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Abstract. Modern intrusion detection systems struggle to detect advanced,
custom attacks against most vectors; from web application injections to malware
reverse connections with encrypted traffic. Current solutions mostly utilize
complex patterns or behavioral analytics on software, user actions and services
historical data together with traffic analysis, in an effort to detect specific types
of attacks. Still, false positives and negatives plague such systems. Behavioral-
based security solutions provides good results but need large amounts of time
and data to train (often spanning months or even years of surveillance) -
especially when encryption comes into play. In this paper, we present a network-
traffic monitoring system that implements a detection method using machine
learning over side channel characteristics of TCP/IP packets and not deep packet
inspection, user analytics or binary analysis. We were able to efficiently dis-
tinguish normal from malicious traffic over a wide range of attacks with a true
positive detection rate of about 94%. Few similar efforts have been made for the
classification of malicious traffic but existing methods rely on complex feature
selection and deep packet analysis to achieve similar (or worse) detection rates.
Most focus on encrypted malware traffic. We manage to distinguish malicious
from normal traffic in a wide range of different types of attacks (e.g. unencrypted
and encrypted malware traffic and/or shellcode connections, website defacing
attacks, ransomware downloaded cryptolocker attacks, etc.) using only few side
channel packet characteristics and we achieve similar or better overall detection
rates from similar detection systems. We compare seven different machine
learning algorithms on multiple traffic sets to produce the best possible results.
We use less features than other proposed solutions and thus require less data and
achieve short times during training and classification.
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1 Introduction

One of the most serious open issues in securing today’s IT networks is the inability of
current solutions (i.e. intrusion detection and prevention systems (IDPS), antivirus etc.)
to detect advanced and often meticulously custom ongoing malicious attacks. Such
attacks are often tailored to specific victims and sophisticated code is used that is not
currently known by the security community. Security companies need to update their
security solutions constantly, only to often fail to detect “0-day” malware and custom
attacks against all vectors, from injecting commands to websites to detecting encrypted
malware traffic. Also, some attacks such web application defacements utilize custom
string and hex coding of malicious data that cannot be efficiently detected.

Current solutions utilize either complex pattern matching or behavioral analytics on
software, users and services in an effort to classify ongoing network events as suspi-
cious. Still, false positives and negatives plague signature-based security software. On
the other hand, behavioral based models have better detection rates but require large
periods of time to effectively monitor users and systems and/or big datasets describing
multiple scenarios to be able to accurately detect malicious traffic [22]; often unreal-
istically large amounts of data and time. On top of these, modern malware uses
encrypted traffic or inject themselves to whitelisted apps (e.g. browsers) to commu-
nicate with C&C servers and exfiltrate data, which makes behavioral analysis and
pattern matching even less successful over network traffic.

1.1 Contribution

We present a network traffic monitoring system that implements machine learning over
network captures to distinguish normal from multiple types of malicious TCP/IP traffic.
A few similar efforts have been made for classification of some types of malicious
traffic (e.g. encrypted malware traffic), yet existing methods rely mostly on complex
feature selection and/or large datasets. Overall, the main contributions of this article are
summarized as follows:

1. We manage to simultaneously detect multiple types of malicious traffic (unen-
crypted and encrypted malware traffic and/or shellcode connections, website
defacing attacks, ransomware downloaded cryptolocker attack, etc.) using a few
side channel characteristics of TCP packets and not complex features or deep packet
inspection.

2. We achieve the same or better overall detection rates with similar detection systems
while using less features (e.g. no TLS, certification features or deep packet
inspection). Consequently, our system requires less training and classification.

3. We test and compare seven (7) different machine learning algorithms over millions
of network captures spanning 8 GB of network. Experiments showed that decision
tree classifiers have good detection rates with side channel features but may be
prone false positives with packet crafting feature values and consequently trick our
classifier. Using KNN seems to greatly reduce this. However, we should avoid
neural networks as preliminary tests with neural networks show that they offer
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worse detection rates while requiring way larger amounts of time and data for
training. Also, in some instances, neural networks seem prone to biases.

4. Our system provides faster training and classification than other detection systems
during offline training and testing due to its smaller feature set. The use of side
channel features greatly reduces the size of traffic data that needs to be analyzed for
training or detecting of various types of malicious traffic and not only encrypted
malware, which seems to dominate current research projects.

Specifically, we first select an optimal set of features from raw features extracted
from TCP traffic packets. We minimize the number of features used in similar previous
research by only utilizing the ones that refer to side channel characteristics; i.e. packet
size ratios and timing events between packets. We provide experiments on real-world
malicious traffic data from three different datasets, namely FIRST 2015 [5], Milicenso
[6] and CTU13-1 [7]) to demonstrate the effectiveness and efficiency of our approach
over multiple types of malicious traffic, even with fewer, selected features.

Section 2 presents related work concerning malicious network traffic and similar
classification approaches and argues about the differences with our presented system.
Section 3 describes the datasets utilized in the current project and presents our data
sanitization process. Section 4 presents the detection methodology implemented in the
proposed system. Section 5 describes our experimental results, while Sect. 6 discusses
further improvements and potential future work.

2 Related Work

Most mainstream approaches to detecting malicious traffic mostly rely on heuristic
analysis of packets, payloads and session trends (like packets per min) along with
botnet architecture [8, 9, 10]. Others rely on statistical analysis for classifying various
types of traffic [20].

Our approach is similar to [13, 27]. In [13], researchers utilize some of the same
features as we do to extract information from the physical aspects of the network traffic.
They too utilize machine learning but focus on OSI layer 7 features to distinguish
between malicious and normal encrypted traffic. Thus, significant differences exist. The
main differences of our work with [13, 27] are the following: (a) We do not restrict our
machine learning and detection system only to encrypted traffic but try to achieve similar
(or even better) detection rates without distinguishing between different malicious
traffic, (b) we provide full payload analysis per packet and in relation to previous packets
sent, whereas researchers in [13] researchers analyze tuples that check payload sizes for
entire originator-responder sessions, (c) we minimize selected features by only using the
ones that refer to side channel characteristics, while achieving better results, and (d) we
do not aim to only understand and distinguish malicious encrypted traffic from malware
but extend this to multiple types of both encrypted and unencrypted malicious traffic,
ranging from defacing attacks, reverse shells, encrypted connections etc.

Cisco published a white paper concerning new advancements in detecting mali-
cious traffic using similar side channel features [27]. Cisco utilizes similar types of data
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elements or telemetry that are independent of protocol details, such as the lengths and
arrival times of messages within a flow. Their technology supports various Cisco
routers and switches to perform detection of malicious traffic in network sessions that
utilize the Transport Layer Security (TLS) protocol.

In summary, we manage similar performance and smaller datasets utilizing only
five features on side channel characteristics, twenty two (22) features less than [13] and
four (4) less than Cisco [27].

Authors in [21] also use malicious HTTPS traffic to train neural networks and
sequence classification to build a system capable of detecting malware traffic over
encrypted connections. Similarities with our work is that we use features to train a
machine learning algorithm. The difference with our work is that: (a) we are able to
detect multiple types of malicious traffic and not only encrypted malware traffic and
(b) we utilize less data (and corresponding domain features) while achieving better and
faster results, albeit not only on encrypted traffic but on a dataset consisting of 200 K
traffic samples of different malicious traffic flows.

Using CART and KNN decision algorithms instead of neural networks, we can
achieve faster classification once the system is trained and have a more interpretable
model to detect hidden interconnections of traffic features. On the other hand, neural
networks might be more accurate (although our preliminary results do not support this),
provided there is enough training data, although they can be prone to over-fitting as
well; this is why another reason why we tested other algorithms more suitable to
unknown dataset characteristics.

Other approaches in analyzing encrypted HTTPS traffic are few [18, 19]. Most of
them focus on identifying target malware/botnet servers [19] or web servers contacted
[18], instead of understanding malicious traffic of various types.

The following publications are worth mentioning although they differentiate and
either utilize different technologies to achieve similar goals, or aim to analyze different
aspects of network traffic albeit with similar algorithms. Authors in [11, 17] utilize
signal processing techniques (e.g., Principal Component Analysis (PCA)) to create
aggregates of traffic and payload inspection data, in an effort to detect anomalous
changes to network flows [14]. They utilize a distance metric to understand network-
change patterns in traffic. Lakhina et al. [15] modelled network flows as combinations
of eigen flows to distinguish between short-lived traffic bursts, trends, noise, or normal
traffic. Terrell et al. [16] grouped network traces into time-series and selected features,
such as the entropy of the packet and port numbers, to detect traffic anomalies. While
these approaches are based on models of malware behavior (not unlike signature-based
intrusion detection), our approach seeks to identify important features on the physical
characteristics of malicious network sessions and utilize them to train machine learning
algorithms. This way, we increase the detection rate by (a) not relying on instances of
malware traffic to understand future malware and (b) by creating a trained model that
predicts the value of a network TCP sessions based on network values of several input
(or independent variables). Our approach is nonparametric, therefore it does not rely on
data belonging to a particular type of distribution. Also, it can utilize variables multiple
times in different decision analyses, thus uncovering complex interdependencies
between sets of variables [12].
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The selected machine learning algorithm and relevant network features enhance
malicious traffic detection in both encrypted and unencrypted traffic, ranging from a
series of different malicious types such as botnets, defacement attacks, reverse shells,
Trojans, etc. To our knowledge, no other prototype is able to accomplish this.

3 Datasets

We utilized datasets with both malicious and normal traffic from various sources to
build our database. Selecting useful and balanced datasets was vital in order to be
certain that the achieved detection rates correspond to real-world capabilities. Datasets
are public and contain traffic of real malware, defacing attacks, reverse shells and
software exploitation attacks along with normal traffic.

To guarantee the malicious traffic data quality and validate our detection rates, we
opted to use malicious traffic from datasets built from major companies and institutions.
The datasets used both for training and testing our system are the following:

• FIRST 2015 [5]: Dataset created for the needs of a hands-on lab for Network
Forensics. It is a collection of 4.4 GB pcap files containing normal as well mali-
cious traffic. Traffic is composed from Reverse Shell shellcode connections, website
defacing attacks, ransomware downloaded attack cryptolocker and a command and
conquer exploit attack (C2) over SSL that takes over the victim machine.

• Milicenso [6]: Dataset containing normal and malware traffic for the Ponmocup
Malware. It contains malicious traffic from a malware/trojan that connects the
victim PC on a botnet.

• CTU13-1 [7]: Dataset containing Botnet Traffic of the Neris Botnet. All traffic is
mostly encrypted botnet traffic, because the normal traffic that was captured at the
same time is not public.

Dataset traffic was included in pcap and pcapng files containing captured packets.
Packets from the FIRST 2015 were pcap files captured using Snort [24], whereas
Milicenso and CTU13-1 datasets were raw tcpdumps of monitored connections. Traffic
flows are captured using methods like WireShark [23], Snort [24], or raw TCP dumps.

3.1 Threat Model

Aforementioned datasets contain malicious traffic that covers a range of different attack
scenarios.

First 2015 dataset

• Website defacement attack (FrogSquad defacement, First 2015). Attackers
uploaded a FrogSquad image to: www.pwned.se/skyblue/fr.jpg.

• Webshell (PHP backdoor) on infected web server. FrogSquad sent multiple
commands using cm0 backdoor. FrogSquad traffic from later come back, from the
same class CIP network.

• Spear Phising email attack. APT4711 spear phishing email to Krusty
(192.168.0.54). From First2015 [5]: “Krusty uses SSL encrypted IMAP (TCP 993)
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towards imap.google.com, so we cannot inspect the contents of his email. However,
we do know that Krusty opened the attachment at 10.35.36 UTC, which caused a
Command-and-control (C2) software do be downloaded”.

• Malware traffic (reverse shell).

CTU-13-1 dataset
As mentioned on the CTU-13 manual [7], “The CTU-13 is a dataset of botnet traffic
that was captured in the CTU University, Czech Republic, in 2011. The goal of the
dataset was to have a large capture of real botnet traffic mixed with normal traffic and
background traffic”. Traffic selected for our experiments contain several botnet sce-
narios with more than 160 different malware samples. Scenarios include:

Click Fraud attacks. The bot sent spam, connected to an HTTP CC, and use HTTP
to do some ClickFraud.
IRC communication for spam and clickjacking. Neris botnet that run for 6.15 h
in a University network. The botnet used an HTTP based C&C channel and not an
IRC C&C channel as it was erroneously reported before. Send SPAM and perform
click-fraud using some advertisement services.
Malware traffic. The machine was successfully infected with POST requests.
Malware connect to command & control (CnC) server using a raw TCP connection.
Encrypted malware traffic. HTTPS and SSH traffic.
UDP and ICMP DDoS.
Trickbot banking Trojan. Trickbot (Trojan.Trickybot) C2 over HTTPS. • Uses
Scheduled Tasks to re-run the main binary every few minutes and connect using
SSL port. Most – but not all –communication with C&C is encrypted.

The dataset contains Background, Botnet, C&C Channels and Normal botnent
traffic flows.

Milicenso dataset
This dataset contains traffic from live use of the Ponmocup malware/Trojan infection
and communication traffic. Traffic contains:

Redirect domains, kritikaa.ilanes.com 178.211.33.205
Malware download, ml.buymeaslut.com 82.211.45.82
C2 /phone home, intohave.com 64.179.44.188 (DNS request only).

3.2 Data Validation

Since the dataset is mainly comprised of malicious traffic captures, the first step was to
balance the amount of normal and malicious traffic. To ensure the quality of the dataset
used, we opted for two things:

• Provide as much ‘normal’ traffic as malicious one per session analyzed. Normal
traffic originates from different types of services and network communications. For
each setup, referenced datasets provide more information [5, 6, 7].

• Increase the amount of encrypted malware traffic to approach data sizes of other
attacks. FIRST [5] dataset encrypted malicious traffic was noticeably less than other
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forms of malicious traffic. To achieve this, we utilized the Trickbot network to
obtain captures from CTU-13 extended dataset pcaps [7].

Since our task is not to distinguish between specific types of malware but rather a
high-level detection of any type of malicious traffic, the notion of a biased dataset in
terms of having the same amount of malicious traffic for each type of attack is not as
relevant as in [13]. Also, our dataset is comprised of real traffic data from multiple
types of attacks, either from captured malware, capture-the-flag hacking events or
similar environments. Thus, a potential imbalance of malicious traffic sub-classes
within each attack) is a real world representation and needs not to be tampered with
(e.g. the no of packets corresponding to malware reverse connection in comparison
with the no of packets corresponding to service exploitation during the same attack.
Also, the amount of data for all types of attacks is big enough to exclude unrealistic
biases in data. Thus, there is no need for rebalancing the classes of malicious traffic, the
only exception being the addition of extra encrypted malicious traffic from different
case studies, due to the small size of network captures in comparison with the rest.

We opt to report detection results using accuracy, precision, recall and f1 score in
both mixed (shuffled) and ordered dataset samples. These are popular metrics and
indicators of the overall performance of the prototype [3] and are used in multiple
similar research projects [13, 18].

4 Detection Methodology

4.1 Problem Definition

Given a TCP/IP network traffic flow, our system aims to sample and classify each
connection as malicious (i.e. produced by malicious events such as a web attack or
malware) or normal. Essentially, the system is comprised of two parts: traffic flow side
channel feature selection and network traffic classification.

Side channel feature selection: The first task is to choose correct, descriptive fea-
tures of TCP traffic that do not refer to the content of a packet, but rather to the physical
characteristics, such as time ratio between packet sending, size of payload etc.

Traffic classification: The second task is to use the selected features to classify new
traffic streams as malicious or normal. We do not aim to distinguish between types of
malicious traffic. It is our belief that human interaction and digital forensics will always
provide better solutions in dissecting security events. Instead, our system aims to warn
against any potential malicious traffic for response teams to take action.

4.2 Feature Selection

In this subsection we discuss the features we selected to feed into our Machine-
Learning algorithms and the rationale of the proposed system. We use features based
on side channel characteristics of TCP traffic to analyze packet-to-packet sequences
inside network sessions.

It is known that for any set of features, “there will be a fundamental limit to the kind
of determinations a NIDS can develop from them” [31]. Choosing a correct set of

352 G. Stergiopoulos et al.



features must always take into account the diversity of normal as well as malicious
traffic. A good approach is to examine the invariance of features in diverse malicious
traffic scenarios [31]. To this end, we opted to base our feature selection on previous
publications [13, 26, 27] that utilized similar side-channel packet features for similar
purposes. Authors in [13] and Cisco [27] made extensive tests and concluded in similar
albeit quite larger feature sets than us. Authors in [26] had previously used a subset of
features also found in [13, 27], albeit for different purposes (i.e. to leak sensitive
information from web application content).

Our intuition was that, the intersection of these features sets could minimize the
features needed for the detection of malicious traffic, while at the same time achieve the
same results. Also we believed that the same feature set could expand potential
malicious traffic detection beyond encrypted malicious traffic; which was the focus of
[13, 27]. Thankfully, we found that these types of features are enough to identify
malicious traffic. Since these features do not require complex aggregation of infor-
mation, the runtime footprint is small and the system can be easily adapted to analyze
traffic in real-time. Overall, we opt for five features on side channel characteristics,
twenty two (22) features less than [13] and four (4) less than Cisco [27].

Packet Size (Ps): Every connection is defined by the packets exchanged between a
sender and a receiver. Packet size is known to be good both for predicting the type of
connection and protocols used [25]. For that reason this is a basic feature of our project.

Payload Size (PAs): It is a feature that defines a packet. The payload is the heart of any
malicious traffic. In TCP, the payload is enclosed in the TCP Data Segment. Research
has shown that side channel analysis of payload sizes can be used as a feature for
information leakage [26].

Payload Ratio (Pr): It refers to the ratio of the payload size to the total packet size.
Malicious traffic can exhibit similar patterns concerning content ratios, so we opted to
include this as a basic feature. The formula is shown below, where PAs refers to the
payload size and Ps refers to the packet size

Pr ¼ PAs
Ps

ð1Þ

Ratio to Previous Packet (Rpp): We noticed that, when malicious traffic flows inside
the network, the packets are sequential and often exhibit specific trends in size. This
can be used for fingerprinting malicious traffic. By comparing two packets in a row that
belong in the same session, we can get the ratio to the previous packet. The value
defaults to 0 for the first packet of the session. The formula is shown below.

Rpp ¼ Pp
PPs

ð2Þ

where Pp refers to the current packet size and PPs to the previous packet size in the
same session.
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Time Difference (Td): The time difference between a packet and the previous packet
of a session can be used to fingerprint malicious traffic. The value defaults to 0 for the
first packet of a session. The formula is:

Td ¼ Pt � PPt ð3Þ

Pt refers to Packet time and PPt to Previous Packet time. Both times refer to how
long it took for a packet to be delivered.

Flag: A simple label that classifies the packet as either 0 or 1, where 0 stands for
normal traffic and 1 for malware traffic.

4.3 Traffic Classification

Our proposed system utilizes offline training to train a machine learning algorithm. The
offline analysis aims to extract traffic patterns and train the classifiers with labelled
traffic flows from real-world datasets. These real-world traffic flows from different apps,
malware types and attacks provide the data to train and verify our system’s classifier.
Each traffic flow contains a sequence of packets and corresponding sessions along with
packet receiving time, packet length, and packet protocol type. We opted to use the
Scikit-learn library over Python to train and implement our classification system. The
workflow of the entire system is depicted in Fig. 1. The above mentioned features and
labelled traffic flows are used for training multiple algorithms. Deciding on a machine-
learning algorithm was no trivial task. For experiments, we opted to compare results
between seven algorithms (see Table 1). Algorithms were selected as follows: We
gathered all machine learning categories used in similar research [16, 26, 27] and
detected their predictive model (e.g. decision tree, neural networks etc.). Then we opted
to use the most efficient algorithms from each model area.

The data mining module was also implemented using Python. It utilizes the Scapy
[1] Python library for packet captures and feature extraction to the SQL database for
easier manipulation of samples for machine-learning modules.

Using CART and KNN decision algorithms instead of neural networks, we can ac-
hi-eve faster classification once the system is trained and have a more interpretable mo-
del to detect hidden interconnections of traffic features. On the other hand, neural
networks might be more accurate, provided there is enough training data, although they
can be prone to over-fitting as well; another reason why we tested other algorithms mo
—re suitable to unknown dataset characteristics. Preliminary tests showed that neural
networks take a lot of time without having clear advantages over others neither in
classification nor optimization (see Sect. 5.1).

Data Collec on 
(Packet 

Captures) 

Data Mining 
(Export_mysql.

py) 
Maria DB CSV 

Files 
Machine 
Learning 

Fig. 1. Workflow of the system from network capture to classification (training & validation)
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The machine-learning module uses Pandas [2] and Scikit-learn [3] Python libraries.
Input files are CSV records exported from the database. The module performs machine-
learning on the dataset using the aforementioned machine learning algorithms.

The database used is MariaDB [4]. MariaDB is a fork of the MySQL database after
the acquisition of the later from Oracle. It was chosen due to its performance gains over
MySQL when exporting CSV files. The database role is to reduce the footprint on the
system disk while allowing us to create specialized subsets from available data for
testing our Machine Learning module. Database structure is presented in Fig. 2.

5 Experimental Results

The proposed system was tested on a Dell Inspiron 15-3537 (Intel Core i7-4500U,
8 GB RAM). Parsing PCAPs to build the SQL database for later training and building
the system took approximately 10 h. Classification and training took about 15 min for
experiment 1 and 5 min for experiment 2 on average, for all models. All tests utilized
Python and the above mentioned libraries. A sample SQL query for selecting random
side channel data samples from the database is depicted at Table 2.

Fig. 2. Structure of the MariaDB database for traffic dataset

Table 1. Machine learning algorithms tested for malicious traffic discrimination

Logistic Regression Linear Discriminant (LDA) K-Neighbours (KNN)
Decision Tree (CART) Gaussian Naïve Bayes Support Vector (SVC)
Neural Network (Multilayer Perception)
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5.1 Experiment 1: Entire Datasets with Randomly Mixed Traffic - All
Types of Malicious Traffic

In the first experiment we utilized all traffic from all datasets. Classification used
random samples from the entire traffic database; malicious and normal traffic. The
number of packets used for testing classification can be found at Table 3. The random
selection of various types of malicious traffic was performed uniformly using MariaDB
at the time of CSV export. This aims to remove any bias in data selection. The dataset
was split 70/30 and all *8 GB of dataset traffic was utilized. Side channel features
were extracted from each packet and imported to MariaDB. This includes the FIRST
2015, Milisenco, and CTU-13 datasets, along with all packets from each network
session. This is done to test non homogenous network traffic behavior with our feature
extraction. All types of malicious traffic were used in this experiment.

Machine learning and classification results are depicted at Tables 4 and 5. By
viewing the hit map for true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN), it is obvious that CART and KNN algorithms have a
clear advantage over others in detecting malicious traffic using side channel charac-
teristics of packets. CART gets a 94.5% detection rate with 4.4% FP and 6.8% FN,
while KNN achieves 94% detection with about 5% FP and 7.7% FN, on the 200 K
network traffic sessions sample. We opted not include SVC because the algorithm does

Table 2. Sample SQL query for exporting random malware packet characteristics from dataset

SELECT
p.packetsize,p.payloadsize,p.payloadratio,p.packetsratiot
opreviouspacket,p.packetspreviouspacketdifferencetime,s.i
sMalicious
INTO OUTFILE "/tmp/outmalware.csv"
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
LINES TERMINATED BY "\n" FROM packets AS p INNER JOIN 
sessions s ON (p.idsessions = s.idsessions) WHERE 
s.isMalicious = 1 ORDER BY RAND()  LIMIT 10000000 ;

Table 3. Traffic packets from sessions in dataset

Total malicious traffic 6669881
Total non-malicious traffic 7968518
Non malicious non encrypted 6337244
Non malicious encrypted 1631274
Malicious non encrypted 6214670
Malicious encrypted 455211
Total 14638399
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not seem to scale as well as the rest of the machine learning models. Overall, CART
and KNN are the best performing models and they will the ones used on the following
experiment.

An interesting finding was that, decreasing the overall size of the random network
traffic sample under classification seems to increase the detection rate (i.e. detection of
potential malicious traffic). To support this and remove potential biases in smaller sets
of captured traffic, we tried various combinations of malicious and normal traffic, as we
will show in Experiment 2.

Preliminary tests with neural networks show that these classification algorithms
provide worse results that decision tree (such as CART, LDA) and instance-based
algorithms like KNN. Notice here that preliminary tests with neural networks show that
they offer worse detection rates to the aforementioned algorithms while requiring way
larger amounts of time and data for training (see Tables 6 and 7). Also, in some
instances, neural networks seem prone to biases.

Table 4. Detection comparison of algorithms – Experiment 1

AI Accuracy True Pos False Pos False Neg True Neg

LR 0.61625 137214 25753 89370 47663
LDA 0.62428 145331 17636 95078 41955
KNN 0.92987 152077 10890 9541 127492
CART 0.94506 152560 10407 7256 129777
NB 0.52005 154225 8742 135241 1792
SVC 0.77211 148421 13017 82517 56045

Table 5. Performance comparison of algorithms – Experiment 1

AI Precision Recall F1-score Support

0 1 0 1 0 1 0 1
LR 0.61 0.65 0.84 0.35 0.70 0.45 162967 137033
LDA 0.60 0.70 0.89 0.31 0.72 0.43 162967 137033
KNN 0.95 0.91 0.92 0.94 0.94 0.93 162967 137033
CART 0.96 0.92 0.94 0.95 0.95 0.94 162967 137033
NB 0.53 0.17 0.95 0.02 0.68 0.03 162967 137033
SVC 0.78 0.75 0.74 0.79 0.76 0.77 162967 137033

Table 6. Detection comparison for neural networks (Multilayer Perception)

AI Accuracy True Pos False Pos False Neg True Neg

NN (Multilayer Perceptron) 0.85031 152616 10351 7062 129971
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5.2 Experiment 2: 20 K Limited Packet Sample for Feature Testing - All
Types of Malicious Traffic

As mentioned previously, we detected that utilizing smaller network flow data over a
trained classifier to detect malicious traffic seems to increase the True Positive detection
rate. Thus, in this second experiment we purposely only use 20 K malicious packets
(and consequently the same amount of clean, normal traffic) from the FIRST 2015
Dataset to test our classifier. This experiment provided insight of the performance of
each algorithm with limited data.

Again, the random selection was performed uniformly by MariaDB at the time of
CSV export to remove any bias. The number of packets is deliberately small since we
want to confirm our assumptions at the feature selection stage of the project that the
selected side channel features are pretty good for classifying malicious traffic even
when data is scarce. Again, the sample along with equal sized normal traffic was split
(70–30) for updating the classifier and testing for malicious traffic detection. All types
of malicious traffic were used in this experiment.

After running the ml.py module on our dataset we get the following table of results.
By viewing the hit map for true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN), it is obvious that some algorithms have a clear advantage
over others. Specifically, CART and KNN show good potential, with *89% detection
rate for any given mixed malicious traffic sample, with low false negatives and false
positives (around 10%). Execution times for offline training only took a couple of
minutes and validation took <2 min. This proves that, even with random session,
limited amount of data to train a classifier, the selected features provide very good
results given the situation in very small timeframes (see Tables 8 and 9).

An interesting find is that SVC performance increases noticeably when smaller
datasets are used for training and classification. This shows that SVC is prone to biases
since, as we increase the training sample, its detection rate falls the fastest. KNN and
CART still hold the best result percentages, while their drop in detection rates is
expected; albeit very small considering the difference in data.

Table 7. Performance of basic neural networks (Multilayer Perception)

AI Precision Recall F1-score Support

0 1 0 1 0 1 0 1
NN (Multilayer Perceptron) 0.86 0.84 0.86 0.83 0.86 0.83 162967 137033

Table 8. Detection comparison of algorithms – Experiment 2

AI Accuracy True Pos False Pos False Neg True Neg

LR 0.539125 1276 801 1062 861
LDA 0.548375 1321 756 1070 853
KNN 0.888312 1878 199 264 1659
CART 0.888625 1904 173 283 1640
NB 0.542625 187 1890 21 1902
SVC 0.873062 2014 63 428 1495
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5.3 Experiment 3: Detection of Encrypted Malware Traffic

Many companies (e.g. CISCO [27]) are publishing technical reports about new intru-
sion detection systems (IDSes) that utilize similar features, yet only detect encrypted
malicious traffic. To our knowledge, no tool is able to generalize this ability to multiple
types of malicious traffic, from defacement SQLi attacks to encrypted traffic, botnets
and injections like ours. Still, for arguments sake, we opt to show that malicious
encrypted malware traffic can be distinguished using less features than [27] while still
maintaining a high detection rate. During the third and last experiment, we focus only
on the selected side channel features (Sect. 4.2) and show that we are still able to
adequately detect encrypted malicious traffic.

For this experiment, our trainer program selected samples from all different
encrypted malicious traffic sessions from all datasets; whether botnets, reverse shells,
malware data transfer etc. To remove biases, the experiment was executed three times
using (i) uniformly random samples from all datasets and types of encrypted traffic (e.g.
see Table 2 above), (ii) biased (more botnet traffic in terms of 80%–20%), and (iii) per
dataset. The dataset was split 70–30 for training and classification.

The hit maps for true positives (TP), true negatives (TN), false positives (FP) and
false negatives (FN) are depicted at Tables 10 and 11 (averages from three executions).

This experiment yielded the best results. From observations, we can conclude that
these types of side channel features are effective for discriminating encrypted malware
traffic; especially if we do not care to understand the type of malicious encrypted traffic
or the content being transmitted. We noticed a low percentage of False Positives and
False negatives (*8% of the total positive malicious sample).

Table 9. Performance comparison of algorithms – Experiment 2

AI Precision Recall F1-score Support

0 1 0 1 0 1 0 1
LR 0.55 0.52 0.61 0.45 0.58 0.48 2077 1923
LDA 0.55 0.53 0.64 0.44 0.59 0.48 2077 1923
KNN 0.88 0.89 0.90 0.86 0.89 0.88 2077 1923
CART 0.87 0.90 0.92 0.85 0.89 0.88 2077 1923
NB 0.90 0.50 0.90 0.99 0.16 0.67 2077 1923
SVC 0.82 0.96 0.97 0.78 0.89 0.86 2077 1923

Table 10. Detection comparison for encrypted malicious traffic – Experiment 3

AI Accuracy True Pos False Pos False Neg True Neg

KNN 0.996334 488685 1495 648 135118
CART 0.99852 488849 440 484 136173
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6 Conclusions, Findings and Future Work

In this paper, we presented seven (7) machine-learning algorithms and their perfor-
mance for detecting multiple types of malicious traffic, both encrypted and unen-
crypted, based on selected side channel features. The project currently works
retroactively on already captured data. The presented experiments adequately prove
that side channel characteristics of TCP packets can be effectively used together with
machine learning to detect most types of malicious traffic, even if wide differences exist
on the types of ongoing attacks and to their corresponding traffic.

Some of our most important conclusions are the following:

• The best detection rate achieved was about 94.2% on CART and 93.4% using KNN
algorithms, on full-scale mixed types of malicious data for various datasets totaling
about *8 GB in size.

• Preliminary results show that machine learning algorithms that utilize Decision Tree
classifiers may be prone to packet crafting, if an attacker has access to the prediction
model, parameters and the entire sample. Although this is generally not feasible, we
should state here that the possibility exists. To this end, preliminary tests may
support that Instance based algorithms like KNN along with the selected side
channel features greatly reduce such attacks.

• We detected specific, descriptive features describing side channel characteristics of
TCP packets (such as packet size, delivery time ratios etc.) and built lightweight
classification modules (less than a few megabytes) that are able to run on real time
traffic and detect ongoing malicious attacks to enhance network security. We
showed that we can achieve very good malicious traffic detection percentages
without utilizing full-scale TLS and connection certification features, but instead
focus only on typical side channel packet characteristics.

• The use of side channel features significantly reduces the amount of analysis and
network traffic that needs to be saved for detection. Thus, the system can be used to
supplement network security analysts to gain a better understanding of their net-
work traffic and get robust alerts on security incidents without relying on error-
prone IDPS pattern matching or heavy behavioral analytics. We plan to combine
our system with well-known traffic monitoring systems, like Bro [28], Snort [29], or
Suricata [30].

Our experiments demonstrated the applicability of the proposed system for
detecting multiple types of malicious traffic without discriminating among types of
malicious attacks.

Table 11. Performance comparison for encrypted malicious traffic – Experiment 3

AI Precision Recall F1-score Support

0 1 0 1 0 1 0 1
KNN 1.0 1.0 1.0 0.99 1.0 0.99 489333 136613
CART 1.0 1.0 1.0 1.0 1.0 1.0 489333 136613
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Our future work aims to build a working prototype for large-scale enterprise net-
works and work along well-known network traffic sniffers and monitoring systems
(Bro, Snort, Suricata). We also aim to extend the system to incorporate more features
like “connection type” and “TTL” feature to further enhance the detection mechanisms
against DDoS attacks and spoofed packets.
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