
Anonymous Single-Sign-On
for n Designated Services

with Traceability

Jinguang Han, Liqun Chen, Steve Schneider, Helen Treharne,
and Stephan Wesemeyer(B)

Department of Computer Science, University of Surrey,
Guildford, Surrey GU2 7XH, UK

s.wesemeyer@surrey.ac.uk

Abstract. Anonymous Single-Sign-On authentication schemes have
been proposed to allow users to access a service protected by a verifier
without revealing their identity. This has become more important with
the introduction of strong privacy regulations. In this paper we describe
a new approach whereby anonymous authentication to different verifiers
is achieved via authorisation tags and pseudonyms. The particular inno-
vation of our scheme is that authentication can occur only between a user
and its designated verifier for a service, and the verification cannot be
performed by any other verifier. The benefit of this authentication app-
roach is that it prevents information leakage of a user’s service access
information, even if the verifiers for these services collude. Our scheme
also supports a trusted third party who is authorised to de-anonymise
the user and reveal her whole service access information if required. Fur-
thermore, our scheme is lightweight because it does not rely on attribute
or policy-based signature schemes to enable access to multiple services.
The scheme’s security model is given together with a security proof, an
implementation and a performance evaluation.

Keywords: Anonymous Single-Sign-On · Security · Privacy
Anonymity

1 Introduction

Single-Sign-On (SSO) systems are a user-friendly way of allowing users access
to multiple services without requiring them to have different usernames or pass-
words for each service. SSO solutions (e.g. OpenID 2.0 [35] by the OpenID
foundation or Massachusetts Institute of Technology (MIT)’s Kerberos [33]) are
designed to make the users’ identities and possibly additional personal identifi-
able information (PII) available to the verifiers of the services which they wish to
access. However, for some services, a verifier may not require the user’s identity
(nor any associated PII), just that the user is authorised to access the desired
service. Moreover, the introduction of more stringent obligations with regards to
c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 470–490, 2018.
https://doi.org/10.1007/978-3-319-99073-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_23&domain=pdf

Anonymous Single-Sign-On for n Designated Services with Traceability 471

the handling of PII in various jurisdictions (e.g. GDPR in Europe [20]), requires
service providers to minimise the use of PII.

Anonymous Single-Sign-On schemes [19,26,29,38] exist which can protect a
user’s identity, but may not do so for all entities within a scheme. Moreover, a
user’s service request can be verified by all verifiers of a system and not just the
one it is intended for, which may pose a potential privacy risk to both the user
and that verifier. Our proposed scheme addresses these issues and provides the
following features: (1) only one authentication ticket is issued to a user, even if
she wants to access multiple distinct services; (2) a user can obtain a ticket from
a ticket issuer anonymously without releasing anything about her personal iden-
tifiable information — in particular, the ticket issuer cannot determine whether
two ticket requests are for the same user or two different users; (3) a designated
verifier can determine whether a user is authorised to access its service but can-
not link different service requests made by the same user nor collude with other
verifiers to link a user’s service requests; (4) designated verifiers can detect and
prevent a user making multiple authentication requests using the same authen-
tication tag (“double spend”) but cannot de-anonymise the user as a result; (5)
tickets cannot be forged; and (6) given a user’s ticket, a central verifier is autho-
rised to recover a user’s identity as well as the identities of the verifiers for the
requested services in the user’s ticket.

Our contributions are: a novel anonymous single-sign-on scheme providing
the above features; its associated security model and security definitions; a corre-
sponding formal proof of its security as well as an empirical performance analysis
based on a Java-based implementation of our scheme.

1.1 Related Work

We now look at previous research which is most closely related to our scheme in
the areas of: (i) Anonymous Single-Sign-On protocols, (ii) anonymous authenti-
cation schemes, (iii) multi-coupon schemes and (iv) designated verifiers signature
schemes.

Anonymous Single-Sign-On Schemes

One of the anonymous Single-Sign-On system was proposed by Elmufti et al.
[19] for the Global System for Mobile communication (GSM). In their system, a
user generates a different one-time identity each time they would like to access
a service and, having authenticated the user, a trusted third party will then
authenticate this one-time identity to the service provider. Consequently, the
user is anonymous to the service provider but, unlike in our scheme, not the
trusted third party who authenticated the one-time identity.

In 2010, Han et al. [26] proposed a novel dynamic SSO system which uses a
digital signature to guarantee both the unforgeability and the public verification
of a user’s credential. In order to protect the user’s privacy, their scheme uses
broadcast encryption which means that only the designated service providers
can check the validity of the user’s credential. Moreover, zero-knowledge proofs
are used to show that the user is the owner of those valid credentials to prevent

472 J. Han et al.

impersonation attacks. However, again unlike our scheme, the user is still known
to the trusted third party which issued the credentials.

Wang et al. [38], on the other hand, propose an anonymous SSO based on
group signatures [3]. In order to access a service, the user generates a different
signature-based pseudonyms from her credentials and sends the signature to the
service provider. If the signature is valid, the service provider grants the user
access to the service to the user; otherwise, the service request is denied. The
real identities of users can be identified by using the opening technique in [3].
While the user remains anonymous, their scheme (unlike ours) does not, however,
provide designated verifiers, i.e. all verifiers can validate a user’s request.

Lastly, Lee [29] proposed an efficient anonymous SSO based on Chebyshev
Chaotic Maps. In this scheme, an issuer, the “smart card processing center”,
issues secret keys to users and service providers when they join in the system
and to access a service, a user and service provider establish a session key with
their respective secret keys. If the session key is generated correctly, the service
request is granted; otherwise, it is denied. However, unlike our scheme, each
service provider knows the identity of the user accessing their service.

While in [29,38], a user can access any service in the system by using her
credentials, in our scheme, a user can only access the services which she selects
when obtaining a ticket but can do so while remaining completely anonymous
to both issuer and service provider.

Anonymous Authentication Schemes

With respect to anonymous authentication solutions, we consider schemes whose
primary feature is to support multiple anonymous authentication. As in our
scheme, anonymous authentication enables users to convince verifiers that they
are authorised users without releasing their exact identities.

Teranishi et al. [37] proposed a k-times anonymous authentication (k-TAA)
scheme where the verifiers determine the number of anonymous authentication
that can be performed. The k-TAA scheme provides the following two features:
(1) no party can identify users who have been authenticated within k times; (2)
any party can trace users who have been authenticated more than k times. The
verifier generates k tags and for each authentication, a user selects a fresh tag.
Nguyen et al. [34] proposed a similar dynamic k-TAA scheme to restrict access
to services not only the number of times but also other factors such as expiry
date.

Camenisch et al. [9] proposed a periodic k-TAA scheme which enables users
to authenticate themselves to the verifiers no more than k times in a given time
period but supports reuse of the k times authentication once the period is up. In
this scheme, the issuer decides the number of anonymous authentication request
a user can make in a given time period. When a user makes an anonymous
authentication request, he proves to a verifier that he has obtained a valid CL
signature [11] from the issuer.

Note, however, that our scheme also prevents a verifier from establishing
whether a user has used any of the other services thereby also guaranteeing
verifier anonymity.

Anonymous Single-Sign-On for n Designated Services with Traceability 473

Furthermore, in all of these k-TAA schemes [9,34,37], authentication is not
bound to a particular verifier, whereas in our scheme authentication tags are
bound to specific verifiers. Moreover, k-TAA schemes allow verifiers to deter-
mine a user’s identity who has authenticated more than k times while in our
scheme multiple authentications to a single verifier is considered “double spend-
ing” which a verifier can detect but which does not lead to the de-anonymisation
of a user. However, to prevent users from potentially abusing the system, our
scheme allows for a central verifier who, given a user’s ticket, can extract from it
both the user’s and verifiers’ public keys using the authentication tags contained
within it and thus establish the identities of both the user and her associated
verifiers.

Lastly, Camenisch et al. in [13] and the IBM identity mixer description of its
features in [27] define a scheme that has similar properties to ours including that
of a central verifier (called “inspector”) trusted to reveal a user’s identity. The
scheme is based on users obtaining a list of certified attributes from an issuer
and the users using a subset of their attributes to authenticate to verifiers. The
distinguishing difference between their scheme and ours is that their verification
of anonymous credentials is not bound to a designated verifier whereas our is.

Multi-coupon Schemes

There is some degree of similarity between our scheme and a number of multi-
coupon schemes. Armknecht et al. [1] proposed a multi-coupon scheme for fed-
erated environments where multiple vendors exist. In [1], a user can redeem
multiple coupons anonymously with different vendors in an arbitrary order. To
prevent double-spending of a coupon, a central database is required to record
the transaction of each multi-coupon. The main difference to our scheme is that
each coupon can be redeemed against any service provider while our authen-
tication tags can only be validated by its designated verifier. Moreover, our
“double-spend” detection is done by the verifier and does not require a central
database.

Similarly, the schemes propose by Liu et al. [31] which provides strong user
privacy and where a user can use an e-coupon anonymously no more than k
times before his identity can be recovered. However, the user’s coupons can be
redeemed against any service rather than a designated verifier as our scheme
provides.

Designated Verifiers

Jakobsson in [28] introduced the concept of a designated verifier which means
that in a proof we ascertain that nobody but this verifier can be convinced
by that proof while the authors in [21] present an anonymous attribute-based
scheme using designated-verifiers. In their work they focus on identifying mul-
tiple designated verifiers. This is achieved through using the verifier’s private
key in the verification so that no other third party can validate the designated
verifier signature. We adopt the high level concept of a designated verifier in
our approach, i.e. given a valid authentication tag for service A, only service
A’s verifier can establish its validity. As this property is conceptually similar to

474 J. Han et al.

the designated signatures described in [21,28], our verifiers are called designated
verifiers. However, this is where the similarity ends with Jakobsson’s designated
verifiers. Notably, in [28], a verifier cannot convince others that the signature
is from the signer because the verifier can generate the signature by himself.
In our scheme, everyone can check that the authentication tags are signatures
generated by the ticket issuer.

In summary, while a number of previous authentication schemes address the
anonymity of the user and multiple authentications, the novelty of our work
is that we ensure no information leakage across verifiers, since authentication
can only occur between a user and its designated verifier while also providing a
central verifier who can de-anonymise the user and reveal the identity of the veri-
fiers in case of a misbehaving user. To the best of our knowledge, our anonymous
Single-Sign-On scheme using designated verifiers is the first which has been for-
mally presented in term of definitions, security models and proven to be secure
under various cryptographic complexity assumptions together with an empirical
performance evaluation.

1.2 Paper Organisation

This paper is organised as follows: Sect. 2 provides a high-level overview of the
scheme and its claimed security properties; Sect. 3 outlines the applicable security
model; Sect. 4 introduces the cryptographic building blocks and notation used
throughout this paper; Sect. 5 describes the formal construction of our while
Sect. 6 presents the theorems for its security proof; Sect. 7 provides a perfor-
mance evaluation of our scheme; and Sect. 8 concludes the paper with directions
for future work. The full version of this paper in [25] contains detailed formal
definitions, security models and proofs of the scheme.

2 Scheme Overview and Security Properties

Entities in Our Proposed Scheme

Before providing a high-level overview of our anonymous single-sign-on scheme,
we first introduce the various entities in the scheme as shown in Fig. 1, and define
their purpose and roles: the Central Authority (CA) is a trusted third party
responsible for establishing the cryptographic keys and parameters used in the
scheme and issues credentials to the other entities in the scheme; a User (U) is
someone who wishes to access some distinct services anonymously; the Ticket
Issuer (I) issues tickets to registered, yet anonymous users for the requested
services; a Designated Verifier (V) is a verifier for a specific service that a user
might want to access; the Central Verifier (CV) is another trusted third party
which is allowed to retrieve the identities of the user, U , and the verifiers, Vs,
from the authentication tags present in a user’s ticket, TU ; an Authentication
Tag (TagV) is both tied to a user, U , and a designated verifier, V and is used
to prove to the designated verifier that the user is a valid user and allowed to

Anonymous Single-Sign-On for n Designated Services with Traceability 475

Fig. 1. Interaction of the various entities in our scheme

access the associated service; a Ticket (TU) contains the authentication tags
for the services a user, U , has requested.

Overview of Proposed Scheme

Figure 1 illustrates at a high-level how our scheme works. For its detailed formal
construction, please refer to Sect. 5. Conceptually, our scheme operates as follows:
Registration: The issuer, verifiers, central verifier and users all register with the
CA. Ticket Issuing: A user decides which services (and thus which verifiers)
she wants to access and requests an appropriate ticket from the issuer. Tag
Validation: To access a service, the user presents the appropriate authentication
tag to the service. The validity period and any other restrictions of the tag can
be captured in the free text part of the tag or be a default set by the verifier. If
a user’s tag is valid then the user is logged in to the service. Note that, unlike
some other Single-Sign-On systems, the issuer does not need to be on-line for
the tag validation to succeed. “Double-Spend” detection: If the user present
the same tag twice then the verifier can warn the user that she is already logged
in and that she should resume the already existing session or offer to terminate
the previous session and start with a fresh one. Ticket trace: If a user is seen
to abuse the service (e.g. violate the terms and conditions), the central verifier
might be called upon to de-anonymise the user and determine any other services
she has used.

Security Properties in Our Proposed Scheme

Having defined the different entities and described how they interact, we now
list the security properties of our scheme:

– User Anonymity: In our scheme, users use pseudonyms whenever they
interact with the issuer or a verifier. As such, the issuer cannot link a user

476 J. Han et al.

across different ticket requests. Similarly, a user’s identity is also hidden from
a designated verifier.

– Authentication Tag Unlinkability: Apart from the central verifier and
the issuer, no set of colluding verifiers can establish whether two or more
different authentication tags came from the same anonymous user.

– Verifier Anonymity: The verifier’s identify is protected from other users
and verifiers, i.e. given an authentication tag, only the designated verifier can
validate it and no other verifier (apart from the central verifier and the issuer)
can determine for whom it is.

– Designated Verifiability: Given an authentication tag, TagV for verifier,
V, only V can validate it.

– “Double-spend” detection: Any verifier, V, can detect when a user
attempts to re-use an authentication tag but cannot de-anonymise the user.

– Unforgeability: Neither tickets nor individual authentication tags can be
forged by any colluding users or verifiers.

– Traceability: There exists a trusted third party, a central verifier, who can,
given a user’s ticket, TU , retrieve the user’s and the verifiers’ public keys
(and hence their respective identities) from the authentication tags contained
within TU .

In the next section, we provide the security models in which these properties
hold while Sect. 6 contains the associated theorems which are used to prove those
models.

3 Security Model Overview

We now present a high-level overview of the security models which are used to
prove the security of our scheme. The models are defined by the following games
executed between a challenger and an adversary. Detailed formal security models
as well as their proofs are presented in the full version of this paper [25] which
also demonstrates the correctness of our scheme.

Unlinkability Game

This game covers the security properties of user anonymity, authentication tag
unlinkability, verifier anonymity, designated verifiability and “double spend”
detection. In this game verifiers and other users can collude but cannot profile a
user’s whole service information. In other words, no party can link different tags
to the same user and determine a verifier’s identity included in an authentica-
tion tag (thus proving verifier anonymity) except for the designated verifier, the
ticket issuer or the central verifier. Moreover, for each authentication tag, the
adversary can query its validity once, which in the context of this game addresses
the properties of designated verifiability and “double spending”.

Unforgeability Game

This game focuses on proving the unforgeability property of our scheme. Users,
verifiers and the central verifier can collude but cannot forge a ticket on behalf
of the ticket issuer.

Anonymous Single-Sign-On for n Designated Services with Traceability 477

Table 1. Syntax summary

Syntax Explanations Syntax Explanations

1� A security parameter Vi The i-th ticket verifier

CA Central authority JU The service set of U consisting of the

I Ticket issuer identities of ticket verifiers & IDCV

V Ticket verifier PP Public parameters

U User PsU A set of pseudonyms of U
CV Central verifier PsV The pseudonym generated for V
IDI The identity of I TagV An authentication tag for V
IDV The identity of V TagCV An authentication tag for CV
IDU The identity of U TU A ticket issued to U
IDCV The identity of CV |X| The cardinality of the set X

ε(�) A negligible function in � x
R← X x is randomly selected from the set X

σI The credential of I A(x) → y y is computed by running the

σV The credential of V algorithm A(·) with input x

σU The credential of U KG(1�) A secret-public key pair generation

σCV The credential of CV algorithm

MSK Master Secret Key BG(1�) A bilinear group generation algorithm

H1, H2 Cryptographic hash
functions

p, q Prime numbers

Traceability Game

This game focuses on the traceability property of our scheme. It shows that even
if users, verifiers and the central verifier collude, they cannot generate a ticket
which is linked to a user who has never obtained a ticket or a user who is not
the real owner of the ticket.

4 Preliminaries

In this section, we introduce the cryptographic building blocks used by our
scheme including bilinear groups, the BBS+ signature scheme, zero knowledge
proofs and various complexity assumptions needed to ensure its security. The
mathematical notation and symbols used throughout this paper are summarised
in Table 1.

4.1 Bilinear Groups and Pairings

In our scheme, bilinear groups are used to support the BBS+ signature scheme
(defined in Sect. 4.2 below).

Let G1, G2 and Gτ be three cyclic groups with prime order p. A pairing is
defined to be a bilinear, non-degenerative and computable map e : G1 × G2 →

478 J. Han et al.

Gτ [7]. Given a security parameter, 1�, we define BG(1�) → (e, p,G1,G2,Gτ) to
be a bilinear group generation algorithm. Note that Galbraith, Paterson and
Smart [22] classified parings into three basic types and our scheme is based
on the Type-III pairing where the elements on G1 are short (≈160 bits). This
was chosen because for all g ∈ G1 and g ∈ G2, there exists an polynomial-
time efficient algorithm to compute e(g, g) ∈ Gτ resulting in a more efficient
algorithm.

4.2 BBS+ Signature

Based on the group signature scheme [6], Au, Susilo and Mu [2] proposed the
BBS+ signature. This signature scheme works as follows:

– Setup: Let BG(1�)→(e, p,G1,G2,Gτ), h be a generator of G1 and g, g0, g1, · · · ,
gn be generators of G2.

– KeyGen: The signer selects x
R← Zp and computes Y = hx. The secret-public

key pair is (x, Y).
– Signing: To sign a block message (m1,m2, · · · ,mn) ∈ Z

n
p , the signer selects

w, e
R← Zp, and computes σ = (g0gw

∏n
i=1 gmi

i)
1

x+e . This signature on
(m1,m2, · · · ,mn) is (w, e, σ).

– Verification: Given a signature (w, e, σ) and (m1,m2, · · · ,mn), the verifier
checks e(Y he, σ) ?= e(h, g0g

w
∏n

i=1 gmi
i). If so, the signature is valid; other-

wise, it is invalid.

Au, Susilo and Mu [2] reduced the security of the above signature to
the q-SDH assumption (see Definition 2 below) in Type-II paring. Recently,
Camenisch, Drijvers and Lehmann [8] reduced its security to the JOC-version-
q-SDH assumption (see Definition 3 below) for Type-III pairing.

4.3 Zero-Knowledge Proof

In our scheme, zero-knowledge proof of knowledge protocols are used to prove
knowledge and statements about various discrete logarithms including: (1) proof
of knowledge of a discrete logarithm modulo a prime number [36]; (2) proof of
knowledge of equality of representation [15]; (3) proof of knowledge of a com-
mitment related to the product of two other commitments [12]. We follow the
definition introduced by Camenish and Stadler in [14] which was formalised by
Camenish, Kiayias and Yung in [10]. By PoK:{(α, β, γ) : Υ = gαhβ ∧ Υ̃ = g̃αh̃γ},
proof on knowledge of integers α β and γ such that Υ = gαhβ and Υ̃ = g̃αh̃β hold
on the groups G = 〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉, respectively. The convention
is that the letters in the parenthesis (α, β, γ) represent the knowledge which is
being proven by using the other values to which the verifier can have access.

Anonymous Single-Sign-On for n Designated Services with Traceability 479

4.4 Complexity Assumptions

The security of our scheme relies on a number of complexity assumptions defined
in this subsection.

Definition 1 (Discrete Logarithm (DL) Assumption [24]). Let G be a cyclic group
with prime order p and g be a generator of G. Given Y ∈ G, we say that the
discrete logarithm (DL) assumption holds on G if for all adversary can output a
number x ∈ Zp such that Y = gx with a negligible advantage, namely

AdvDL
A = Pr [Y = gx|A(p, g,G, Y) → x] ≤ ε(�).

The DL assumption is used in the proof of the traceability property of our
scheme.

Definition 2 (q-Strong Diffie-Hellman (q-SDH) Assumption [4]). Let BG(1�) →
(e, p,G1,G2,Gτ). Suppose that g and g are generators of G1 and G2, respec-
tively. Given a (q + 2)-tuple (g, gx, gx2

, · · · , gxq

, g) ∈ G
q+1
1 × G2, we say that

q-strong Diffie-Hellman assumption holds on (e, p,G1,G2,Gτ) if for all prob-
abilistic polynomial-time (PPT) adversary A can output (c, g

1
x+c) ∈ Zp × G1

with a negligible advantage, namely Advq−SDH
A = Pr[A(g, g, gx, gx2

, · · · , gxq

) →
(c, g

1
x+c)] ≤ ε(�), where c ∈ Zp − {−x}.

Definition 3 ((JOC Version) q-Strong Diffie-Hellman (JOC-q-SDH) Assump-
tion [5]). Let BG(1�) → (e, p,G1,G2, Gτ). Given a (q + 3)-tuple
(g, gx, · · · , gxq

, g, gx) ∈ G
q+1
1 × G

2
2, we say that the JOC- q-strong

Diffie-Hellman assumption holds on the bilinear group (e, p,G1,G2,Gτ)
if for all probabilistic polynomial-time (PPT) adversaries A can output
(c, g

1
x+c) ∈ Zp × G1 with a negligible advantage, namely AdvJOC−q−SDH

A =

Pr
[
(c, g

1
x+c) ← A(g, gx, · · · , gxq

, g, gx)
]

< ε(�), where c ∈ Zp − {−x}.
The security of the BBS+ signature used in our scheme relies on both the

(q-SDH) and JOC-q-SDH) assumptions.

Definition 4 (Decisional Diffie-Hellman (DDH) Assumption [18]). Let BG(1�) →
(e, p,G1,G2, Gτ). Give a 3-tuple (ξ, ξα, ξβ , T) ∈ G

3
1, we say that the deci-

sional Deffie-Hellman assumption holds on (e, p,G1,G2,Gτ) if for all probabilis-
tic polynomial-time (PPT) adversaries A can distinguish T = ξαβ or T = M
with negligible advantage, namely AdvDDH

A = |Pr[A(ξ, ξα, ξβ , T = ξαβ) =
1] − Pr[A(ξ, ξα, ξβ , T = M) = 1]| < ε(�) where M

R← G1.

Note that the DDH assumption is believed to be hard in both G1 and G2

for the Type-III pairing [23] used in our scheme which means that we actually
makes use of the following stronger complexity assumption.

Definition 5 (Symmetric External Diffie-Hellman (SXDH) Assumption [23]). Let
BG(1�) → (e, p,G1, G2,Gτ). We say that the symmetric external Diffie-Hellman
assumption holds on (e, p,G1,G2, Gτ) if the decisional Diffie-Hellman (DDH)
assumption holds on both G1 and G2.

480 J. Han et al.

5 Scheme Construction

In this section, we present a more detailed description of the interactions (cf.
Fig. 1) between the entities of our scheme. These interactions are: (i) System
Set-up, (ii) Registration, (iii) Ticket Issuing, (iv) Tag Verification and (v) Ticket
Tracing. Moreover, we provide details of the mathematical operations involved in
these interactions. Formal definitions of the algorithms presented in this section
can be found in the full version of this paper [25].

5.1 System Set-Up

Figure 2 shows the details of the system initialisation in which the central author-
ity CA generates a master secret key, MSK, and the required public parameters,
PP . Note: Once the system has been set up, all communication between the
different entities in our scheme is assumed to be over secure, encrypted chan-
nels which can be established by the various entities using standard Public Key
Infrastructure. This ensures that our scheme is not susceptible to simple Man-
In-The-Middle attacks.

System Set-up:CA runs BG(1�) → (e, p,G1,G2,Gτ) with e : G1 × G2 → Gτ . Let
g, h, ξ, h̃ be generators of the group G1 and g be generators of G2. Suppose that
H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → Zp are two cryptographic hash functions. CA
selects xa

R← Zp and computes YA = gxa . The master secret key is MSK = xa and
the public parameters are PP = (e, p,G1,G2,Gτ , g, h, ξ, h̃, g, YA, H1, H2).

Fig. 2. System set-up algorithm

5.2 Registration

Figure 3 depicts the registration processes. When registering with the CA, I, V,
U and CV use the PP and generate their own secret-public key pairs. They then
send their identities and associated public keys to CA which, after receiving a
registration request from an entity, uses MSK to generate the corresponding
credential for them. Note that only the ticket issuer has two public keys, YI

and ỸI . The first one is used to sign the tickets while the second one is used to
validate the ticket.

5.3 Ticket Issuing

During the ticket issuing process (shown in Fig. 4), the user U defines JU to be
the set containing the identities of the ticket verifiers whose services she wants
to access as well as the identity of the central verifier. In order to request a
ticket from I, U creates pseudonyms, (PV , QV), for each IDV ∈ JU by using her
secret key to protect the anonymity of the verifiers. She also produces a proof of
knowledge of her credentials and submits this proof together with the set JU and

Anonymous Single-Sign-On for n Designated Services with Traceability 481

Ticket-Issuer-Registration

Ticket Issuer: I Central Authority: CA
Selects xi

R← Zp, and computes
YI = ξxi and ỸI = gxi .
The secret-public key pair is

(xi, YI , ỸI).
IDI ,YI ,ỸI−−−−−−−→ Selects ei, ri

R← Zp and

Verifies: e(σI , YAg
ei) ?= e(ghriYI , g).

σI ,ri,ei←−−−−− computesσI = (ghriYI)
1

xa+ei .
Keeps the credential as Stores (IDI , YI , ỸI , (ri, ei, σI)).
CredI = (ei, ri, σI).

Ticket-Verifier-Registration

Ticket-Verifier: V Central Authority: CA
Selects xv

R← Zp and computes
YV = ξxv .

The secret-public key pair is (xv, YV).
IDV ,YV−−−−−→ Selects λv, rv

R← Zp and

Verifies: e(σV , YAg
ev) ?= e(ghrv YV , g).

σV ,rv,λv←−−−−−− computes σV = (ghrv YV)
1

xa+λv .
Keep the credential as Stores (IDV , YV , (rv, λv, σV)).
CredV = (λv, rv, σV).

User-Registration

User: U Central Authority: CA
Selects xu

R← Zp, and computes
YU = ξxu .

This secret-public key pair is (xu, YU).
IDU ,YU−−−−−→ Select eu, ru

R← Zp and
Verifies: e(σU , YAg

eu) ?= e(ghruYU , g).
σU ,eu,ru←−−−−−− computes σU = (ghruYU)

1
xa+eu .

Keep the credential as Stores (IDU , YU , (ru, euσU)).
CredU = (eu, ru, σU).

Central-Verifier-Registration

Central Verifier: CV Central Authority: CA
Selects xcv

R← Zp, and computes
YCV = ξxcv

The secret-public key pair is (xcv, YCV).
IDCV ,YCV−−−−−−−→ Select λcv, rcv

R← Zp and
computes

Verifies: e(σcv, YAg
λcv) ?= e(ghrcv YCV , g).

σCV ,λcv,rcv←−−−−−−−− σCV = (ghrcv YCV)
1

xa+λcv .
Keep the credential as Stores (IDCV , YCV , (rcv,
CredCV = (λcv, rcv, σCV). λcv, σCV)).

Fig. 3. Registration algorithm

the pseudonyms to I to convince him that she is a registered user and created
the pseudonyms. Once I has received this information and verified the proof of
knowledge, he generates an authentication tag TagV for each IDV ∈ JU as well

482 J. Han et al.

Ticket-Issuing

Let JU is U ’s list of the identities of verifiers which U wants to access as well as
IDCV

User: U Ticket Issuer: I
Computes BU = ghruYU

Select v1, v2, zu
R← Zp and

computes v3 = 1
v1
, σ̄U = σv1

U ,
v = ru − v2v3, B̄U = Bv1

U h−v2 ,
σ̃U = σ̄−eu

U Bv1
U (= σ̄xa

U), (zv =
H1(zu||IDV), PV = YUY zv

P ,
QV = ξzv)IDV ∈JU

Computes the proof
∏1

U : Δ−→ Verifies
∏1

U and e(σ̄U , Y) ?= e(σ̃U , g).
PoK{(xu, ru, eu, σU , v1, v2, v3, v, Selects tu

R← Zp and computes CU = ξtu

(zv)IDV ∈JU) : σ̃U
B̄U

= σ̄−eu
U hv2 For IDV ∈ JU , selects dv, wv, ev

R← Zp

∧ g−1 = B̄−v3
U ξxuhv ∧ (PV = and computes DV = H2(CU ||IDV),

ξxuY zv
P ∧ QV = ξzv)V ∈JU } EV = ξdv , FV = Y dv

V , KV = YV Y dv
P ,

Let Δ = (((PV , QV)IDV ∈JU), sv = H1(PV ||QV ||EV ||FV ||KV ||Texta)

σ̄U , σ̃U , B̄U , JU ,
∏1

U) and ZV = (ghwv h̃sv)
1

xi+ev

Let TagV = (PV , QV , EV , FV , KV , T ext,
sv, wv, ev, ZV)

For the central verifier IDCV , selects
wcv, ecv

R← Zp and computes
scv = H1(s1||s2|| · · · ||s|JU |) and

ZCV = (ghwcv h̃scv)
1

xi+ecv

a) For IDV ∈ JU , verify
TU←−−
CU

The ticket is:

DV
?= H2(CU ||IDV), TU =

{
(DV , TagV)|V ∈ JU

} ∪ {
scv, wcv,

sv
?= H1(PV ||QV ||EV ||FV ||KV ||Text) ecv, ZCV

}
where sv and scv are the

and e(ZV , ỸIg
ev) ?= e(ghwv h̃sv , g). serial numbers of TagV and TU ,

b) Verify scv
?= H1(s1||s2|| · · · ||s|JU |) respectively.

and e(ZCV , ỸIg
ecv) = e(ghwcv h̃scv , g)

c) Keep (zu, CU) secret

a Text consists of the system version information and all other information which
can be used by verifiers to validate the tag, e.g. valid period, tag type, etc.

Fig. 4. Ticket issuing algorithm

as an overall TagCV for CV in case the ticket needs to be traced. Note that these
tags are constructed using the public keys of the respective verifiers and thus
can only be validated by the corresponding V or the central verifier, CV. The
ticket is formed from these individual tags. Note that each tag and the overall
ticket are signed by the issuer using his private key while the integrity of the

Anonymous Single-Sign-On for n Designated Services with Traceability 483

tags and the overall ticket is assured using hashes of their respective content.
The ticket is sent back to U who verifies the integrity of each tag and the overall
ticket using the supplied hash values as well as that each tag and the overall
ticket have been signed by the issuer.

Tag-Verification

User: U Tag verifier: V (IDV ∈ JU)

Computes DV = H2(CU ||IDV)
IDV←−−− Initialize a table TV if none exists already.

and searches (DV , TagV).
Computes zv = H1(zu||IDV)
and the proof:

∏2
U :

PoK{(xu, zv) : PV = ξxuY zv
P

∏2
U−−−−→

TagV

If (ev, wv, sv, ZV) ∈ TV , aborts; otherwise,

∧ QV = ξzv }. adds (ev, wv, sv, ZV) in TV and checks:
(1) The correctness of

∏2
U ;

(2) sv
?= H1(PV ||QV ||EV ||FV ||KV ||Text);

(3) FV
?= Exv

V ;
(4) e(ZV , YSg

ev) ?= e(ghwv h̃sv , g).
If (1), (2), (3), (4) hold, the tag is valid;
otherwise, it is invalid.

Fig. 5. Tag Verification algorithm

5.4 Tag Verification

The tag verification process is shown in Fig. 5. When the user U wants to access
a service, the ticket verifier V send his identity information to the user which
U uses to look up the corresponding tag, TagV . In order to access the service,
U must submit a proof of knowledge of her secret key alongside the relevant
authentication tag TagV to prevent users from sharing authentication tags. V
checks his table of previously received tags to ensure that the tag has not already
been used previously (double-spend detection), before verifying the user’s proof
of knowledge in Step 1. Step 2 checks the integrity of the tag using a hash
function while Step 4 verifies that it has been issued by the ticket issuer, I. Step
3 can only be verified by V as it requires the private key of the verifier. Only if
V can complete all steps successfully, is the user granted access.

5.5 Ticket Tracing

Lastly, in the case that a user U ’s whole service information JU needs to be
traced, the central verifier, CV, sends its identity to U who is then required to
submit the information, Π2

U , TagCV , (which is the same information as that of
the Tag Verification algorithm) as well as her overall ticket. Note that, provided a

484 J. Han et al.

Ticket-Trace

User: U Central Verifier: CV
Computes DV = H2(CU ||IDCV)

IDCV←−−−−
and searches (DV , TagCV).
Computes zv = H1(zu||IDCV)
and the proof:

∏2
U :

PoK{(xu, zv) : PV = ξxuY zv
CV

∏2
U ,TU−−−−−→

TagCV

Firstly, verify TagCV is contained in TU ;

∧ QV = ξzv }. abort if this check fails
Secondly, verify that the tag is valid by:
(1) The correctness of

∏2
U ;

(2) sv
?= H1(PV ||QV ||EV ||FV ||KV ||Text);

(3) FV
?= Exv

V ;
(4) e(ZV , YSg

ev) ?= e(ghwv h̃sv , g).
If (1), (2), (3), (4) hold, the tag is valid;
otherwise abort as it is invalid.
Finally, de-anonymise the user and
her services by:
(5) Let ΩU = {}. For each TagV in TU

(i) Compute: YU = PV

Q
xp
V

and YV = KV

E
xp
V

.

(ii) Look up the IDV of YV . Check:
(iia) sv

?= H1(PV ||QV ||EV ||KV ||Text);
(iib) e(ZV , YSg

wv) ?= e(ghwv h̃sv , g);
(iii) If (5i) and (5ii) hold, set ΩU =

ΩU ∪ {IDV }; otherwise abort.
(iv) verify YU remains the same for all

tags.
(6) scv

?= H1(s1||s2|| · · · ||s|ΩU |);
(7) e(ZCV , ỸSg

wcv) ?= e(ghwcv h̃scv , g).
Provided (5), (6), (7) can be computed,
CV can determine that the service
information of U with public key YU is:
JU = ΩU ; otherwise, the trace has failed.

Fig. 6. Ticket trace algorithm

single tag is known, the whole ticket information could also be obtained directly
from the issuer, I, in case the user is not co-operating.

On receipt of this information, the central verifier first validates that the
submitted tag TagCV passes the standard verification process (see Sect. 5.4) as
the central verifier’s IDCV is always included in JU . As discussed previously,
this steps ensures that U is a valid user and that the tag belongs to her. Once
this steps has passed, the central verifier can then validate the integrity of the
ticket and that the previously presented authentication tag is indeed part of

Anonymous Single-Sign-On for n Designated Services with Traceability 485

the ticket which establishes that the ticket does indeed belong to the user who
presented it. Using his private key, the central verifier can now compute the user
U ’s public key as well as the public keys of all the verifiers contained within
the authentication tags and thus determine the user’s identity and her service
information JU .

6 Security Analysis

In this section we present the theorems which establish the security of our
scheme. Their proofs can be found in the full version of this paper [25].

Theorem 1 (Unlinkability). An anonymous Single-Sign-On for n designated
services with traceability scheme in Figs. 2, 3, 4, 5 and 6 is (ρ1, ρ2, ρ3, ε

′(�))-
selectively unlinkable if the DDH assumption holds on the bilinear group
(e, p,G1,G2,Gτ) with the advantage at most ε(�), and H1,H2 are secure cryp-
tographic hash functions, where
1 is the total number of verifiers selected by A
to query tickets,
2 is the number of ticket validation queries,
3 is the number
of ticket trace queries, ε(�) = ε′(�)

2 .

Theorem 2 (Unforgeability). An anonymous Single-Sign-On for n desig-
nated services with traceability scheme in Figs. 2, 3, 4, 5 and 6 is (�, ε′(�))-
unforgeable if the JOC-version-q-SDH assumption holds on the bilinear group
(e, p,G1,G2,Gτ) with the advantage at most ε(�), and H1,H2 are secure cryp-
tographic hash functions, where
 is the total number of verifiers selected by A
to query tickets,
 ≤ q, ε(�) = (p−q

p + 1
p + p−1

p3)ε′(�).

Theorem 3 (Traceability). An anonymous Single-Sign-On for n designated
services with traceability scheme in Figs. 2, 3, 4, 5 and 6 is (ρ, ε(�))-traceable
if the q-SDH assumption holds on the bilinear group (e, p,G1,G2,Gτ) with the
advantage at most ε1(�), the DL assumption holds on the group G1 with the
advantage at most ε2(�), and H1,H2 are secure cryptographic hash functions,
where ε(�) = max

{
ε1(�)
2 (p−q

p + 1
p + p−1

p3), ε2(�)
2

}
,
 is the total number of ticket

issuing queries made by A and
 < q.

7 Benchmarking Results

In order to evaluate the performance of our scheme, it has been implemented in
Java using a benchmarking framework [17] to extract the computational timings
of the algorithms. The benchmark was executed on a Dell Inspiron Latitude
E5270 laptop with an Intel Core i7-6600U CPU, 1TB SSD and 16 GB of RAM
running Fedora 27. Our implementation makes use of bilinear maps using ellip-
tic curves as well as other cryptographic primitives. The implementation of the
scheme relies on the JPBC library [16] for the bilinear maps and uses the cryp-
tographic functions provided by bouncycastle [30]. Note that the Java based
implementation of the JPBC API [16] was used throughout.

486 J. Han et al.

Table 2. Benchmark results (in ms)

Protocol phase Entity r = 160 bits r = 320 bits

System Initialisation - Central Authority (CA)

Initialise the system CA 1398 3385

Registration - Issuer (I)

Generate I credentials CA 12 45

Verify I credentials I 641 979

Registration - User (U)

Generate user credentials CA 12 20

Verify user credentials User 301 498

Registration - Central Verifier (CV)

Generate CV credentials CA 9 23

Verify CV credentials CV 269 497

Registration - Verifier (V)

Generate V credentials CA 10 23

Verify V credentials V 290 623

Tag Verification - Verifier (V)

Retrieve TagV & generate Π2
U User 13 34

Verify Π2
U & TagV V 225 575

Issuing phase

Protocol phase Entity V = #verifiers

2 3 2 3

Generate Π1
U & ticket request User 93 101 280 309

Verify Π1
U , generate ticket Issuer 481 515 916 1044

Verify ticket User 764 960 1960 2567

Ticket Tracing - Central Verifier (CV)

Retrieve ticket TU & TagCV ; generate Π2
U User 8 9 33 37

Verify Π2
U , TagCV ; trace TU CV 983 1146 2575 3182

7.1 Timings

Table 2 shows the results of the computational time spent in the various phases
of our proposed scheme which required more complex computations (i.e. some
form of verification using bilinear maps or generation of zero knowledge proofs).
The bilinear map used in the protocol implementations was a Type F elliptic
curve provided by the JPBC library where G is the group of points of the elliptic
curve and |G| = p is its prime order whose binary representation requires r-bits.
We chose to benchmark primes p with r = 160 bits and r = 320 bits using 2 or
3 verifiers per ticket. The number of verifiers only impacts on the issuing and
ticket tracing phases while the size of r impacts on all phases. The generation of

Anonymous Single-Sign-On for n Designated Services with Traceability 487

credentials by the CA for the issuer, user and the (central) verifiers during the
registration phase of the protocol is on average around 12 ms for r = 160 bits and
30 ms for r = 320 bits while the verification of those credentials by the various
parties takes about 300 ms and 650 ms for 160 bits and 320 bits respectively.
It can be seen from Table 2 that the current implementation of the our scheme
is reasonably fast for elliptic curves when r = 160 (e.g. ≈1.5 s and ≈250 ms
for ticket issuing and verification respectively) and still acceptable for r = 320
bits (≈4 s and ≈600 ms for the same steps). Moreover, it should be possible
to improve the performance of the code considerably by pre-computing static
values off-line where possible and switching from the current Java-based version
to using a Java-wrapper to the C-based implementation of the pbc libraries [32],
instead.

8 Conclusion and Future Work

Previous Anonymous Single-Sign-On schemes usually protect the user’s identity
from other verifiers but not always the issuer nor the verifier to whom the user
needs to authenticate. However, previously, the identity of these verifiers has
not been considered extensively and neither has the need to ensure that only
a designated verifier can validate a given access request. In this paper we pro-
posed an Anonymous Single-Sign-On scheme which enables users and verifiers
to remain anonymous throughout while protecting the system from misbehaving
users through a central verifier who can, if required, trace the identities of a user
and her associated verifiers. Moreover, we provided a formal security model and
proofs for the security properties of our scheme as well as an implementation
demonstrating the feasibility of deployment.

In our scheme, a user can currently only authenticate to a verifier once as
there is only one authentication tag for each verifier in a user’s ticket. If the user
needs to authenticate herself to a verifier, V, multiple times, she must request
additional tickets with the required authentication tag for V from the issuer. Our
scheme could alternatively be amended to allow multiple authentication tags per
verifier in each ticket. In this case the scheme’s security model and proofs would
need to be amended to support this.

Anonymous Single-Sign-On was the main motivational use case for our
scheme, but there are other scenarios to which the could be applied, e.g. the
purchase of tickets for tourist attractions, where being able to issue a ticket
through an Android implementation would be appropriate. Initial results how-
ever demonstrate that the timings on an Android client are significantly slower,
for example ticket validation can take ≈200 times longer than on the laptop.
Future work will focus on improving the scheme’s performance further (espe-
cially on the Android platform) by moving from a pure Java-based implementa-
tion to a C-based version as well as performing pre-computations of static values
required by proofs of knowledge where possible. Lastly, extending our scheme
with an option for users to enable the controlled release of personal informa-
tion to a given verifier, e.g. by letting a user control which verifier is allowed to
de-anonymise her authentication tag, is another area of future research.

488 J. Han et al.

Acknowledgement. This work has been supported by the EPSRC Project DICE:
“Data to Improve the Customer Experience”, EP/N028295/1. The authors would also
like to thank the anonymous reviewers and Dr François Dupressoir for their valuable
feedback and comments.

References

1. Armknecht, F., Löhr, H., Manulis, M., Sadeghi, A.-R., et al.: Secure multi-coupons
for federated environments: privacy-preserving and customer-friendly. In: Chen,
L., Mu, Y., Susilo, W. (eds.) ISPEC 2008. LNCS, vol. 4991, pp. 29–44. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-79104-1 3

2. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k -TAA. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg
(2006). https://doi.org/10.1007/11832072 8

3. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

4. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 4

5. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

6. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

7. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

8. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation using the strong
Diffie Hellman assumption revisited. In: Franz, M., Papadimitratos, P. (eds.) Trust
2016. LNCS, vol. 9824, pp. 1–20. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45572-3 1

9. Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.:
How to win the clonewars: efficient periodic n-times anonymous authentication.
In: ACM CCS 2006, pp. 201–210. ACM (2006)

10. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized Schnorr
proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 25

11. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 20

12. Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the prod-
uct of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp.
107–122. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 8

13. Camenisch, J., Mödersheim, S., Sommer, D.: A formal model of identity mixer.
In: Kowalewski, S., Roveri, M. (eds.) FMICS 2010. LNCS, vol. 6371, pp. 198–214.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15898-8 13

https://doi.org/10.1007/978-3-540-79104-1_3
https://doi.org/10.1007/11832072_8
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-642-01001-9_25
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/3-540-48910-X_8
https://doi.org/10.1007/978-3-642-15898-8_13

Anonymous Single-Sign-On for n Designated Services with Traceability 489

14. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups
(extended abstract). In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
410–424. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052252

15. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4 7

16. De Caro, A., Iovino, V.: JPBC: Java pairing based cryptography. In: ISCC 2011,
pp. 850–855. IEEE (2011)

17. DICE Project: Benchmark E-ticketing Systems (BETS) (2017). https://github.
com/swesemeyer/BenchmarkingETicketingSystems

18. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Inf. Theory Soc.
22(6), 644–654 (1976)

19. Elmufti, K., Weerasinghe, D., Rajarajan, M., Rakocevic, V.: Anonymous authen-
tication for mobile single sign-on to protect user privacy. Int. J. Mob. Commun.
6(6), 760–769 (2008)

20. European Commission and European Council: Regulation (EU) 2016/679: General
Data Protection Regulation (2016). https://eur-lex.europa.eu/legal-content/EN/
TXT/PDF/?uri=CELEX:32016R0679&from=EN

21. Fan, C.I., Wu, C.N., Chen, W.K., Sun, W.Z.: Attribute-based strong designated-
verifier signature scheme. J. Syst. Softw. 85(4), 944–959 (2012)

22. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discret.
Appl. Math. 156(16), 3113–3121 (2008)

23. Ghadafi, E., Smart, N.P., Warinschi, B.: Groth–Sahai proofs revisited. In: Nguyen,
P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 177–192. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7 11

24. Gordon, D.M.: Discrete logarithms in GF(P) using the number field sieve. SIAM
J. Discret. Math. 6(1), 124–138 (1993)

25. Han, J., Chen, L., Schneider, S., Treharne, H., Wesemeyer, S.: Anonymous Single-
Sign-On for n services with traceability (2018). https://arxiv.org/abs/1804.07201

26. Han, J., Mu, Y., Susilo, W., Yan, J.: A generic construction of dynamic single
sign-on with strong security. In: Jajodia, S., Zhou, J. (eds.) SecureComm 2010.
LNICSSITE, vol. 50, pp. 181–198. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-16161-2 11

27. IBM Research Zürich: Identity mixer (2018). https://www.zurich.ibm.com/
identity mixer/

28. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–
154. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 13

29. Lee, T.F.: Provably secure anonymous single-sign-on authentication mechanisms
using extended chebyshev chaotic maps for distributed computer networks. IEEE
Syst. J. 12(2), 1499–1505 (2015)

30. Legion of the Bouncy Castle Inc: Bouncy Castle Crypto APIs. https://www.
bouncycastle.org/

31. Liu, W., Mu, Y., Yang, G., Yu, Y.: Efficient e-coupon systems with strong user
privacy. Telecommun. Syst. 64(4), 695–708 (2017)

32. Lynn, B.: The pairing-based cryptography (PBC) library (2010). https://crypto.
stanford.edu/pbc/

33. MIT Kerberos: Kerberos: The network authentication protocol (2017). https://
web.mit.edu/kerberos/

https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/3-540-48071-4_7
https://github.com/swesemeyer/BenchmarkingETicketingSystems
https://github.com/swesemeyer/BenchmarkingETicketingSystems
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN
https://doi.org/10.1007/978-3-642-13013-7_11
https://arxiv.org/abs/1804.07201
https://doi.org/10.1007/978-3-642-16161-2_11
https://doi.org/10.1007/978-3-642-16161-2_11
https://www.zurich.ibm.com/identity_mixer/
https://www.zurich.ibm.com/identity_mixer/
https://doi.org/10.1007/3-540-68339-9_13
https://www.bouncycastle.org/
https://www.bouncycastle.org/
https://crypto.stanford.edu/pbc/
https://crypto.stanford.edu/pbc/
https://web.mit.edu/kerberos/
https://web.mit.edu/kerberos/

490 J. Han et al.

34. Nguyen, L., Safavi-Naini, R.: Dynamic k -times anonymous authentication. In:
Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
318–333. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137 22

35. Recordon, D., Reed, D.: OpenID 2.0: a platform for user-centric identity manage-
ment. In: DIM 2006, pp. 11–16. ACM (2006)

36. Schnor, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991)

37. Teranishi, I., Furukawa, J., Sako, K.: k -times anonymous authentication (extended
abstract). In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 308–322.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 22

38. Wang, J., Wang, G., Susilo, W.: Anonymous single sign-on schemes transformed
from group signatures. In: INCoS 2013, pp. 560–567. IEEE (2013)

https://doi.org/10.1007/11496137_22
https://doi.org/10.1007/978-3-540-30539-2_22

	Anonymous Single-Sign-On for n Designated Services with Traceability
	1 Introduction
	1.1 Related Work
	1.2 Paper Organisation

	2 Scheme Overview and Security Properties
	3 Security Model Overview
	4 Preliminaries
	4.1 Bilinear Groups and Pairings
	4.2 BBS+ Signature
	4.3 Zero-Knowledge Proof
	4.4 Complexity Assumptions

	5 Scheme Construction
	5.1 System Set-Up
	5.2 Registration
	5.3 Ticket Issuing
	5.4 Tag Verification
	5.5 Ticket Tracing

	6 Security Analysis
	7 Benchmarking Results
	7.1 Timings

	8 Conclusion and Future Work
	References

