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Abstract. Cloud computing provide an efficient big data processing platform
for many small and medium scale enterprises, how to replicate and allocate data
in clouds is a critical problem influencing cost consumption for small and
medium scale enterprises. Cloud data management systems mainly serve two
kinds of workloads, one is read-intensive analytical workloads (e.g. OLAP), the
other is write-intensive transactional workloads (e.g. OLTP). It is essential to
minimize data management costs like storage, communication bandwidth,
update and power with guaranteeing the service level agreements. Toward two
workloads, a cost-effective data replica placement approach for minimizing data
management costs on cloud computing centers is proposed. The definition of
different data management costs is identified first, then we construct the cost
optimization model of the data replica placement problem. The paper proposes a
hybrid genetic algorithm and a data support-based initialization method that
addresses the problem. Experiments show that the approach result in significant
reduction in total data management cost and the algorithm is with good
performance.
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1 Introduction

With the development and popularization of internet technique, a wealth of data is
generated in commercial applications, such as e-commerce, web search, social media,
online map and so on. One billion pictures are uploaded to Facebook every week,
which means that nearly 60 TB new data will be generated per week, the amount of
traffic flowing over the internet annually exceeds 700 EB, more than one million
transactions are processed per hour in Wal-Mart, the volume of data will reach 25 PB
[10, 11]. Cloud computing technology [2] integrates hardware and software resources
among data centers through the Internet, which provides small and medium scale
enterprises with a reliable platform for storing, processing, and analyzing big data. In
order to improve the performance of applications and the reliability of user access, data
replication technology is widely used in cloud platforms [19]. For example, YouTube
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deploys copies of video in different geographic locations to provide users with video
copies in nearby clouds, this technology significantly shortens the request response
time for users, and greatly improves user experience and service quality, meanwhile,
due to the presence of redundant information, it also guarantees the reliability of the
service.

Neves et al. [13] proposed a data replication technology in content distribution
networks. The article replicates the data to a subset of entire servers for responding
users’ requests, and aims to minimize the data traffic cost in the network. Bektas et al.
[3] presented an integer non-linear programming model, which jointly determines the
number and location of servers, data replica allocation to servers, and query routing
problems. The model minimizes the total server placement and data transmission costs.
Yuan et al. [18] developed a practical storage strategy that can automatically decide
whether to store the generated data set in clouds. This strategy firstly focuses on the
tradeoff between data calculation and storage cost, then considers the user’s storage
option preference. Nehme et al. [12] proposed an approach that automatically partitions
the database according to the expected workload. The method tightly integrates the
query optimizer that relies on database statistics, and emphatically considers read-
intensive analytical workloads. Curino et al. [5] adopted a graph-based partitioning
algorithm to minimize the number of distributed transactions for OLTP workloads.
However, this method eliminates fault tolerance by not replicating data items with
high-frequency write/update operations. Tatarowicz et al. [15] utilized a router with
high memory and powerful computing resources for data search, but this method isn’t
cost-effective on account of occupying a large amount of memory and computing
resources. Johansson et al. [9], Ferhatosmanoǧlu et al. [7] and Tosun et al. [16, 17]
proposed a comprehensive combination of data replication allocation and query pro-
cessing strategies to minimize latency and query response time. Nevertheless, the
method ignores cost consumption and the impact of data updates generated by write-
intensive transactional workloads (OLTP) on the transmission.

Therefore, in this paper, from the view of data management costs, a genetic
algorithm-based heuristic method oriented to two types of workloads (read-intensive
analytical workload and write-intensive transactional workload) is developed to syn-
thetically consider data storage, update, transmission and processing costs in clouds.
The method aims to minimize total data management costs, and jointly determines the
number of servers in the cloud storage system, the number of data replicas, the storage
location of data replicas, and user access paths to data replicas. Experiments confirm
that the method reduces data management costs in clouds and the proposed algorithm
performs well.

We organize the rest of this paper as follows. Section 2 provides the problem
definition and formulation. Section 3 introduces the procedure of the genetic algorithm-
based heuristic developed to solve the problem. Section 4 presents the extensive
experiments designed to evaluate the effectiveness and efficiency of the proposed
algorithm. Section 5 concludes the contribution of this work.
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2 Problem Statement

2.1 Cloud Computing Environment

Figure 1 illustrates the cloud computing environment, data center, user, network and
site server constitutes the heart of a cloud service. Data centers distributed in different
geographical that are interconnected through communication links constitute the main
environment of cloud computing. The data is transmitted over the network to the data
center closest to the user for satisfying various requirements. Servers handle data
computing and storage.

Figure 2 shows an illustrative example that vividly demonstrates the impact of data
replication and placement on data management costs in clouds. There are 2 user
queries, 4 data centers (1 server in each data center), 8 data items and 2 different data
layouts in the cloud service. Query q1 accesses data items d1; d2; d4; d5, query q2
accesses data items d3; d7; d8. For simplicity, we assume that the server’s computing
power, data storage cost and calculation cost are the same, 8 data items are all 3 GB,
and the transmission cost among data centers are the same. Taking Amazon Elastic
Compute Cloud as an example [1], data management costs are shown in Table 1.
Therefore, the data management cost generated by Alternative I is: 0.19/GB * 6 GB
(data transmission cost) + 0.19/GB * 3 GB (data transmission cost) + 0.11/GB * 24
GB (data storage cost) = $4.11; the total cost generated by Alternative II is:
0.19/GB * 6 GB (data transmission cost) + 0 (data transmission cost) + 0.11/GB *
27 GB (data storage cost) = $3.84. Obviously, the data replication and placement
strategy greatly influences data management costs in clouds.

User 

Data center

Server 

Network 

Fig. 1. Example of the cloud computing environment
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2.2 Data Management Cost Model in Clouds

With given data items set K ¼ k : k ¼ 1; 2; . . .; pf g, server nodes set
J ¼ j : j ¼ 1; 2; . . .;mf g, user nodes set I ¼ i : i ¼ 1; 2; . . .; nf g, the data management
cost problem in clouds is defined as follows:

Definition 1. Server installation cost: It is assumed that data processing and storage
occurs on the server. The server is the basis for providing users with various cloud
services, and its installation cost is an important part of data management costs. F j
denotes the fixed cost to install a sever at location j.

Definition 2. Data placement cost: The unit storage and maintenance cost of data item
k that occurs on a server at location j is Xj, the size of data item k is sk, then, the total
storage and maintenance cost is Xj � sk. When a write-intensive transactional work-
load occurs, the amount of user update requests at node i for data items k during the
unit communication time is uik, the unit transmission cost that occurs on the path where
user at node i accesses data item k at location j is tij. Thus, the data placement cost of
data item k replica occurs on the server at location j is Pjk ¼ Xj � sk þ

Pn
i¼1 uik � tij.

Definition 3. Data transmission cost: When a read-intensive analytical workload
occurs, the query frequency of the user at location i accessing data item k is fik, The
unit transmission cost occurred on the path where the user at node i accessing the data

Fig. 2. A data placement example in clouds

Table 1. Cloud service costs in Amazon elastic compute cloud

Resource Unit Unit price

Data transmission GB $0.19
Data storage GB/Month $0.11
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item k at server j is bij Therefore, the transmission cost required for executing user
node i’s query over data item k at location j is: Tijk ¼ fik � bij � sk .

2.3 Data Management Cost Optimization Model in Clouds

A mathematical programming model for the data management cost optimization in
clouds is presented. The problem objective is to jointly determine

(1) the number of servers in the cloud storage system,
(2) the number of data replicas,
(3) the storage location of data replicas, and
(4) user access paths to data replicas.

Decision variables are as follows:

Zj ¼ 1; if a server is installed at location j
0; otherwise

�

yjk ¼ 1; if a replica of data item k is allocated to a server at location j
0; otherwise

�

xijk¼ 1; if user node i's query request to data item k is served from a server at location j
0; otherwise

�

The data management cost optimization in clouds problem is formulated as:

min
Xm
j¼1

Fj � zj þ
Xm
j¼1

Xp
k¼1

Pjk � yjk þ
Xn
i¼1

Xm
j¼1

Xp
k¼1

Tijk � xijk ð1Þ

s.t.

Xm
j¼1

Xp
k¼1

aik � xijk ¼ bi; 8i 2 I ð2Þ

xijk � yjk; 8i 2 I; j 2 J; k 2 K ð3Þ

yjk � zj; 8j 2 J; k 2 K ð4Þ
Xm
j¼1

yjk �Nmin; 8k 2 K ð5Þ

Xp
k¼1

sk � yjk � Sj � zj; 8j 2 J ð6Þ
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According to Sect. 2.2, the first term in the objective function (1) represents the
fixed costs for installing servers, the second term presents storage costs, maintenance
costs and update costs associated with data placed in servers, and the third term is the
data transmission cost associated with responding user queries.

Constraint (2) guarantees that the demand for queries to data items by each user is

satisfied. A ¼

a11 � � � a1k � � � a1p
..
. ..

. ..
.

ai1 � � � aik � � � aip
..
. ..

. ..
.

am1 � � � amk � � � amp

2
6666664

3
7777775

b1
..
.

bi
..
.

bm

2
666664

3
777775
denotes users accessing data query

matrix, aik ¼ 1 denotes that user node i has a request for the data item k, bi denotes the
number of data accessed by users. The query matrix shown in Fig. 2 is

A ¼ 1 1 0 1 1 0 0 0
0 0 1 0 0 0 1 1

� �
4
3

� �
.

Constraint (3) ensures that a user node accesses a server which has been installed at
the corresponding location.

Constraint (4) prevents the assignment of a data replica to a server unless the server
is installed.

Constraint (5) specifies the minimum number of replicas of data items to guarantee
the security and reliability of cloud services.

Constraint (6) dictates that the size of the data items stored in a server cannot
exceed the storage capacity of the server. The storage capacity of the server j is Sj.

3 Solution Procedure

The problem of data replica placement in clouds is a complex combinational opti-
mization problem. More and more scholars utilize the genetic algorithm combined with
heuristic rules to solve combinatorial optimization problems, and these methods
achieved good results. This paper proposes a hybrid genetic algorithm (hereafter called
HGA) to solve the problem and designs a heuristic rule based on the data support
degree to form initial population for accelerating algorithm optimization. We also apply
this rule to genetic operators to enhance the effectiveness of local search.

3.1 Chromosome Design

Because the objective function of the research problem in this paper depends not only
on the choice of server, but also on the data replication and placement on the server, so
this paper adopts a group-based chromosome representation method proposed by
Falkenauer [6]. This encoding consists of two parts, the part below shows the servers
where the data is stored and the upper represents the data replica placed on the server.
Figure 3 shows an example of encoding according to Fig. 2.
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In Fig. 3, a letter represents a server, a numeral denotes a data replica. The upper
data layout shows that data replica 1, 5 are placed on server A, data replica 2, 6 are
placed on server B, data replica 3, 7 are placed on server C, data replica 4, 8 are placed
on server D.

3.2 Initial Population Generation

Definition 4. Data support degree: the percentage of the number of queries supported
by data i that accounts for the total number of queries supported by each data.

As shown in Fig. 2, the four queries are q1 d1; d2; d4; d5f g, q2 d3; d7; d8f g,
q3 d1; d3f g and q4 d2; d4; d6f g respectively, the number of queries supported by each
data are d1 q1; q3h i ¼ 2, d2 q1; q4h i ¼ 2, d3 q2; q3h i ¼ 2, d4 q1; q4h i ¼ 2, d5 q1h i ¼ 1,
d6 q4h i ¼ 1, d7 q2h i ¼ 1 and d8 q2h i ¼ 1. Thus, the support degree of data d1, sðd1Þ,
equals 2

12, the rest data support degree can be calculated in the same manner.
The number of data replicas according to data support degree is computed before

generating the initial population, the number of data k’s replicas is computed as

Nk ¼ ½
s dkð Þ �

Pm
j¼1

Sj

sk
�, [] represents rounding. Generating pop initial individuals with vari-

ous number of servers. The data is sorted in descending order according to the data
support degree, and the data replica is placed on the server nearest to the query node.
The procedure of the initial Population Generation algorithm based on data Support
degree (PGoS) is as follows:

(1) The data items are sorted in descending order according to the data support
degree. The servers that correspond to each data item in the individual are sorted
in ascending order according to the distance between the server node and the
query node the data can support. The data item is placed in descending order
according to the data support degree. The current data item is placed on the first
corresponding server. If the storage capacity of the first server is insufficient, the
data item is placed on the second corresponding server, and so on. If all the
servers’ storage capacity is insufficient, new servers will be selected from the
unselected server set for data placement until all data items (which do not contain

A B C D

1 5 2 6 3 7 4 8

A B C

1 3 5 2 4 6 3 7 8Data replicas

Servers 

Data replicas

Servers 

Fig. 3. An example of chromosome representation
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a replica of the data at this time) are placed on the server. This step guarantees that
constraints (2), (4) and (6) are satisfied, which effectively avoids infeasible
solutions.

(2) The data replicas are placed on servers in turn according to descending order of
the data support degree. The first replica of the first data item is placed on the
second corresponding server. If the second corresponding server is insufficient,
then the first replica of the first data item is placed on the third corresponding
server, and so on, until all Nk � 1 replicas are placed on servers or all servers have
been inspected for storage capacity.

(3) Checking whether the placed replicas satisfy constraint (6). If all replicas of the
first data item can be placed, then moving on to step (2) for placing replicas of the
next data item; if only a partial replica of the first data item are placed after all
servers’ storage capacity has been checked, then deleting the remaining replicas
and going to step (2) for placing replicas of the next data item, and so on.

(4) If all servers’ storage capacity is satisfied and no replicas can be placed, the
placement of replicas are completed, then deleting the remaining replicas. The
termination of the PGoS algorithm. The algorithm flowchart is presented in Fig. 4.

3.3 Fitness Function

The encoding of each chromosome directly determines the value of the decision
variable yjk; zj. The original model is simplified as:

Fig. 4. The flow diagram of PGoS algorithm
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min
Xm
j¼1

Fj � zj þ
Xm
j¼1

Xp
k¼1

Pjk � yjl þ
Xn
i¼1

Xm
j¼1

Xp
k¼1

Tijk � xijk ð7Þ

s.t.

Xm
j¼1

Xp
k¼1

aik � xijk ¼ bi; 8i 2 I ð8Þ

xijk � yjk; 8i 2 I; j 2 J; k 2 K ð9Þ

xijk 2 0; 1f g ð10Þ

The simplified model is a classical user assignment problem (UAP) model, and Sen
et al. [14] reviews various methods to quickly and efficiently solve the UAP problem.
Because this paper deals with the cost minimization problem, it is necessary to convert
the objective function into a fitness function to ensure that excellent individuals have
large fitness values. For an individual vi, the fitness function is:

F við Þ ¼ fmax � f ðviÞ
fmax � fmin

fmax is the value corresponding to the worst individual in the current population, fmin

is the value corresponding to the best individual in the current population, so the fitness
value can reflect the distance of each individual in the population from the worst
individual.

3.4 Genetic Operators

Selection Operator
This paper adopts the elitism selection combined with the roulette wheel selection for
selecting individuals.

(1) Calculating the individual fitness value according to the above mentioned strategy.
Individuals with the highest fitness value are selected into the next generation.

(2) Calculating the probability that each individual enters into the next generation
according to its fitness value:

p við Þ ¼ F við ÞP
F við Þ

Crossover Operator
According to the encoding method described in Sect. 3.1, the crossover operator
requires processing chromosomes of variable length. The specific crossover process is
illustrated in Fig. 5.
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(1) Selecting two parent individuals with probability pc. Selecting two crossover point
randomly, and selecting the crossover portion of each parent.

(2) Inserting the crossover part of the first parent in front of the crossover point of the
second parent and inserting the crossover part of the second parent in front of the
crossover point of the first parent.

(3) If the newly inserted server already exists on the parent chromosome, the original
server is deleted. The data replicas in the original server that exists in the new
server is directly deleted, and replicas that do not exist in the new server are
rearranged using algorithm PGoS.

(4) If the newly inserted server does not exist in the parent chromosome, taking out
the same replicas placed in the new server and the other servers, then taken out
replicas will be rearranged by using algorithm PGoS.

Mutation Operator
The mutation operator is difficult to perform effective local search in genetic algorithm
at later process. Therefore, this paper also embeds the neighborhood search mechanism
based on data support degree into the mutation operator to improve the search effi-
ciency and evolution quality. The probability of mutation is set as pm. pop � pm indi-
viduals are selected from the population for mutation. Randomly generating binary
number 0; 1½ �, if it is 1, enabling a new server; if it is 0, deleting a deployed server. The
mutated individuals that lack partial data will be rearranged by using algorithm PGoS.

Fig. 5. The crossover operator sketch
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4 Experiment

The experiment was performed in the MATLAB environment. The computer was
configured with an Intel Core i3-4150 CPU and RAM 4.00 GB. The relevant data
management cost parameters in clouds involved in the experiment: server installation
cost, data storage cost, and transmission cost are all obtained through Amazon’s EC2
[8]. Data items and related user information are obtained through the Dataset for
“Statistics and Social Network of YouTube Videos”. The distance between data centers
is obtained through GPSSPG.

4.1 The Validity of the Proposed Algorithm

In order to verify the quality of the proposed algorithm (HGA), this paper uses CPLEX
[4] to solve the optimal solution of the integer programming (IP) model built in this
paper, and uses the genetic algorithm (GA) as a comparison. The instances scale and
algorithm parameter settings are shown in Tables 2 and 3, respectively. Experimental
results are shown in Table 4.

Table 2. Instances scale

NO User Data Server

1 20 10 10
2 50 20 20
3 100 30 30
4 200 40 40
5 300 50 50

Table 3. Parameters of HGA and GA

Parameter Value

Max iterations 2000
Population size 100
Crossover probability 0.8
Mutation probability 0.08

Table 4. Experimental results

NO IP HGA GA
Cost Time Cost Time Gap Cost Time Gap

1 154.6 153.64 s 158.7 0.36 s 2.65% 154.76 0.25 0.10%
2 228.7 331.5 s 230.4 0.47 s 0.74% 239.96 0.30 4.90%
3 397.5 1456.78 s 399.5 0.59 s 0.50% 399.83 0.38 0.59%
4 454.83 5370.56 s 462.3 4.05 s 1.64% 485.48 3.4 6.74%
5 593.75 11340.8 s 597.22 4.12 s 0.58% 621.1 3.76 4.61%
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Experimental results demonstrate that the quality of the solution obtained by HGA
is very close to the optimal solution, and the distance between the solution obtained by
HGA and the optimal solution can be controlled at around 1.22%, which is obviously
better than the simple genetic algorithm. It shows that the heuristic rule based on data
support degree proposed in this paper can improve the quality of optimization. The
experiment also recorded the running time of HGA under different scale instances. The
results show that the algorithm can be completed in an ideal time, and some relatively
small instances can be completed in milliseconds. The efficiency of the HGA algorithm
has obvious advantages under large scale instances.

Fig. 6. Key parameters on the performance of HGA
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4.2 HGA Parameters Analysis

To verify the stability of the HGA, experiments set different algorithm parameters
(crossover probability and mutation probability) to evaluate HGA performance.
Selecting 300 users, 50 data, 50 servers 50 scale instance to verify HGA performance.
Experimental results are shown in Fig. 6.

From Fig. 6(a) and (b), it can be seen that the overall quality of the solution does
not change much as crossover probability and mutation probability change. And under
the same conditions, the variation of HGA is significantly smaller than that of GA,
which also verify that the quality of HGA’s solution is affected by the choice of
parameters very little and has higher stability.

5 Conclusion

Internet applications generate huge amounts of data, and cloud computing services
provide a powerful platform for small and medium scale enterprises to store, analyze,
process and access big data. How to effectively replicate and place data in clouds is an
important issue for small and medium scale enterprises. In this paper, the cloud data
management cost model for different workloads is designed. The paper synthesizes the
server installation cost, storage cost, update cost and transmission cost associated with
data placement and processing, build a minimum cost integer programming model.
A heuristic rule based on data support is proposed and embedded into the initial
population generation and genetic operators of the genetic algorithm. The proposed
algorithm was tested through YouTube’s real data set. Experimental results demon-
strate that the proposed algorithm is with good performance.

Contributions in this paper can be listed as: ① The proposed optimization model
for data replication and placement problem jointly analyzes decision issues of server
installation, data replica placement and user query path allocation decision. This allows
cloud system administrators to analyze data management costs extensively to determine
the optimal data management system design in clouds. ② The designed hybrid genetic
algorithm based on data support degree effectively solves the model. The experimental
results verify that the algorithm can achieve lower cost and ensure the solution in large
scale instances is with a reliable guarantee of the time. Meanwhile, the sensitivity
analysis verifies that the algorithm maintains a strong stability in the process of
parameter changes.
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