requirements, we define the set of test dependencies
(TD) for executing test ti ∈ T on a component cj ∈ C, as follows:

TD(ti, cj) = <DIR(ti, cj), EIR(ti, cj), PT (ti, cj)>

540 R. Bitton et al.

– Example I: Device disassembly. In order to enable the disassembling of a
field device f ∈ F (t4.2.1), the digital twin model must physically implement
f . Thus, the test dependencies for device disassembly of field devices f ∈ F
are as follows:

TD(t4.2.1, f ∈ F) = <fp, ∅, ∅>

– Example II: Endpoint fuzzing. Endpoint fuzzing (t4.2.5) is a pen-testing
activity that could be executed on an emulated or physical device. However, it
is not possible to perform fuzzing without understanding the tested interface
and without capturing and analyzing the communication with the interface.
For these reasons, capture analysis (t4.2.3), communication capture (t4.2.2),
and interface functional analysis (t4.2.1) are prerequisite tests for endpoint
fuzzing. In addition, in order to perform this test the digital twin must also
emulate the direct control devices which communicate with the tested device.
Thus, the test dependencies for fuzzing a field device f ∈ F are as follows:

TD(t4.2.5, f ∈ F) = <fe, {De
f}, {t4.2.3, t4.2.2, t4.2.1}>

Specific ICS Environment Information. The specific ICS environment (for
which we would like to derive the digital twin definition) is denoted as follows:

– E = {e1, . . . , enE
} - the set of elements in a specific ICS environment, e.g., ei

is a specific PLC in the ICS.
– Communication = {<ei, ej> | ei, ej ∈ E} - the set of links between elements

in the specific ICS environment, as was observed in the ICS’s network, e.g.,
<ei, ej> indicates that a communication was observed between element ei
and element ej .

– Topology = <E,Communication> - the topology of the specific ICS,
which consists of the set of elements (E) and their communication links
(Communication).

– I = {p, v, s} - the set of possible implementation levels of an element in E
where p stands for physical replica, v for virtualization, and s for simulation.

– role : E → C - a function that maps an element in the specific ICS envi-
ronment to its type, e.g., role(e1) = PLC indicates that element e1 is an
instance of a PLC in the ICS.

In addition, we define the specific environment dependencies (ED) as follows:

ED(ti, ej), ti ∈ T ∧ ej ∈ E

Unlike the test dependencies (TD), the environment dependencies
(ED) are derived for a specific ICS environment, e.g., the following expression:
ED(tm, en) = {e2

v, e4
s, e5

s} indicates that in order to execute test tm on the spe-
cific element en, the digital twin must contain the following: a virtual (or higher)
implementation of element e2 and at least a simulation of elements e4, and e5.

Deriving a Cost-Effective Digital Twin of an ICS 541

According to the proposed method the main prerequisite for deriving the
digital twin is the topology of the specific ICS environment. Typical ICS envi-
ronments are extremely complex and may change over time; thus, acquiring
the environment information is not a trivial task. There are several tools and
methods that can be used to collect the required information, including the
ICS blueprints which usually contain the architecture design of the specific ICS
environment, as well as passive monitoring tools such as the GRASSMARLIN
that are able to extract information from the live (or recorded) network traffic
(including IP addresses, operating system of components, vendors, and compo-
nent types).

Costs, Benefits and Budget

– cost : E × I → R - a function that maps a specific implementation of an
element to its cost, e.g., cost(e, p) = 650 indicates that a physical implemen-
tation of element e in the digital twin costs $650.

– benefit : T × E → R - a function that defines the benefit of executing a test
on an element, e.g., by setting the benefit(t, e) to b, the asset owner indicates
that the benefit of executing test t on element e is b; where, a high b value
will increase the probability that this test will be supported by the digital
twin model (by setting the benefit(t, e) to ∞, the asset owner can force the
algorithm to derive a digital twin which support this test). The benefit of a
test is assigned according to the importance of the test (the significance of
the expected findings) and the element being tested.

– Budget ∈ R - the overall budget assigned to create the digital twin.

3.2 Proposed Method

The proposed method consists of the following three main modules (see Fig. 2
in AppendixE):

The Data Processor is responsible for integrating the general test depen-
dencies (i.e., TD) and the topology of a specific industrial environment (i.e.,
Topology), in order to derive the list of environment dependencies (i.e., ED) of
the specific industrial environment.

The Problem Builder is responsible for translating the information pro-
vided for the specific industrial environment (e.g., budget and test dependencies)
to a non-linear maximization problem.

The Solver solves the non-linear maximization problem in order to derive
the specification of the cost-effective digital twin.

The input to the proposed method includes the following:
ICS Architecture: the specification of the architecture of the industrial

environment for which the digital twin is created. The specification includes:
system topology

(Topology) i.e., a description of the elements in the system (E) and their
communication patterns (Communication); the role of each element (role(e));

542 R. Bitton et al.

the cost for each possible implementation of the elements (cost(e, i)); and the
benefit of executing tests on elements (benefit(t, e)).

Budget: (Budget) the overall budget allocated for the creation of the digital
twin.

Test Specification: includes the set of possible tests T = {t1 . . . tnT
} and

the set of test dependencies TD(ti, cj), ti ∈ T ∧ cj ∈ C.

3.3 Data Processor

The Data Processor derives the set of environment dependencies (ED) by
analyzing the following inputs: (1) a general specification of test dependen-
cies (TD); (2) the specific topology of the industrial environment under test
(Topology = <E,Communication>); and (3) an element in the environment
(e ∈ E). This is done according to the process presented in Algorithm1.

Given the inputs, the Data Processor initially adds the appropriate device
implementation requirement (DIR) to the environment dependencies (lines 10–
12). Then, for each environment implementation requirement r ∈ EIR it adds
the elements in the ICS that communicate with e and are of the type specified in
r (lines 13–16). Finally, it recursively adds the environment dependencies of the
prerequisite tests (lines 19–21). The output of the procedure are the environment
dependencies for executing t on e, which are specific for the particular ICS
architecture.

3.4 Problem Builder

The Problem Builder represents the digital twin inference problem as a 0–1
non-linear programming problem. The non-linear integer programming problem
focuses on the optimization of a non-linear target function, while satisfying a set
of non-linear constraints (that are represented as algebraic equations) [10]. The
non-linear integer problem is formally defined as follows:

min /max f(x)
s.t gi(x) ≤ bi, i = 1, . . . ,m hi(x) = yi, j = 1, . . . , k
x ∈ X,X ⊂ Z

n andX is a finite set

where f(x) is the target function that we wish to maximize (or minimize), and
the constraints are represented by gi(x) and hi(x).

A 0–1 non-linear programming problem is a special case of the non-linear
integer programming problem, in which x can either be 0 or 1. In this section,
we describe how we define the target function (f(x)) and the constraints (gi(x)),
in order to represent the digital twin specification inference problem as a 0–1
non-linear programming problem.

The specification of a given digital twin model is defined by the variables of
the 0–1 non-linear programming problem, which are denoted as follows:

X = <xs
1, x

e
1, x

p
1, . . . , x

s
nE

, xe
nE

, xp
nE

>. (1)

Deriving a Cost-Effective Digital Twin of an ICS 543

Algorithm 1. Data Processor
1: Inputs:
2: {TD(t, c)|t ∈ T ∧ c ∈ C}
3: Topology ← <E,Communication>
4: e ∈ E
5: Precondition:
6: role(e) ∈ C
7: Initialize:
8: ED ← ∅
9: function ProcessData(TD(t, c), e ,Communication)

10: DIR ← GetDeviceImplementationRequirement(TD(t, c))
11: i ← GetImplementationLevel(DIR)
12: ED ← ED ∪ ei

13: EIR ← GetEnvironmentImplementationRequirement(TD(t, c))
14: for each r ∈ EIR do
15: i ← GetImplementationLevel(r)
16: C ← GetIndustrialControlSubGroup(r)
17: for each <j, k> ∈ Communication|j = e ∧ role(k) ∈ C do
18: ED ← ED ∪ ki

19: PT ← GetPrerequisiteTests(TD(t, c))
20: for each t∗ ∈ PT do
21: ED ← ED ∪ Process(TD(t∗, c), e, Communication)

22: return ED

Each variable indicates whether a specific element e is implemented as i
within the digital twin as defined by Eq. 2.

X = {xi
e | i ∈ I, e ∈ E} (2)

These variables can be equal to 0 (zero) or 1 (one), and thus the first set of
constraints is:

xi
e ∈ {0, 1} (3)

where xi
e = 1 indicates that element e is implemented in the digital twin as i,

and xi
e = 0 indicates that element e is not implemented in the digital twin as i.

Equation 4 presents the implementation constraint, which ensures that an
element e is implemented as either simulated, virtualized, physical, or not imple-
mented at all. The number of implementation constraints is equal to the number
of elements in the given ICS (i.e., nE).

xp
e + xv

e + xs
e ≤ 1 (4)

In order to ensure that the overall cost of the digital twin implementation
does not exceed the allocated budget, we define the cost constraint presented in
Eq. 5. ∑

xi
e∈X

cost(xi
e) ≤ Budget (5)

544 R. Bitton et al.

Each assignment for X defines a possible configuration of the digital twin,
where a valid assignment satisfies all of the defined constraints.

Given the above constraints, the target function (defined in Eq. 6) is designed
to maximize the impact of the digital twin model.

max
(∑

e∈E,t∈T

benefit(t, e) ·
∏

eij∈ED(t,e)

xi
ej

)
(6)

where the impact of a given digital twin model (defined by the assignment X)
is defined as the sum of all of the benefit values for the tests in T that can
be executed on X. As can be seen, the benefit value is added only if all of the
dependencies of a test are satisfied.

3.5 Solver

A 0–1 non-linear programming problem is NP-hard [13]. In small environments the
solution for this problem can be determined by applying a brute force approach,
i.e., for each possible assignment for X, first check whether it satisfies all of the
constraints; if all of the constraints are satisfied, compute the value of the target
function, and finally, select a valid assignment that provides the maximal value.

The time that it will take for the brute force approach to provide the optimal
result is significant as it grows exponentially by the number of components. Given
n components, and m security tests, and three implementation levels (real, emu-
lated, simulated), the time complexity for the brute force algorithm is as follows:

O(3n · nm · n) (7)

where, 3n represents all of the possible implementation of a components, nm rep-
resents the maximum tests per component, and n is the calculation of the cost per
implementation state. The exponential time complexity makes the brute force
algorithm unsuitable for large ICS environments (more than 20 components).
For example, executing the brute force approach on the simple ICS environment
presented in Appendix E in Fig. 3, which consisted of 14 components, takes three
minutes when using a standard personal computer. In future work, we plan to
develop and evaluate different heuristics which are on average sub-exponential
(but may not provide the best setup for the digital twin.)

4 Demonstration

In this section, we demonstrate the application of the proposed method on a
simplified ICS environment of a thermal power station with one boiler and two
generators.

4.1 Description of the Tested ICS Environment

The simplified environment (illustrated in AppendixE, Fig. 3) consists of an
enterprise network, a supervision layer, a direct control layer, and field devices.

Deriving a Cost-Effective Digital Twin of an ICS 545

The enterprise network contains an IT client and an IT server, which are con-
nected to the supervision layer through a firewall that filters improper packets.
The supervision layer consist of the following components which monitor and
control the direct control components:

– Historian. Responsible for logging all events occurring during the process.
To do so, the historian periodically queries the PLCs for their states (via
Modbus/TCP in the case of PLC-1, or S7comm in the case of PLC-2).

– Human machine interface (HMI). Provides a human-friendly interface
for interacting with the field devices. In order to report the field devices’
states and alarms to the operator, the HMI periodically queries the PLCs,
as the Historian does (via Modbus/TCP in the case of PLC-1, or S7comm
in the case of PLC-2). Moreover, the HMI enables the operator to remotely
change field devices’ parameters.

– Engineering Work Station (EWS). Enables the operator to change the
PLCs’ configurations and logic. The EWS has all of the required programming
and configuration software installed. It communicates with the PLCs and HMI
through the S7comm protocol when such updates occur.

The supervision layer’s components are connected to the direct control
devices through a switch. The direct control components include:

– Two Siemens S7-300 PLCs. These components directly control the field
devices. PLC-1 controls both the boiler (BLR) and one of the generators
(GEN-1). It can turn the boiler’s heater on or off, change the generator’s
rotation speed, and start or stop its operation. PLC-2 controls only GEN-2
and can perform the two latter actions as well. The PLCs are connected to the
supervision layer via the switch (SW-2), and communicate with each other
via the S7comm protocol.

– Remote Terminal Unit (RTU). This component is connected directly
to the PLCs and enables the operator to manually change the field devices’
parameters and present their current states and alarms.

The field devices include the components that physically perform the process.
This simplified environment contains two generators (GEN-1 and GEN-2) and
one boiler (BLR).

4.2 Security Test Specifications

For the demonstration, we followed the pen-testing methodology presented by
the National Electric Sector Cybersecurity Organization Resource (NESCOR)
[16]. This methodology provides guidelines for executing penetration tests on
smart grid systems. Although the NESCOR methodology is specifically designed
for smart grid systems such as advanced metering infrastructure (AMI), wide-
area monitoring, protection and control (WAMPAC), and home area network
(HAN), it provides an extensive list of pen-testing activities that can be applied
on other types of ICSs.

546 R. Bitton et al.

The various testing activities presented in their methodology are classified
into four categories: embedded device penetration tasks, which address the physi-
cal attack vector against field devices; network communication penetration tasks,
which address the exploitation of devices through network protocol manipula-
tion; server application penetration tasks, which address testing applications that
are running on the control servers; and, server operating system penetration tasks,
which address testing of the operating system of the control servers.

Execution of the pen-tests presented in the NESCOR methodology on a
digital twin in which not all of the components are physically implemented is
not trivial, because, as described in Sect. 3.2, the execution of some activities in
a digital twin may depend on a specific set of requirements (denoted by DIR,
EIR, and PT).

We thoroughly analyzed more than 80 penetration tests presented in the
NESCOR methodology and defined the three types of requirements for each
test. The complete set of tests and requirements is summarized in Appendix C.
For our demonstration we select the following five tests: Device Disassembly
(4.1.1), Interface Functional Analysis (4.2.1) Communication Capture (5.2.1),
Fuzzing (5.2.4), Application Fingerprinting (7.1.1), and Application Functional
Analysis (7.1.2).

4.3 Implementation Cost Description

In the proposed method we considered three types of implementation levels:
physical, virtual, and simulation.

Obviously, not all of the components can be implemented by all type of
implementations, and some physical devices may not have an emulated/virtual
version. In addition, the pricing of different implementation levels is not the
same for different vendors. For example, a physical SIEMENS PLC can cost
from hundreds of dollars to thousands with an average cost of about $2500
for the S7300 models1; a license for S7-Plcsim software, which can be used for
emulating a SIEMENS PLC or HMI costs $7002; and using third party tools to
simulate a PLC can be less expensive (e.g., awlsim3 is free of charge, with costs
just for the setup time).

For simplicity, in our demonstration we assumed that a physical implemen-
tation of a device would have the highest cost and a simulation-based imple-
mentation the lowest. Specifically, as presented in AppendixB, a physical imple-
mentation is ten times more expensive than virtualization, which is three times
more expensive than simulation. In addition, an equal benefit for all tests i.e.,
benefit(t, e) = 1 ∀t ∈ T ∧ e ∈ E was assumed. It should be mentioned that
these assumptions do not affect the construction of the problem or its solution
by using 0–1 non-linear methods; therefore we believe that these assumptions
are plausible.
1 http://www.isgautomation.com/siemens-simatic-s7-300-plc-6es7.html.
2 https://www.steinerelectric.com/p/siemens-simatic-s7-s7-plcsim-v5-4-floating-lic/

429647.
3 https://github.com/mbuesch/awlsim.

http://www.isgautomation.com/siemens-simatic-s7-300-plc-6es7.html
https://www.steinerelectric.com/p/siemens-simatic-s7-s7-plcsim-v5-4-floating-lic/429647
https://www.steinerelectric.com/p/siemens-simatic-s7-s7-plcsim-v5-4-floating-lic/429647
https://github.com/mbuesch/awlsim

Deriving a Cost-Effective Digital Twin of an ICS 547

4.4 Results

The creation of the cost-effective digital twin model for the specific ICS environ-
ment starts with processing the generic test specification (TD) and the specific
topology inputs (Topology = <E,Communication>). This is done by apply-
ing the data processing algorithm presented in Algorithm1 on each combination
of element e ∈ E and test t ∈ T . The output of this algorithm produces 42
different tests (presented in AppendixD), each of which includes a set of envi-
ronment dependencies (ED). The environment dependencies are specific to the
ICS environment described in Sect. A.

Next, given the specific budgetary limitations, we apply the Problem Builder
module and create the 0–1 non-linear programming problem (A formal repre-
sentation of the problem is presented in AppendixA). We implemented a naive
brute force algorithm to find the optimal configuration for a given budgetary
limitation.

We conducted an experiment in which we derived the configuration of a
digital twin model for different budgetary limitation values, while considering
all of the tests presented in AppendixD (a total of 42 tests).

The results of this experiment are presented in Fig. 1. As expected, the higher
the available budget the higher the impact of the digital twin.

In this figure, it can also be seen that when Budget = $3700, all of the
elements are implemented as virtual devices; in this case, the digital twin model
supports 36 tests of the 42 possible tests. The remaining tests require physical
implementation of various elements; in order to support all of the tests, the
budget required is $23500 (while the total cost of the industrial system is $40000).

The results show a logarithmic increase of the benefit (impact) with the
increase in the available budget.

5 Conclusions and Future Work

We present a method for deriving the specification of a digital twin for an ICS
for the purpose of security analysis. The resulting specification is a cost-effective
representation of the ICS under test that provides the high fidelity required for
executing a given set of security tests. The method is designed as a three step
process. First, the Data Processor derives the ICS’s environment dependencies
from its topology and the tests’ dependencies. Then, the Problem Builder uses
the ICS’s architecture, tests’ dependencies, and budgetary limitations to create a
0–1 non-linear programming problem representation. Finally, the Solver applies
a search algorithm to find the best solution for the problem, i.e., finds the dig-
ital twin specification with the highest impact and an affordable cost (i.e., its
implementation cost does not exceed the specified budget). To demonstrate the
application of the proposed method, we used a simplified structure of a thermal
power station and the NESCOR pen-testing methodology to define the tests and
their requirements.

In future work we plan to evaluate the method on more realistic environments
from a diverse range of industries and propose a heuristic algorithm for finding a

548 R. Bitton et al.

Fig. 1. The trade-off between the budget and the impact of the digital twin computed
for the simple thermal power station.

near-optimal solution (digital twin setup) with sub-exponential time complexity.
In addition, we plan to extend the solution to support different pricing strategies
for the various implementations, such as software bundles with contribution
margin-based pricing. We also plan to (1) add new types of constraints, e.g.,
constraints that take the physical space available within the digital twin that
will be implemented (e.g., a small room or an open space) into account; (2)
consider implementations of multiple elements as virtual or simulations on the
same machine; and (3) handle identical setups in an industrial environment
(e.g., if two similar production lines are implemented, there is no need to test
both of them). Finally, a general knowledge base of possible tests and their test
dependencies should be researched and established.

A Formal Representation

1. C = {PC, Server, Switch, F irewall, EWS,HMI,
Historian, PLC,RTU,Generator,Boiler}

2. N = {PC, Server,Historian,HMI,EWS,PLC}
3. M = {PC, Server,Historian,HMI,EWS}
4. NC = {Switch, F irewall}
5. F = {Generator,Boiler}
6. D = {PLC,RTU}
7. S = {EWS,HMI,Historian}
8. E = {IT − Client, IT − Server, SW − 1, FW − 1, EWS − PC,HMI −

PC, SW − 2,Hist − PC,PLC − 1, PLC − 2, RTU − 1, GEN − 1, GEN −
2, BLR}

Deriving a Cost-Effective Digital Twin of an ICS 549

9. Communication = {<IT − Client, IT − Server>,
<IT − Server, IT − Client>,<Hist − PC,PLC − 1>,
<Hist − PC,PLC − 2>,<HMI − PC,PLC − 1>,
<HMI − PC,PLC − 2>,<EWS − PC,HMI − PC>,
<EWS − PC,PLC − 1>,<EWS − PC,PLC − 2>,
<PLC−1, GEN−1>,<PLC−1, BLR>,<PLC−2, GEN−2>,<RTU−1,
PLC − 1>, <RTU − 1, PLC − 2>}

10. T = {4.1.1, 4.2.1, 5.2.1, 5.2.4, 7.1.1, 7.1.2}.

11. role(e) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PC, e = IT − Client

Server, e = IT − Server

Switch, e ∈ {SW − 1, SW − 2}
Firewall, e = FW − 1
EWS, e = EWS − PC

HMI, e = HMI − PC

Historian, e = Hist − PC

PLC, e ∈ {PLC − 1, PLC − 2}
RTU, e = RTU − 1
Generator, e ∈ {GEN − 1, GEN − 2}
Boiler, e = BLR

12. The cost function is defined in AppendixB.

B Implementation Costs of the ICS Components (USD)

p v s

IT − Client 1000 100 30

IT − Server 4000 100 30

SW − 1 3000 300 90

SW − 2 3000 300 90

FW − 1 4000 400 120

EWS − PC 1000 100 30

HMI − PC 1000 100 30

Hist − PC 1000 100 30

PLC − 1 2500 250 75

PLC − 2 2500 250 75

RTU − 1 1000 100 30

GEN − 1 4000 400 120

GEN − 2 4000 400 120

BLR 8000 800 120

550 R. Bitton et al.

C Specification of Penetration Testing Activities Based
on NESCOR Methodology

Category Subcategory ID Name T DIR EIR PT

Embedded

Device

Electronic

Component

4.1.1 Device Disassembly f ∈ F fp {}

4.1.2 Circuit Analysis f ∈ F fp {} 4.1.1

4.1.3 Datasheet Analysis f ∈ F fs {} 4.1.2

4.1.4 Dumping Embedded

Data

f ∈ F fp {} 4.1.3

4.1.5 Bus Snooping f ∈ F fp {} 4.1.3

4.1.6 String Analysis f ∈ F fp {} 4.1.4,4.1.5

4.1.7 Entropy Analysis f ∈ F fp {} 4.1.4,4.1.5

4.1.8 Systematic Key Search f ∈ F fp {} 4.1.4,4.1.5

4.1.9 Data Decoding f ∈ F fp {} 4.1.6,4.1.7,4.1.8

4.1.10 Embedded Hardware

Exploitation

f ∈ F fp {} 4.1.9

4.1.1 Device Disassembly d ∈ D dp {}
4.1.2 Circuit Analysis d ∈ D dp {} 4.1.1

4.1.3 Datasheet Analysis d ∈ D ds {} 4.1.2

4.1.4 Dumping Embedded

Data

d ∈ D dp {} 4.1.3

4.1.5 Bus Snooping d ∈ D dp {} 4.1.3

4.1.6 String Analysis d ∈ D dp {} 4.1.4,4.1.5

4.1.7 Entropy Analysis d ∈ D dp {} 4.1.4,4.1.5

4.1.8 Systematic Key Search d ∈ D dp {} 4.1.4,4.1.5

4.1.9 Data Decoding d ∈ D dp {} 4.1.6,4.1.7,4.1.8

4.1.10 Embedded Hardware

Exploitation

d ∈ D dp {} 4.1.9

Technician

Interface

4.2.1 Interface Functional

Analysis

f ∈ F fe {De}

4.2.2 Communication

Capture

f ∈ F fe {De} 4.2.1

4.2.3 Capture Analysis f ∈ F fe {De} 4.2.2

4.2.4 Endpoint

Impersonation

f ∈ F fe {De} 4.2.3

4.2.5 Endpoint Fuzzing f ∈ F fe {De} 4.2.3

4.2.6 Exploitation f ∈ F fe {De} 4.2.4,4.2.5

4.2.1 Interface Functional

Analysis

d ∈ D de {De, F s, Se}

4.2.2 Communication

Capture

d ∈ D de {De, F s, Se} 4.2.1

4.2.3 Capture Analysis d ∈ D de {De, F s} 4.2.2

4.2.4 Endpoint

Impersonation

d ∈ D de {De, F s, Se} 4.2.3

4.2.5 Endpoint Fuzzing d ∈ D de {De, F s, Se} 4.2.3

4.2.6 Exploitation d ∈ D de {De, F s, Se} 4.2.4,4.2.5

(continued)

Deriving a Cost-Effective Digital Twin of an ICS 551

(continued)

Category Subcategory ID Name T DIR EIR PT

Firmware

Binary

4.3.1 Disassembly f ∈ F fp {}

4.3.2 Code Analysis f ∈ F fp {} 4.3.1

4.3.3 Exploitation f ∈ F fp {} 4.3.2

4.3.1 Disassembly d ∈ D dp {}
4.3.2 Code Analysis d ∈ D dp {} 4.3.1

4.3.3 Exploitation d ∈ D dp {} 4.3.2

Network Protocol

Analysis

5.2.1 Communication Capture n ∈ N ne {Ne}

5.2.2 Cryptographic Analysis n ∈ N ne {Ne} 5.2.1

5.2.3 Unknown Protocol Decoding n ∈ N ne {Ne} 5.2.2

5.2.4 Fuzzing n ∈ N ne {Ne} 5.2.1

5.2.5 Exploitation n ∈ N ne {Ne} 5.2.4

Server OS Information

Gathering

6.1.1 DNS Interrogation m ∈ M me {}
6.1.2 Port Scanning m ∈ M me {}
6.1.3 Service Fingerprinting m ∈ M me {} 6.1.2

6.1.4 SNMP Enumeration m ∈ M me {} 6.1.3

6.1.5 Packet Sniffing m ∈ M me {Me, De} 6.1.4

6.1.2 Port Scanning n ∈ NC ne {}
6.1.3 Service Fingerprinting n ∈ NC ne {} 6.1.2

6.1.5 Packet Sniffing n ∈ NC ne {} 6.1.4

Vulnerability

Analysis

6.2.1 Unauthenticated Vulnerability

Scanning

m ∈ M me {} 6.1.4

6.2.2 Authenticated Vulnerability

Scanning

m ∈ M me {} 6.1.4

6.2.3 Vulnerability Validation m ∈ M me {} 6.2.1,6.2.2

6.2.4 Packet Capture Analysis m ∈ M me {Me, De} 6.1.5

6.2.1 Unauthenticated Vulnerability

Scanning

n ∈ NC ne {} 6.1.4

6.2.2 Authenticated Vulnerability

Scanning

n ∈ NC ne {} 6.1.4

6.2.3 Vulnerability Validation n ∈ NC ne {} 6.2.1,6.2.2

6.2.4 Packet Capture Analysis n ∈ NC ne {} 6.1.5

Exploitation 6.3.1 Identify Attack Avenues m ∈ M me {Me, De} 6.1,6.2

6.3.2 Vulnerability Exploitation m ∈ M me {Me, De} 6.3.1

6.3.3 Post Exploitation m ∈ M me {Me, De} 6.3.2

6.3.1 Identify Attack Avenues n ∈ NC ne {} 6.1,6.2

6.3.2 Vulnerability Exploitation n ∈ NC ne {} 6.3.1

6.3.3 Post Exploitation n ∈ NC ne {} 6.3.2

Server

Applica-

tions

Application

Mapping

7.1.1 Application Fingerprinting m ∈ M me {}
7.1.2 Functional Analysis m ∈ M me {Me, Ds} 7.1.1

7.1.3 Process Flow Modeling m ∈ M me {Me, Ds} 7.1.2

7.1.4 Request/Resource Mapping m ∈ M me {Me, Ds} 7.1.3

Application

Discovery

7.2.1 Default Configuration Testing m ∈ M me {}

7.2.2 Authentication Testing m ∈ M me {Me, Ds}
7.2.3 Session Management Testing m ∈ M me {Me, Ds} 7.2.2

7.2.4 Authorization Testing m ∈ M me {Me, Ds} 7.2.3

7.2.5 Business Logic Testing m ∈ M me {Me, Ds}
7.2.6 Code Injection Testing m ∈ M me {Me, Ds}
7.2.7 Denial of Service Testing m ∈ M me {Me, Ds}
7.2.8 Client-Side Code Testing m ∈ M me {Me, Ds}

Application

Exploitation

7.3.1 Identify Attack Avenues m ∈ M me {Me, Ds} 7.1,7.2

7.3.2 Vulnerability Exploitation m ∈ M me {Me, Ds} 7.3.2

7.3.3 Post Exploitation m ∈ M me {Me, Ds} 7.3.3

552 R. Bitton et al.

D Environment Dependencies

ID Test Element The list of environment dependencies

1 5.2.1 IT-client {IT − cliente, IT − servere, SW − 1e}
2 5.2.4 IT-client {IT − cliente, IT − servere, SW − 1e}
3 7.1.1 IT-client {IT − cliente}
4 7.1.2 IT-client {IT − cliente, IT − servere}
5 5.2.1 IT-server {IT − servere, IT − cliente, SW − 1e}
6 5.2.4 IT-server {IT − servere, IT − cliente, SW − 1e}
7 7.1.1 IT-server {IT − servere}
8 7.1.2 IT-server {IT − servere, IT − cliente}
9 5.2.1 SW-1 {SW − 1e, IT − servere, IT − cliente, SW − 2e, FW − 1e}
10 5.2.4 SW-1 {SW − 1e, IT − servere, IT − cliente, SW − 2e, FW − 1e}
11 5.2.1 SW-2 {SW −2e, SW −1e, FW −1e, HMI−PCe, EWS−PCe, PLC−1e, PLC−2e}
12 5.2.4 SW-2 {SW −2e, SW −1e, FW −1e, HMI−PCe, EWS−PCe, PLC−1e, PLC−2e}
13 5.2.1 EWS-PC {EWS − PCe, PLC − 1e, PLC − 2e, SW − 2e}
14 5.2.4 EWS-PC {EWS − PCe, PLC − 1e, PLC − 2e, SW − 2e}
15 7.1.1 EWS-PC {EWS − PCe}
16 7.1.2 EWS-PC {EWS − PCe, PLC − 1s, PLC − 2s}
17 5.2.1 HMI-PC {HMI − PCe, PLC − 1e, PLC − 2e, SW − 2e}
18 5.2.4 HMI-PC {HMI − PCe, PLC − 1e, PLC − 2e, SW − 2e}
19 7.1.1 HMI-PC {HMI − PCe}
20 7.1.2 HMI-PC {HMI − PCe, PLC − 1s, PLC − 2s}
21 5.2.1 Hist-PC {Hist − PCe, PLC − 1e, PLC − 2e, SW − 2e}
22 5.2.4 Hist-PC {Hist − PCe, PLC − 1e, PLC − 2e, SW − 2e}
23 7.1.1 Hist-PC {Hist − PCe}
24 7.1.2 Hist-PC {Hist − PCe, PLC − 1s, PLC − 2s}
25 4.1.1 PLC-1 {PLC − 1p}
26 4.2.1 PLC-1 {PLC − 1e, RTU − 1e, BLRs, GEN − 1s, HMI − PCe, EWS −

PCe, Hist − PCe}
27 5.2.1 PLC-1 {PLC − 1e, RTU − 1e, HMI − PCe, EWS − PCe, Hist − PCe, SW − 2e}
28 5.2.4 PLC-1 {PLC − 1e, RTU − 1e, HMI − PCe, EWS − PCe, Hist − PCe, SW − 2e}
29 4.1.1 PLC-2 {PLC − 2p}
30 4.2.1 PLC-2 {PLC − 2e, RTU − 1e, GEN − 2s, HMI − PCe, EWS − PCe, Hist − PCe}
31 5.2.1 PLC-2 {PLC − 2e, RTU − 1e, HMI − PCe, EWS − PCe, Hist − PCe, SW − 2e}
32 5.2.4 PLC-2 {PLC − 2e, RTU − 1e, HMI − PCe, EWS − PCe, Hist − PCe, SW − 2e}
33 4.1.1 RTU-1 {RTU − 1p}
34 4.2.1 RTU-1 {RTU − 1e, PLC − 1e, PLC − 2e}
35 5.2.1 RTU-1 {RTU − 1e, PLC − 1e, PLC − 2e}
36 5.2.4 RTU-1 {RTU − 1e, PLC − 1e, PLC − 2e}
37 4.1.1 GEN-1 {GEN − 1p}
38 4.2.1 GEN-1 {GEN − 1e, PLC − 1e}
39 4.1.1 GEN-2 {GEN − 2p}
40 4.2.1 GEN-2 {GEN − 2e, PLC − 2e}
41 4.1.1 BLR {BLRp}
42 4.2.1 BLR {BLRe, PLC − 1e}

Deriving a Cost-Effective Digital Twin of an ICS 553

E Illustrations

Fig. 2. An illustration of the proposed
method.

Fig. 3. Simple thermal power station
environment.

References

1. Cyber security assessment of industrial control systems - a good practice guide.
Technical report, Centre for the Protection of National Infrastructure, April 2011

2. Alves, T., Das, R., Morris, T.: Virtualization of industrial control system testbeds
for cybersecurity, pp. 10–14. ACM

3. Gao, H., Peng, Y., Dai, Z., Wang, T., Jia, K.: The design of ICS testbed based
on emulation, physical, and simulation (EPS-ICS testbed). In: 2013 Ninth Inter-
national Conference on Intelligent Information Hiding and Multimedia Signal Pro-
cessing, pp. 420–423. IEEE (2013)

4. Genge, B., Siaterlis, C., Fovino, I.N., Masera, M.: A cyber-physical experimenta-
tion environment for the security analysis of networked industrial control systems.
Comput. Electr. Eng. 38(5), 1146–1161 (2012)

5. Green, B., Lee, A., Antrobus, R., Roedig, U., Hutchison, D., Rashid, A.: Pains,
gains and PLCs: ten lessons from building an industrial control systems testbed for
security research. In: 10th USENIX Workshop on Cyber Security Experimentation
and Test (CSET 2017). USENIX Association, Vancouver (2017)

6. Grieves, M., Vickers, J.: Digital twin: mitigating unpredictable, undesirable emer-
gent behavior in complex systems. In: Kahlen, F.-J., Flumerfelt, S., Alves, A. (eds.)
Transdisciplinary Perspectives on Complex Systems, pp. 85–113. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-38756-7 4

https://doi.org/10.1007/978-3-319-38756-7_4

554 R. Bitton et al.

7. Holm, H., Karresand, M., Vidström, A., Westring, E.: A Survey of Industrial Con-
trol System Testbeds. Springer, Cham (2015)

8. Lemay, A., Fernandez, J., Knight, S.: An isolated virtual cluster for SCADA net-
work security research. In: Proceedings of the 1st International Symposium for ICS
& SCADA Cyber Security Research, p. 88 (2013)

9. Leszczyna, R., Egozcue, E., Tarrafeta, L., Villar, V.F., Estremera, R., Alonso, J.:
Protecting industrial control systems-recommendations for Europe and member
states. Technical report (2011)

10. Li, D., Sun, X.: Nonlinear Integer Programming, vol. 84. Springer, Cham (2006)
11. McLaughlin, S., Konstantinou, C., Wang, X., Davi, L., Sadeghi, A.-R., Maniatakos,

M., Karri, R.: The cybersecurity landscape in industrial control systems. Proc.
IEEE 104(5), 1039–1057 (2016)

12. Mitchell, R., Chen, I.-R.: A survey of intrusion detection techniques for cyber-
physical systems. ACM Comput. Surv. (CSUR) 46(4), 55 (2014)

13. Murray, W., Ng, K.-M.: An algorithm for nonlinear optimization problems with
binary variables. Comput. Optim. Appl. 47(2), 257–288 (2010)

14. Nazir, S., Patel, S., Patel, D.: Assessing and augmenting SCADA cyber security:
a survey of techniques. Comput. Secur. 70, 436–454 (2017)

15. Qassim, Q., et al.: A survey of SCADA testbed implementation approaches. Indian
J. Sci. Technol. 10, 26 (2017)

16. Searle, J.: NESCOR guide to penetration testing for electric utilities. Technical
report, National Electric Sector Cybersecurity Organization Resource (NESCOR)

17. Siaterlis, C., Genge, B.: Cyber-physical testbeds. Commun. ACM 57(6), 64–73
(2014)

18. Stouffer, K., Falco, J., Scarfone, K.: Guide to industrial control systems (ICS)
security. NIST Spec. Publ. 800(82), 16 (2011)

	Deriving a Cost-Effective Digital Twin of an ICS to Facilitate Security Evaluation
	1 Introduction
	2 Related Work
	3 Cost-Effective Digital Twin for ICS
	3.1 Notations
	3.2 Proposed Method
	3.3 Data Processor
	3.4 Problem Builder
	3.5 Solver

	4 Demonstration
	4.1 Description of the Tested ICS Environment
	4.2 Security Test Specifications
	4.3 Implementation Cost Description
	4.4 Results

	5 Conclusions and Future Work
	A Formal Representation
	B Implementation Costs of the ICS Components (USD)
	C Specification of Penetration Testing Activities Based on NESCOR Methodology
	D Environment Dependencies
	E Illustrations
	References

