
On Leveraging Coding Habits
for Effective Binary Authorship

Attribution

Saed Alrabaee(B), Paria Shirani, Lingyu Wang, Mourad Debbabi,
and Aiman Hanna

Security Research Center, Concordia University, Montreal, Canada
s alraba@encs.concordia.ca

Abstract. We propose BinAuthor, a novel and the first compiler-
agnostic method for identifying the authors of program binaries. Hav-
ing filtered out unrelated functions (compiler and library) to detect
user-related functions, it converts user-related functions into a canon-
ical form to eliminate compiler/compilation effects. Then, it leverages a
set of features based on collections of authors’ choices made during cod-
ing. These features capture an author’s coding habits. Our evaluation
demonstrated that BinAuthor outperforms existing methods in several
respects. First, when tested on large datasets extracted from selected
open-source C/C++ projects in GitHub, Google Code Jam events, and
Planet Source Code contests, it successfully attributed a larger num-
ber of authors with a significantly higher accuracy: around 90% when
the number of authors is 1000. Second, when the code was subjected to
refactoring techniques, code transformation, or processing using different
compilers or compilation settings, there was no significant drop in accu-
racy, indicating that BinAuthor is more robust than previous methods.

1 Introduction

Binary authorship attribution refers to the process of discovering information
related to the author(s) of anonymous binary code on the basis of stylomet-
ric characteristics extracted from the code. It is especially relevant to security
applications, such as digital forensic analysis of malicious code [30] and copyright
infringement detection [33] because the source code is seldom available in these
cases. However, in practice, authorship attribution for binary code still requires
considerable manual and error-prone reverse engineering analysis, which can be
a daunting task given the sheer volume and complexity of today’s malware.
Although significant efforts have been made to develop automated approaches
for authorship attribution for source code [19,25,37], such techniques typically
rely on features that will likely be lost in the binary code after the compilation
process, for example, variable and function naming, original control and data

c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 26–47, 2018.
https://doi.org/10.1007/978-3-319-99073-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_2&domain=pdf

On Leveraging Coding Habits for Effective Binary Authorship Attribution 27

flow structures, comments, and space layout. Nonetheless, at the recent Black-
Hat conference, the feasibility of authorship attribution for malware binaries was
confirmed [5], though the process still requires considerable human intervention.

Most existing approaches to binary authorship attribution employ machine
learning methods to extract unique features for each author and subsequently
match the features of a given binary to identify the authors [15,19,32]. These
approaches were studied and analyzed in our previous work [16], and we uncov-
ered several issues that affect them all. Notably, a considerable percentage of the
extracted features are related to compiler functions rather than to author styles,
which causes a high false positive rate. Moreover, the extracted features are not
resilient to code transformation methods, refactoring techniques, changes in the
compilation settings, and the use of different compilers. We implemented a sys-
tem that improved the accuracy obtained by Caliskan et al. [19] in attributing
600 authors from 83% to 90%, and then we scaled the results to 86% accuracy
for 1500 authors.

Key Idea: We present BinAuthor, a system designed to recognize author cod-
ing habits by extracting author’s choices from binary code. BinAuthor1 per-
forms a series of steps in order to capture coding habits. First, it filters unre-
lated functions such as compiler-related functions by proposing a method that is
discussed in Sect. 2.1. Second, it labels library-related functions and free open-
source related functions using our previous works, BinShape [35], SIGMA [17],
and FOSSIL [18], respectively. The results of filtering process would be a set of
user-related functions. Third, to eliminate the effects of changes in the compiler
or the compilation settings, code transformation, and refactoring tools, BinAu-
thor converts the code into a canonical form that is robust against heavy obfus-
cation [38]. However, conversion is extremely slow, so we apply it only to the set
of user-related functions remaining after filtering. Then we collect a set of author
choices frequently made during coding (e.g., preferring to use either memcopy or
bcopy). To capture the choices, we examined a large collection of source code
and the corresponding assembly instructions to determine which coding habits
may be preserved in the binary. Next, we designed features based on these habits
and integrated them into BinAuthor. To verify that the features capture coding
habits, we investigated the ground truth source code in a controlled experiment
(using debug information) to determine if the choices are based on functionality
or habit.

Contributions: The main contributions of this study are described below.

1. To the best of our knowledge, BinAuthor is the first effort that leverages
author coding habits extracted from binary code for effective binary author-
ship attribution. This enables BinAuthor to work on programs with different
functionalities.

2. BinAuthor achieves higher accuracy and survives refactoring techniques and
code transformation techniques. This shows its potential for use as a practical
tool that can assist reverse engineers in many security-related tasks.

1 The code is available at https://github.com/g4hsean/BinAuthor.

https://github.com/g4hsean/BinAuthor

28 S. Alrabaee et al.

3. BinAuthor is among the first approaches that performs automated author-
ship attribution on real-world malware binaries. When we applied it to Zeus-
Citadel, Stuxnet-Flame, and Bunny-Babar malware binaries, it automati-
cally generated evidence of coding habits shared by each malware pair, match-
ing the findings of antivirus vendors [3,12] and reverse engineering teams [5].

2 BinAuthor

We propose a system encompassing different components, each of which is meant
to achieve a particular purpose, as illustrated in Fig. 1. The first component
(Filtration), isolates user functions from compiler functions, library functions,
and open-source software packages. For this purpose, we employ BinShape, and
FOSSIL tools developed by our team beside our proposed method to identify
compiler functions. Hence, additional outcome of this component could be con-
sidered as a choice (e.g., the preference in using specific compiler or open-source
software packages). The second component (Canonicalization), adapts the exist-
ing framework angr [36] for lifting function into LLVM-IR, then optimizes the
lifted LLVM-IR, and finally converts the optimized IR into a canonical form. The
third component (Choices), analyzes user-related functions to extract possible
features that represent stylistic choices and then converts the extracted choices
into vectors. The vector of choices are used by the attribution probability func-
tion in the last component (Classification). The aforementioned components are
explained in depth in the remainder of this section.

Fig. 1. BinAuthor architecture

2.1 Filtration Process

An important initial step in most reverse engineering tasks is to distinguish
between user functions and library/compiler functions. This step saves consid-
erable time and helps shift the focus to more relevant functions. The filtration
process consists of three steps. First, Binshape [35] is used to label library func-
tions. Second, FOSSIL [18] is leveraged to label the functions that are related to
specific FOSS libraries, such as libpng, zlib, and openssl. The last step filters
compiler-related functions, which the details are given below.

On Leveraging Coding Habits for Effective Binary Authorship Attribution 29

The idea is based on the hypothesis that compiler/helper functions can be
identified through a collection of static signatures that are created in the training
phase (e.g. opcode frequencies). We analyze a number of programs with different
functionalities, ranging from a simple “Hello World!” program to programs ful-
filling complex tasks. Through the intersection of these functions combined with
manual analysis, we collect about 240 functions as compiler/helper functions
related to two GCC and VS compilers. The opcode frequencies are extracted
from these functions, after which the mean and variance of each opcode are
calculated.

In other words, each disassembled program P, after passing IDA Pro, consists
of n functions {f1, · · ·, fn}. Each function fk is represented as m pairs of opcodes
oi, where m is the number of distinct opcodes in function fk. Each opcode oi ∈ O
has a pair of values (μi, νi), which represents the mean and variance values of
that specific opcode. Each opcode in the target function is measured against the
same opcode of all compiler functions in the training set. If the measured distance
Di,j (i.e., i represents the training function and j represents the target function)
is less than a predefined threshold value α = 0.005, the opcode is considered as
a match. A function is labeled as compiler-related if the matched opcodes ratio
is greater than a predefined threshold value learned from experiments to be
γ = 0.75; otherwise, the target function is labeled as user-related. Dissimilarity
measurements are performed based on distance calculations as per the following
equation [39]:

Di,j =
(μj − μj)

2

(
ν2
i + ν2

i

)

where (μj , νj) represents the opcode mean and variance of the target function,
respectively. This dissimilarity metric detects functions, which are closer to each
other in terms of types of opcodes. For instance, logical opcodes are not available
in compiler-related functions. Finally, a score is given to every distance that is
below a predefined threshold α.

2.2 Canonicalization

We use a strategy similar to that applied in the recent work by [21] when lifting
the resulting user-related functions.

Lifting Binaries to Intermediate Representation (IR): We adopt the
existing framework angr [36] for lifting function into LLVM-IR. We first convert
the disassembled binary to the VEX-IR [29] using angr, and then implement a
translator to convert the VEX-IR to LLVM-IR.

Optimizing Intermediate Representation to Optimized IR: To achieve
this goal, we employ the extended version of Peggy tool [38] to optimize LLVM-
IR. It performs the following tasks: dead code elimination, global value number-
ing, partial redundancy elimination, sparse conditional constant propagation,

30 S. Alrabaee et al.

loop-invariant code motion, loop deletion, loop unswitching, dead store elimina-
tion, constant propagation, and basic block placement. In this way, we prevent
such changes from affecting our extracted choices. For more details, we refer the
reader to [38].

Canonical Form: Canonicalization offers several benefits [21]. Lifting the
instructions according to LLVM may impose changes such as redundant loads,
but these changes will now be reverted. Moreover, in the case of writing depen-
dencies, canonicalization of the expression makes it possible to perform the addi-
tion with the constant first, and the result is put in the register before the
subtraction is performed. Furthermore, with canonicalization, the comparison
becomes simple addition with a positive constant, instead of subtraction with
a negative. Note that this last step serves to reoptimize code which might not
have been previously optimized [21].

2.3 Choices Categorization

Determining a set of characteristics that remain constant for a significant por-
tion of a program written by a particular author is analogous to discovering
human characteristics that can later be used to identify an individual. Accord-
ingly, our aim is to automate the identification of program characteristics, but
with a reasonable computational cost. To capture coding habits at different lev-
els of abstraction, we consider a spectrum of habits, assuming that an author’s
habits can be reflected in a preference for choosing certain keywords or compil-
ers, a reliance on the main function, or the use of an object-oriented program-
ming paradigm. The manner in which the code is organized may also reflect the
author’s habits. All possible choices are stored as a template in this step. We
provide a detailed description of each category of author choices in the following
subsections.

2.3.1 General Choices
General choices are designed to capture an author’s general programming pref-
erences, for example, preferences in organizing the code, terminating a function,
the use of particular keywords, or the use of specific resources.

(1) Code organization: We capture the way code is organized by measuring
the reliance on the main function using statistical features, since it is consid-
ered a starting part for managing user functions. We define a set of ratios,
shown in Table 1, that measures the actions used in the main function. We
thus capture the percentage usage of keywords, local variables, API calls,
and calling user functions, as well as the ratio of the number of basic blocks
in the main function to the number of basic blocks in other user functions.
These percentages are computed relative to the length of the main function,
where the length signifies the number of instructions in the function. The
results are represented as a vector of ratios, which is used by the detection
component.

On Leveraging Coding Habits for Effective Binary Authorship Attribution 31

Table 1. Features extracted from the main function

Ratio equation Description

#push/l Ratio of accessing the stack to length

#push/#lea Ratio of accessing the stack to local variables

#lea/l Ratio of local variables to length

#calls/l Ratio of function calls to length

#callees/l Ratio of the calls to main function to length

#indirect calls/l Ratio of API calls to length

#BBs/total # all BBs Ratio of the number of basic blocks of the main function
to that of other user functions

#calls/#user functions Ratio of function calls to the number of user functions

length(l) represents number of instructions in the main function

(2) Function termination: BinAuthor captures the way in which an author
terminates a function. This could help identify an author since programmers
may favor specific ways of terminating a function. BinAuthor considers not
just the last statement of a function as the terminating instruction; rather,
it identifies the last basic block of the function with its predecessor as the
terminating part. This is a realistic approach since various actions may be
required before a function terminates. With this in mind, BinAuthor not
only considers the usual terminating instructions, such as return and exit,
but also captures related actions that are taken prior to termination. For
instance, a function may be terminated with a display of messages, a call
to another function, the release of some resources, or communication over
networks. Table 2 shows examples of what is captured in relation to the
termination of a function. Such features could be captured by extracting
the strings and opcodes. Each feature is set to 1 if it is used to terminate a
function; otherwise, it is set to 0. The output of this component is a binary
vector that is used by the detection component.

Table 2. Examples of actions taken in terminating a function

Features

Printing results to memory Printing results to file

Using system (“pause”) User action such as cin

Calling user functions Calling API functions

Closing files Closing resources

Freeing memory Flushing buffer

Using network communication Printing clock time

Releasing semaphores or locks Printing errors

(3) Keyword and resource preferences: BinAuthor captures an author’s
preferences in the use of keywords or resources. We consider only groups of

32 S. Alrabaee et al.

preferences with equivalent or similar functionality to avoid functionality-
dependent features. These include keyword type preferences for inputs (e.g.,
using cin, scanf), preferences for particular resources or a specific compiler
(we identify the compiler by using PEiD2), operation system (e.g., Linux),
CPU architecture (e.g., ARM), and the manner in which certain keywords
are used, which can serve as further indications of an author’s habits. Some
of these features are identified through binary string matching, which tracks
the strings annotated to call and mov instructions. For instance, excessive
use of fflush will cause the string ‘‘fflush’’ to appear frequently in the
resulting binary.

2.3.2 Quality-Related Choices
We investigate code quality in terms of compliance with C/C++ coding stan-
dards and security concerns. The literature has established that code quality
can be measured using different indicators, such as testability, flexibility, and
adaptability [31]. BinAuthor defines rules for capturing code that exhibits either
relatively low or high quality. For any code that cannot be matched using such
rules, the code is labelled as having regular quality, which indicates that the code
quality feature is not applicable. Such rules are extracted by defining a set of
signatures (sequence of instructions) for each choice. An example is introduced
in AppendixA.

Examples of low-quality coding styles are reopening already opened files, leav-
ing files open when they are no longer in use, attempting to modify constants
through pointers, using float variables as loop counters, and declaring variables
inside a switch statement. Such declarations, which can be captured through
the structure matching of code, could be considered a structural choice, possibly
resulting in unexpected/undefined behavior due to jumped-over instructions. It
is for this reason that we put them in the low-quality category. Examples of
high-quality coding styles are handling errors generated by library calls (i.e.,
examining the value returned by fclose()); avoiding reliance on side effects
(e.g., the ++ operator) within calls such as sizeof or Alignof; avoiding par-
ticular calls to some environments or using them with protective measures (since
invoking the system() in Linux may lead to shell command injection or privilege
escalation, using execve() instead is indicative of high-quality coding); and the
implementation of locks and semaphores around critical sections.

2.3.3 Embedded Choices
We define embedded choices as actions that are related to coding habits present
in the source code, which are not easily captured at the binary level by tradi-
tional features such as strings or graphs. Examples are initializing member vari-
ables in constructors and dynamically deleting allocated resources in destructors.
Since it is not feasible to list all possible features, BinAuthor relies on the fact
that opcodes reveal actions, expertise, habits, knowledge, and other author’s

2 https://www.aldeid.com/wiki/PEiD.

https://www.aldeid.com/wiki/PEiD

On Leveraging Coding Habits for Effective Binary Authorship Attribution 33

characteristics, and then analyzes the distribution of opcode frequencies. Our
experiments showed that this distribution can effectively capture the manner
in which an author manages code. Since every action in source code can affect
the frequency of opcodes, BinAuthor targets embedded choices by capturing the
distribution of opcode frequencies.

2.3.4 Structural Choices
Programmers usually develop their own structural design habits. They may pre-
fer to use a fully object-oriented design, or they may be more accustomed to
procedural programming. Structural choices can serve as features for author
identification. To avoid functionality, we consider the common subgraphs for
each user function and then intersect them among different user functions to
identify those subgraphs that are unique and those that are common. These
types of subgraphs are defined as k-graphs, where k is the number of nodes. The
common k-graphs form author’s signatures since they always appear, regardless
of the program functionality. In addition, we consider the longest path in each
user function because it reflects the way in which an author tends to use deep or
nested loops. An author may organize classes either ad hoc or hierarchically by
designing a driver class to contain several manager classes, where each manager
is responsible for different processes (collections of threads running in paral-
lel). Both ad hoc and hierarchical systems of organization can create a common
structure in an author’s programs.

2.4 Feature Vectors

General Choice Computation: To consider the reliance on the main func-
tion, a vector vg1, representing related features, is constructed according to the
equations shown in Table 1. These equations indicate the author’s reliance on the
main function as well as the actions performed by the author. Function termina-
tion is represented as a binary vector, (vg2), which is determined by the absence
or existence of a set of features for function termination. Keyword and resource
preferences are identified through binary string matching. We extract a collec-
tion of strings from all user functions of a particular author, then intersect these
strings in order to derive a persistent vector (vg3) for that author. Consequently,
for each author, a set of vectors representing the author’s signature is stored in
our repository. Given a target binary, BinAuthor constructs the vectors from the
target and measures the distance/similarity between these vectors and those in
our repository. The vg1 vector is compared using Euclidean distance, whereas
vg2 vector is compared using the Jaccard similarity. For vg3, the similarity is
computed through string matching. Finally, the three derived similarity values
are averaged in order to obtain λg, which is later used in Sect. 4.6 for author
classification.

Quality-Related Choice Computation: We build a set of idiom templates
to describe high or low quality habits. Idioms are sequences of instructions with
wild-card possibility [24]. We employ the idioms templates in [24] according to

34 S. Alrabaee et al.

our qualitative-related choice. In addition, such templates carry a meaningful
connection to the quality-related choices. Our experiments demonstrate that
such idiom templates may effectively capture quality-related habits. BinAuthor
uses the Levenshtein distance [40] for this computation due to it’s efficiency. The
similarity is represented by λq as follow:

λq = 1 − L(Ci, Cj)
max(|Ci|, |Cj |)

where L(Ci, Cj) is the Levenshtein distance between the qualitative-related
choices Ci (sequence of instructions) and Cj , max(|Ci|, |Cj |) returns the maxi-
mum length between two choices Ci and Cj in terms of characters.

Embedded Choice Computation: The Mahalanobis distance [26] is used to
measure the dissimilarity of opcode distributions among different user functions,
which is represented by λe. The Mahalanobis distance is chosen because it can
capture the correlation between opcode frequency distributions.

Structural Choice Computation: BinAuthor uses subgraphs of size k in
order to capture structural choices (k = 4, 5, and 6 through our experiments).
Given a k -graph, the graph is transformed into strings using Bliss open-source
toolkit [23]. Then, a similarity measurement is performed over these strings
using the normalized compression distance (NCD) [20]. The reason of our choice
for NCD is threefold: (i) it enhances the search performance; (ii) it allows to
concatenate all the common subgraphs that appear in author’s programs; and
(iii) it allows to perform inexact matching between the target subgraphs and the
training subgraphs. BinAuthor forms a signature based on these strings. The
similarity obtained from this choice is represented by λs.

2.5 Classification

As previously described, BinAuthor extracts different types of choices to char-
acterize different aspects of author coding habits. Such choices do not equally
contribute to the attribution process, since the significance of these indicators
are not identical. Consequently, a weight is assigned to each choice by applying
logistic regression to them in order to predict class probabilities (e.g., the proba-
bility of identifying an author). For this purpose, we use the introduced dataset
in Sect. 3.2; to prevent the overfitting, we test each dataset separately and then
compute the average of weights. The weights are calculated as follows:

wi = rnd
(
(pi/ps)/

4∑
i=1

(pi/ps)
)

where ps is the smallest probability value (e.g. 0.39 in Table 3), pi is the prob-
ability outcome from logistic regression of each choice, and the rnd function
rounds the final value. The probability outcomes of logistic regression prediction
is illustrated in Table 3.

On Leveraging Coding Habits for Effective Binary Authorship Attribution 35

Table 3. Logistic regression weights for choices

Choice Probability (Pi) Pi/(Ps = 0.39) Weight wi =

rnd
(
(pi/ps)/

∑4
i=1(pi/ps)

)

General 0.83 2.128205 0.35

Qualitative 0.63 1.615385 0.27

Structural 0.52 1.333333 0.22

Embedded 0.39 1 0.16∑4
i=1(pi/ps) =

6.076923

After extracting features, we define a probability value P based on obtained
weights. The attribution probability is defined as follows:

P (A) =
4∑

i=1

wi ∗ λi

where wi represents the weight assigned to each choice, as shown in Table 3, and
λi is the distance metric value obtained from each choice (λg, λq, λe, and λs) as
described in Sect. 2.4. We normalize the probabilities of all authors, and if P≥ ζ,
where ζ represents predefined threshold values, then the author is labeled as a
matched author. Through our experiments, we find that the best value of ζ is
0.87. If more than one author has probability larger than the threshold value,
then BinAuthor returns the set of those authors.

3 Evaluation

3.1 Implementation Setup

The described stylistic choices are implemented using separate Python scripts
for modularity purposes, which altogether form our analytical system. A subset
of the python scripts in the BinAuthor system is used in tandem with IDA
Pro disassembler. The final set of the framework scripts perform the bulk of the
choice analysis functions that compute and display critical information about an
author’s coding style. With the analysis framework completed, a graph database
is utilized to perform complex graph operations such as k -graph extraction. The
graph database chosen for this task is Neo4j. Gephi [8] is employed for all graph
analysis functions, which are not provided by Neo4j. MongoDB database is used
to store our features for efficiency and scalability purposes.

3.2 Dataset

Our dataset is consisted of several C/C++ applications from different sources,
as described below: (i) GitHub [2]; (ii) Google Code Jam [1], an international

36 S. Alrabaee et al.

programming competition; (iii) Planet Source Code [9]; (iv) Graduate Student
Projects at our institution. Statistics about the dataset are provided in Table 4.
In total, we test 800 authors from different sets in which each author has two
to five software applications, resulting in a total of 3150 programs. To compile
these datasets, we use GNU Compiler Collection (version 4.8.5) with different
optimization levels, as well as Microsoft Visual Studio (VS) 2010.

3.3 Experimental Setup

In our experimental setup, we split the collected program binaries into ten sets,
reserving one as a testing set and using the remaining nine sets as the training set.
We repeat this process 100 times. In order to evaluate BinAuthor and to compare
it with existing methods, the precision (P) and recall (R) metrics are applied as
Precision = TP

TP+FP , Recall = TP
TP+FN , where the true positive (TP) indicates

number of relevant authors that are correctly retrieved; true negative (TN)
returns the number of irrelevant authors that are not detected; false positive
(FP) indicates the number of irrelevant authors that are incorrectly detected;
and false negative (FN) presents the number of relevant authors that are not
detected.

3.4 Accuracy

The main purpose of this experiment is to evaluate the accuracy of author identi-
fication in binaries. The evaluation of BinAuthor is conducted using the datasets
described in Sect. 3.2.

Results Comparison. We compare BinAuthor with the existing authorship
attribution methods [15,19,32]. The source code and dataset of our previous
work, OBA2 [15], is available which performs authorship attribution on a small
scale of 5 authors with 10 programs for each. The source code of the two other
approaches presented by Caliskan-Islam et al. [19] and Rosenblum et al. [32] are
available at [7] and [4], respectively. Both Caliskan-Islam et al. and Rosenblum
et al. present a largest-scale evaluation of binary authorship attribution, which
contains 600 authors with 8 training programs per author, and 190 authors
with at least 8 training programs, respectively. However, since the corresponding

Table 4. Statistics about the dataset used in the evaluation of BinAuthor

Source # of authors # of programs # of functions

GitHub 150 600 110000

Google Code Jam 500 2000 23650

Planet Source Code 100 300 12080

Graduate Student Projects 50 250 9823

On Leveraging Coding Habits for Effective Binary Authorship Attribution 37

50 100 150
Number of Authors

0.2

0.4

0.6

0.8

1
Pr

ec
is

io
n

BinAuthor
Caliskan
Rosenblum
OBA2

100 200 300 400 500
Number of Authors

0

0.2

0.4

0.6

0.8

1

Pr
ec

is
io

n

BinAuthor
Caliskan
Rosenblum
OBA2

20 40 60 80 100
Number of Authors

0.2

0.4

0.6

0.8

1

Pr
ec

is
io

n

BinAuthor
Caliskan
Rosenblum
OBA2

10 20 30 40 50
Number of Authors

0.7

0.75

0.8

0.85

0.9

0.95

1

Pr
ec

is
io

n

BinAuthor
Caliskan
Rosenblum
OBA2

200 400 600 800
Number of Authors

0

0.2

0.4

0.6

0.8

1

Pr
ec

is
io

n

BinAuthor
Caliskan
Rosenblum
OBA2

(a) (b) (c) (d)

(e)

Fig. 2. Precision results of authorship attribution obtained by BinAuthor, Caliskan-
Islam et al., Rosenblum et al., and OBA2, on (a) Github, (b) Google Code Jam, (c)
Planet Source Code, (d) Graduate Student Projects, and (e) All datasets

datasets are not available, we compare BinAuthor with these methods by using
the datasets mentioned in Table 4.

Figure 2 details the results of comparing the precision between BinAuthor
and the aforementioned methods. It shows the relationship between the pre-
cision and the number of authors present in all datasets, where the precision
decreases as the size of author population increases. The results show that Bin-
Author achieves better precision in determining the author of binaries. Taking
all four approaches into consideration, the highest precision of authorship attri-
bution is close to 99% on the Google Code Jam with less than 150 authors, while
the lowest precision is 17% when 800 authors are involved on all dataset together.
We believe the reason behind Caliskan-Islam et al. approach that achieves high
precision on Google Jam Code is that this dataset is simple and can be eas-
ily decompiled to source code. BinAuthor also identifies the authors of Github
dataset with an average precision of 92%. The main reason for this is due to
the fact that the authors of projects in Github have no restrictions when devel-
oping projects. In addition, the advanced programmers of such projects usually
design their own class or template to be used in the projects. The lowest pre-
cision obtained by BinAuthor is approximately 86% on all datasets together.
We have observed that BinAuthor achieves lower precision when it is applied on
Graduate student projects. When the number of authors is 400 on the mixed
dataset, the precision of Rosenblum et al. and OBA2 approaches drop rapidly to
40% on all datasets, whereas our system’s precision remains greater than 86%
while Caliskan-Islam et al. approach remains greater than 73%. This provides
evidence for the stability of using coding habits in identifying authors. In total,

38 S. Alrabaee et al.

the different categories of choices achieve an average precision of 98% for ten
distinct authors and 86% when discriminating among 800 authors. These results
show that author habits may survive the compilation process.

Observations. Through our experiments, we have noticed the following obser-
vations:

(1) Feature Pre-processing.We have encountered that in the existing methods, the
top-ranked features are related to the compiler (e.g., stack frame setup opera-
tion). It is thus necessary to filter irrelevant functions (e.g., compiler functions)
in order to better identify author-related portions of code. To this end, we uti-
lize a more elaborate method for filtration to eliminate the compiler effects and
to label library, compiler, and open-source software related functions. Success-
ful distinction between these functions leads to considerable time savings and
helps shift the focus of analysis to more relevant functions.

(2) Source of Features. Existing methods use disassembler and decompilers to
extract features from binaries. Caliskan-Islam et al. use a decompiler to
translate the program into C-like pseudo code via Hex-Ray [6]. They pass the
code to a fuzzy parser for C, thus obtain an abstract syntax tree from which
features can be extracted. In addition to Hex-Ray limitations [6], the C-like
pseudo code is different from the original code to the extent that the vari-
ables, branches, and keywords are different. For instance, we find that a func-
tion in the source code consists of the following keywords: (1-do, 1-switch,
3-case, 3-break, 2-while, 1-if) and the number of variables is 2. Once
we check the same function after decompiling its binary, we find that the
function consists of the following keywords: (1-do, 1-else/if, 2-goto,
2-while, 4-if) and the number of variables is 4. This will evidently lead
to misleading features, thus increasing the rate of false positives.

3.5 Scalability

Security analysts or reverse engineers may be interested in performing large-scale
author identification, and in the case of malware, an analyst may deal with an
extremely large number of new samples on a daily basis. With this in mind, we
evaluate how well BinAuthor scales. To prepare the large dataset required for
large-scale authorship attribution, we obtain programs from three sources: Google

Fig. 3. Large-scale author attribution precision

On Leveraging Coding Habits for Effective Binary Authorship Attribution 39

Code Jam, GitHub, and Planet Source Code. We eliminate from the experiment
programs that could not be compiled because they contain bugs and those writ-
ten by authors who contributed only one or two programs. The resulting dataset
comprised 103,800 programs by 23,000 authors: 60% from Google Code Jam, 25%
from Planet source code, and 15% from GitHub. We modified the script3 used
in [19] to download all the code submitted to the Google Code Jam competition.
The programs from the other two sources were downloaded manually. All the pro-
grams were compiled with the Visual Studio and GCC compilers, using the same
settings as those in our previous investigations (Sect. 3). The experiment evaluate
how well the top-weighted choices represent author habits.

The large-scale author identification results are shown in Fig. 3. Figure 3
shows the precision with which BinAuthor identifies the author, and its scal-
ing behavior as the number of authors increases is satisfactory. Among almost
4000 authors, an author is identified with 72% precision. When the number of
authors is doubled to 8000, the precision is close to 65%, and it remains nearly
constant (49%) after the number of authors reaches 19,000. Additionally, we test
BinAuthor on the programs obtained from each of the sources. The precision was
high for samples from the GitHub dataset (88%) and also for samples from the
Planet dataset (82%), however it was low for samples from Google Code Jam
(51%). The results suggest that it is easier to perform attribution for authors
who wrote code for difficult tasks than for those addressing easier tasks.

We have also investigated the impact of false positives (AppendixB), and
impact of code transformation techniques (AppendixC).

3.6 Applying BinAuthor to Real Malware Binaries

The malware binary authorship attribution is very challenging due to the follow-
ing main reason: the lack of ground truth concerning the attribution of author-
ship due to the nature of malware. Such limitation explains the fact that few
research efforts have been seen on manual malware authorship attribution. In
fact, to the best of our knowledge, BinAuthor is the first attempt to apply auto-
mated authorship attribution to real malware. We describe the application of
BinAuthor to some well-known malware binaries. Details of malware dataset are
shown in Table 5. Given a set of functions, BinAuthor clusters them based on
the number of common choices.

A. Applying BinAuthor to Bunny and Babar: We apply BinAuthor to Bunny
and Babar malware samples and cluster the functions based on the choices. Bin-
Author is able to find the following coding habits automatically: the preference
for using Visual Studio 2008 and the use of a common approach to managing
functions (general choices); the use of one variable over a long chain (struc-
tural choice); the choice of methods for accessing freed memory, dynamically
deallocating allocated resources, and reopening resources more than once in the
same function (quality choices). As shown in Table 6, BinAuthor found func-
tions common to Bunny and Babar that share the aforementioned coding habits:
3 https://github.com/calaylin/CodeStylometry/tree/master.

https://github.com/calaylin/CodeStylometry/tree/master

40 S. Alrabaee et al.

Table 5. Characteristics of malware dataset

Malware Packed Obfuscated Source
code

Binary
code

Type #
binary
function

Source of
sample

Zeus ✗ ✗ ✓ ✓ PE 557 Our security
lab

Citadel ✗ ✗ ✓ ✓ PE 794 Our security
lab

Flame ✗ ✓ ✗ ✓ ELF 1434 Contagio [13]

Stuxnet ✗ ✓ ✗ ✓ ELF 2154 Contagio [13]

Bunny ✓ ✗ ✗ ✓ PE 854 VirusSign [14]

Babar ✓ ✗ ✗ ✓ PE 1025 VirusSign [14]

494 functions share qualitative choices; 450 functions share embedded choices;
372 functions share general choices; and 127 functions share structural choices.
Among these, BinAuthor found 340 functions that share 4 choices, 478 functions
that share 3 choices, 150 functions that share 2 choices, and 290 functions that
share 1 choice. Considering the 854 and 1025 functions in Bunny and Babar,
respectively, BinAuthor found that 44% ((340 + 478)/(854 + 1025)) are likely to
have been written by a single author (same common choices), and 23% are likely
to have been written by multiple authors (contradictive different choices inside
the same function). No common choices were identified in the remaining 33%,
likely because different segments or code lines within the same function were
written by different authors, a common practice in writing complex software.

Table 6. Statistics of applying BinAuthor to malware binaries

Malware Number of functions with common choices Number of common functions with

General Qualitative Structural Embedded 1 choice 2 choices 3 choices 4 choices

Bunny and Babar 372 494 127 450 290 150 478 340

Stuxnet and Flame 725 528 189 300 689 515 294 180

Zeus and Citadel 655 452 289 370 600 588 194 258

B. Applying BinAuthor to Stuxnet and Flame: BinAuthor found the fol-
lowing coding habits automatically: the use of global variables, Lua scripting
language, a specific open-source package SQLite, and heap sort rather than
other sorting methods (general choices); the choice of opening and terminating
processes (qualitative choices); the presence of recursion patterns and the use
of POSIX socket API rather than BSD socket API (structural choices); and the
use of functions that are close in terms of the Mahalanobis distance, with dis-
tance close to 0.1. As shown in Table 6, BinAuthor identified functions common
to Stuxnet and Flame that share the aforementioned coding habits. BinAuthor
clustered the functions and found that 13% ((180 + 294)/(1434 + 2154)) were

On Leveraging Coding Habits for Effective Binary Authorship Attribution 41

written by one author, while 34% ((515 + 689)/(1434 + 2154)) were written by
multiple authors. No common choices were found in the remaining 53% of the
functions. The fact that these malware packages follow the same rules and set the
same targets suggests that Stuxnet and Flame are written by an organization.

C. Applying BinAuthor to Zeus and Citadel: BinAuthor identified the
following coding habits: the use of network resources rather than file resources,
creating configurations using mostly config files, the use of specific packages
such as webph and ultraVNC (general choices); the use of switch statements
rather than if statements (structural choices); the use of semaphores and locks
(qualitative choices); and the presence of functions that are close in terms of the
Mahalanobis distance, with distance = 0.0004 (embedded choices). As listed in
Table 6, BinAuthor found functions common to Zeus and Citadel that share
the aforementioned coding habits. After BinAuthor clustered the functions, it
appears that 33% were written by a single author, while 53% were written by the
same team of multiple authors. No common choices were found for the remaining
14% of the functions. Our findings clearly support the common belief that Zeus
and Citadel were written by the same team of authors.

D. Comparison with Technical Reports: We compare BinAuthor ’s findings
with those made by human experts in technical reports.

– For Bunny and Babar, our results match the technical report published by the
Citizen Lab [5], which demonstrates that both malware packages were writ-
ten by a set of authors according to common implementation traits (general
and qualitative choices) and infrastructure usage (general choices). The corre-
spondence between the BinAuthor findings and those in the technical report
is the following: 60% of the choices matched those mentioned in the report,
and 40% did not; 10% of the choices found in the technical report were not
flagged by BinAuthor as they require dynamic extraction of features, while
BinAuthor uses a static process.

– For Stuxnet and Flame, our results corroborate the technical report pub-
lished by Kaspersky [12], which shows that both malware packages use similar
infrastructure (e.g., Lua) and are associated with an organization. In addition,
BinAuthor ’s findings suggest that both malware packages originated from the
same organization. The frequent use of particular qualitative choices, such as
the way the code is secured, indicates the use of certain programming stan-
dards and strict adherence to the same rules. Moreover, BinAuthor ’s findings
provide much more information concerning the authorship of these malware
packages. The correspondence between BinAuthor ’s findings and those in the
technical report is as follows: all the choices found in the report [12] were found
by BinAuthor, but they represent only 10% of our findings. The remaining
90% of BinAuthor ’s findings were not flagged by the report.

– For Zeus and Citadel, our results match the findings of the technical report
published by McAfee [3], indicating that Zeus and Citadel were written
by the same team of authors. The correspondence between the findings of
BinAuthor and those of McAfee are as follows: 45% of the choices matched

42 S. Alrabaee et al.

those in the report, while 55% did not, and 8% of the technical report findings
were not flagged by BinAuthor.

4 Related Work

Binary Authorship Attribution: Binary code has drawn significantly less
attention with respect to authorship attribution. This is mainly due to the fact
that many salient features that may identify an author’s style are lost during
the compilation process. In [15,19,32], the authors show that certain stylistic
features can indeed survive the compilation process and remain intact in binary
code, thus showing that authorship attribution for binary code should be feasi-
ble. The methodology developed by Rosenblum et al. [32] is the first attempt to
automatically identify authors of software binaries. The main concept employed
by this method is to extract syntax-based features using predefined templates
such as idioms, n-grams, and graphlets. A subsequent approach (OBA2) to auto-
matically identify the authorship of software binaries is proposed by Alrabaee
et al. [15]. The main concept employed by this method is to extract a sequence
of instructions with specific semantics and to construct a graph based on register
manipulation. A more recent approach to automatically identify the authorship
of software binaries is proposed by Caliskan-Islam et al. [19]. The authors extract
syntactical features present in source code from decompiled executable binaries.
Most recently, Meng et al. [27] introduce new fine-grained techniques to address
the problem of identifying the multiple authors of binary code by determining the
author of each basic block. The authors extract syntactic and semantic features
at a basic level, such as constant values in instructions, backward slices of vari-
ables, and width and depth of a function control flow graph (CFG). Table 7 com-
pares our approach with the aforesaid approaches. Please note that the results of
code transformation (CT) section are based on conducted experiment. When we
found the accuracy is dropped by 1–3%, we considered as “Not affected”, while
4–14% gives “Partially affected”, and finally if it was above 15%, we considered
as “Affected”.

Malware Authorship Attribution: Most existing work on malware author-
ship attribution relies on manual analysis. In 2013, a technical report published
by FireEye [28] discovered that malware binaries share the same digital infras-
tructure and code, such as the use of certificates, executable resources, and
development tools. More recently, the team at Citizen Lab attributed malware
authors according to the manual analysis exploit type found in binaries and the
manner by which actions are performed, such as connecting to a command and
control server. The authors in [5] presented a novel approach to creating cred-
ible links between binaries originating from the same group of authors. Their
goal aimed to add transparency in attribution and to supply analysts with a
tool that emphasizes or denies vendor statements. The technique is based on
features derived from different domains, such as implementation details, applied
evasion techniques, classical malware traits, or infrastructure attributes, which
are leveraged to compare the handwriting among binaries.

On Leveraging Coding Habits for Effective Binary Authorship Attribution 43

Table 7. Comparing different existing solutions with BinAuthor.

Effort Features Compiler CT Binaries

Syntax Semantic Structural Statistical VS GCC Clang ICC DCI IR IRO RT ELF PE

OBA2 ✗ � ✗ ✗ � ✗ ✗ ✗ �� �� � � ✗ �
Caliskan ✗ � � � ✗ � ✗ ✗ � � � � � ✗

Rosenblum � � � ✗ ✗ � ✗ ✗ � � � � � ✗

Meng ✗ � � � ✗ ✓ ✗ ✗ �� �� �� � � �
BinAuthor � � � � � � � � � � � � � �
Note: The (�) symbol indicates that the proposal solution offers the correspond-
ing feature. (CT) stands for code transformation. (DCI) stands for dead code inser-
tion. (IR) stands for instruction replacement. (IRO) stands for instruction reordering.
(RT) stands for refactoring techniques. (�): Not affected by the code transformation
method. (�): Affected by the code transformation method. (��): Partially affected by
the code transformation method.

5 Limitations

Our work has a few important limitations.

Advanced Obfuscation: Our tool fails to handle most of the advanced obfus-
cation techniques, such as virtualization and jitting, since our system does not
deal with bytecode.

IR: Through our experiments, we notice that optimizing IR would remove some
author styles, e.g., loop deletion. We left this issue for future work by leveraging
some existing work [34].

Functionality: There are some choices appear when an author implements a
specific functionality. For instance, if the functionality does not have a multiple-
branch logic, there is no choice between if and switch.

6 Conclusion

To conclude, we have presented the first known effort on decoupling coding habits
from functionality. Previous research has applied machine learning techniques to
extract stylometry styles and can distinguish between 5–50 authors, whereas we
can handle up to 150 authors. In addition, existing works have only employed
artificial datasets, whereas we included more realistic datasets. Our findings indi-
cated that the precision of these techniques drops dramatically to approximately
45% at a scale of more than 50 authors. We also applied our system to known
malware samples (e.g., Zeus and Citadel) as a case study. We realized that
authors with advanced expertise are easier to attribute than authors who have
less expertise. Authors of realistic datasets are easier to attribute than authors
of artificial datasets. Specifically, in the GitHub dataset, the authors of a sam-
ple can be identified with greater than 90% precision. In summary, our system
demonstrates superior results on more realistic datasets.

44 S. Alrabaee et al.

Acknowledgements. The authors thank the anonymous reviewers for their valuable
comments. We also appreciate the help we received from Perry Jones in implementing
BinAuthor. This research is the result of a fruitful collaboration between the Security
Research Center (SRC) of Concordia University, Defence Research and Development
Canada (DRDC) and Google under a National Defence/NSERC Research Program.

Appendix

A Example of Qualitative Choices

Consider a template of dynamic memory allocation presented in Listing 1.1. As
shown in, we have a call to malloc, followed by checking whether or not it is
Null.

Listing 1.1. A fragment of assembly instruction that captures a bad habit of dynamic
memory allocation

...

call ds:malloc

...

or eax , 0FFFFFFFF // -1 if text_buffer is Null

...

xor eax , eax // 0 if text_buffer is not Null

The Listing 1.2 shows how the bad habit in Listing 1.1 could be considered
as a good habit at the assembly level.

Listing 1.2. A fragment of assembly instruction that captures a good habit of dynamic
memory allocation

...

call ds:malloc

...

or eax , 0FFFFFFFF // -1 if text_buffer is Null

...

push eax // memory address of text_buffer

call ds:free

...

xor eax , eax // 0 if text_buffer is not Null

B False Positives

We investigate the false positives in order to understand the situations where
BinAuthor is likely to make incorrect attribution decisions. For this experiment,
we consider 5 programs for each author. For instance, when we have 500 authors
(5 ∗ 500 = 2500 programs), BinAuthor misclassifies 49 programs. Also, when
the number of authors is 2000 (2000 ∗ 4 = 8000 programs), the number of false
positives is 336. We have 2000 authors from dataset used in Sect. 3.2. After

On Leveraging Coding Habits for Effective Binary Authorship Attribution 45

investigation, we have found that the false positives rate for student dataset is
the highest rate and we believe the reason behind this is that the students should
follow the standard coding instructions which restrict them to have their own
habits.

C Impact of Code Transformation Techniques

Refactoring Techniques. We consider a random set of 50 files from our dataset
which we use for the C++ refactoring process [10,11]. We ignore the variable
renaming since it will have no effect in binary code, we consider the following
techniques of, (i) moving a method from a superclass to its subclasses, and (ii)
extracting a few statements and placing them into a new method. We obtain
a Precision of 91.5% in correctly classifying authors, which is only a mild drop
in comparison to the 95% precision observed without applying refactoring tech-
niques.

Impact of Obfuscation. We are interested in determining how BinAuthor
handles simple binary obfuscation techniques intended for evading detection, as
implemented by tools such as Obfuscator-LLVM [22]. These obfuscators replace
instructions by other semantically equivalent instructions, introduce spurious
control flow, and can even completely flatten control flow graphs. Obfuscation
techniques implemented by Obfuscator-LLVM are applied to the samples prior to
classifying the authors. We proceed to extract features from obfuscated samples.
We obtain a precision of 92.9% in correctly classifying authors, which is only a
slight drop in comparison to the 95% precision observed without obfuscation.

Impact of Compilers and Compilation Settings. We are further interested
to study the impact of different compilers and compilation settings on the pre-
cision of our proposed system. We perform the following tasks: (i) testing the
ability of BinAuthor when identifying the author from binaries compiled with
the same compiler, but different compiler optimization levels. Specifically, we
use binaries that were compiled with GCC/VS on x86 architecture using opti-
mization levels O2 and O3. In this test, the precision remains same (95%). (ii)
We use a different configuration to identify the author of program compiled with
both a different compiler and different compiler optimization levels. Specifically,
we use programs compiled for x86 with VS -O2 and GCC -O3. In this test, the
precision slightly drops to 93.9%. We also redo the test for the same binaries
compiled with ICC and Clang compilers. The precision remains almost the same
93.8%. This stability in the accuracy is due to the canonicalization process.

References

1. The Google Code Jam (2008–2015). http://code.google.com/codejam/
2. GitHub-Build software better (2011). https://github.com/trending?l=cpp
3. Technical report: McAfee (2011). www.mcafee.com/ca/resources/wp-citadel-

trojan-summary.pdf

http://code.google.com/codejam/
https://github.com/trending?l=cpp
www.mcafee.com/ca/resources/wp-citadel-trojan-summary.pdf
www.mcafee.com/ca/resources/wp-citadel-trojan-summary.pdf

46 S. Alrabaee et al.

4. The materials supplement for the paper. Who Wrote This Code? Identifying
the Authors of Program Binaries (2011). http://pages.cs.wisc.edu/∼nater/esorics-
supp/

5. Big Game Hunting: Nation-state malware research, BlackHat (2015). https://www.
blackhat.com/docs/us-15/materials/us-15-MarquisBoire-Big-Game-Hunting-The
-Peculiarities-Of-Nation-State-Malware-Research.pdf

6. Hex-Ray decompiler (2015). https://www.hex-rays.com/products/decompiler/
7. Programmer De-anonymization from Binary Executables (2015). https://github.

com/calaylin/bda
8. The Gephi plugin for neo4j (2015). https://marketplace.gephi.org/plugin/neo4j-

graph-database-support/
9. The planet source code (2015). http://www.planet-source-code.com/vb/default.

asp?lngWId=3#ContentWinners
10. C++ refactoring tools for visual studio (2016). http://www.wholetomato.com/
11. Refactoring tool (2016). https://www.devexpress.com/Products/CodeRush/
12. Technical report, Resource 207: Kaspersky Lab Research proves that Stuxnet and

Flame developers are connected, May 2012. http://www.kaspersky.com/about/
news/virus/2012/

13. Contagio: malware dump, May 2016. http://contagiodump.blogspot.ca
14. VirusSign: Malware Research & Data Center, Virus Free, May 2016. http://www.

virussign.com/
15. Alrabaee, S., Saleem, N., Preda, S., Wang, L., Debbabi, M.: OBA2: an onion app-

roach to binary code authorship attribution. Digit. Investig. 11, S94–S103 (2014)
16. Alrabaee, S., Shirani, P., Debbabi, M., Wang, L.: On the feasibility of malware

authorship attribution. In: Cuppens, F., Wang, L., Cuppens-Boulahia, N., Tawbi,
N., Garcia-Alfaro, J. (eds.) FPS 2016. LNCS, vol. 10128, pp. 256–272. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-51966-1 17

17. Alrabaee, S., Shirani, P., Wang, L., Debbabi, M.: SIGMA: a semantic integrated
graph matching approach for identifying reused functions in binary code. Digit.
Investig. 12, S61–S71 (2015)

18. Alrabaee, S., Shirani, P., Wang, L., Debbabi, M.: FOSSIL: a resilient and efficient
system for identifying FOSS functions in malware binaries. ACM Trans. Priv.
Secur. (TOPS) 21(2), 8 (2018)

19. Caliskan-Islam, A., et al.: When coding style survives compilation: de-anonymizing
programmers from executable binaries. Netw. Distrib. Syst. Secur. Symp. (NDSS)
(2018)

20. Cilibrasi, R., Vitanyi, P.: Clustering by compression. IEEE Trans. Inf. Theory
51(4), 1523–1545 (2005)

21. David, Y., Partush, N., Yahav, E.: Similarity of binaries through re-optimization.
In: Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 79–94. ACM (2017)

22. Junod, P., Rinaldini, J., Wehrli, J., Michielin, J.: Obfuscator-LLVM: software pro-
tection for the masses. In: Proceedings of the 1st International Workshop on Soft-
ware Protection, pp. 3–9. IEEE Press (2015)

23. Junttila, T.A., Kaski, P.: Engineering an efficient canonical labeling tool for large
and sparse graphs. In: ALENEX, vol. 7, pp. 135–149. SIAM (2007)

24. Knuth, D.E.: Backus normal form vs. Backus Naur form. Commun. ACM 7(12),
735–736 (1964)

25. Krsul, I., Spafford, E.H.: Authorship analysis: identifying the author of a program.
Comput. Secur. 16(3), 233–257 (1997)

http://pages.cs.wisc.edu/~nater/esorics-supp/
http://pages.cs.wisc.edu/~nater/esorics-supp/
https://www.blackhat.com/docs/us-15/materials/us-15-MarquisBoire-Big-Game-Hunting-The-Peculiarities-Of-Nation-State-Malware-Research.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-MarquisBoire-Big-Game-Hunting-The-Peculiarities-Of-Nation-State-Malware-Research.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-MarquisBoire-Big-Game-Hunting-The-Peculiarities-Of-Nation-State-Malware-Research.pdf
https://www.hex-rays.com/products/decompiler/
https://github.com/calaylin/bda
https://github.com/calaylin/bda
https://marketplace.gephi.org/plugin/neo4j-graph-database-support/
https://marketplace.gephi.org/plugin/neo4j-graph-database-support/
http://www.planet-source-code.com/vb/default.asp?lngWId=3#ContentWinners
http://www.planet-source-code.com/vb/default.asp?lngWId=3#ContentWinners
http://www.wholetomato.com/
https://www.devexpress.com/Products/CodeRush/
http://www.kaspersky.com/about/news/virus/2012/
http://www.kaspersky.com/about/news/virus/2012/
http://contagiodump.blogspot.ca
http://www.virussign.com/
http://www.virussign.com/
https://doi.org/10.1007/978-3-319-51966-1_17

On Leveraging Coding Habits for Effective Binary Authorship Attribution 47

26. Mahalanobis, P.C.: On the generalized distance in statistics. Proc. Natl. Inst. Sci.
(Calcutta) 2, 49–55 (1936)

27. Meng, X., Miller, B.P., Jun, K.-S.: Identifying multiple authors in a binary pro-
gram. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS,
vol. 10493, pp. 286–304. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66399-9 16

28. Moran, N., Bennett, J.: Supply Chain Analysis: From Quartermaster to Sunshop,
vol. 11. FireEye Labs, Milpitas (2013)

29. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: ACM SIGPLAN Notices, vol. 42, pp. 89–100. ACM (2007)

30. Palmer, G., et al.: A road map for digital forensic research. In: First Digital Forensic
Research Workshop, Utica, New York, pp. 27–30 (2001)

31. Rajlich, V.: Software evolution and maintenance. In: Proceedings of the Future of
Software Engineering, pp. 133–144. ACM (2014)

32. Rosenblum, N., Zhu, X., Miller, B.P.: Who wrote this code? Identifying the authors
of program binaries. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol.
6879, pp. 172–189. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23822-2 10

33. Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: local algorithms for doc-
ument fingerprinting. In: Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, pp. 76–85. ACM (2003)

34. Shirani, P., et al.: BINARM: scalable and efficient detection of vulnerabilities
in firmware images of intelligent electronic devices. In: Giuffrida, C., Bardin, S.,
Blanc, G. (eds.) DIMVA 2018. LNCS, vol. 10885, pp. 114–138. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93411-2 6

35. Shirani, P., Wang, L., Debbabi, M.: BinShape: scalable and robust binary library
function identification using function shape. In: Polychronakis, M., Meier, M. (eds.)
DIMVA 2017. LNCS, vol. 10327, pp. 301–324. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-60876-1 14

36. Shoshitaishvili, Y., et al.: SOK: (state of) the art of war: offensive techniques in
binary analysis. In: 2016 IEEE Symposium on Security and Privacy, SP, pp. 138–
157. IEEE (2016)

37. Spafford, E.H., Weeber, S.A.: Software forensics: can we track code to its authors?
Comput. Secur. 12(6), 585–595 (1993)

38. Tristan, J.-B., Govereau, P., Morrisett, G.: Evaluating value-graph translation val-
idation for LLVM. ACM SIGPLAN Not. 46(6), 295–305 (2011)

39. Wang, J.T.-L., Ma, Q., Shasha, D., Wu, C.H.: New techniques for extracting fea-
tures from protein sequences. IBM Syst. J. 40(2), 426–441 (2001)

40. Yujian, L., Bo, L.: A normalized Levenshtein distance metric. IEEE Trans. Pattern
Anal. Mach. Intell. 29(6), 1091–1095 (2007)

https://doi.org/10.1007/978-3-319-66399-9_16
https://doi.org/10.1007/978-3-319-66399-9_16
https://doi.org/10.1007/978-3-642-23822-2_10
https://doi.org/10.1007/978-3-642-23822-2_10
https://doi.org/10.1007/978-3-319-93411-2_6
https://doi.org/10.1007/978-3-319-60876-1_14
https://doi.org/10.1007/978-3-319-60876-1_14

	On Leveraging Coding Habits for Effective Binary Authorship Attribution
	1 Introduction
	2 BinAuthor
	2.1 Filtration Process
	2.2 Canonicalization
	2.3 Choices Categorization
	2.4 Feature Vectors
	2.5 Classification

	3 Evaluation
	3.1 Implementation Setup
	3.2 Dataset
	3.3 Experimental Setup
	3.4 Accuracy
	3.5 Scalability
	3.6 Applying BinAuthor to Real Malware Binaries

	4 Related Work
	5 Limitations
	6 Conclusion
	A Example of Qualitative Choices
	B False Positives
	C Impact of Code Transformation Techniques
	References

