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Abstract. Order-preserving encryption (OPE) and order-revealing
encryption (ORE) are among the core ingredients for encrypted
databases (EDBs). In this work, we study the leakage of OPE and ORE
and their forward security.

We propose generic yet powerful file-injection attacks (FIAs) on
OPE/ORE, aimed at the situations of possessing order by and range
queries. Our FIAs only exploit the ideal leakage of OPE/ORE (in partic-
ular, no need of data denseness or frequency). We executed some experi-
ments on real datasets to test the performance, and the results show that
our FIAs can cause an extreme hazard on most of the existing OPEs and
OREs with high efficiency and 100% recovery rate.

We then formulate forward security of ORE, which is of independent
of interest, and propose a practical compilation framework for achieving
forward secure ORE in order to resist the perniciousness of FIA. The
compilation framework can transform most of the existing OPEs/OREs
into forward secure OREs, with the goal of minimizing the extra burden
incurred on computation and storage. We also execute some experiments
to analyze its performance.
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1 Introduction

In recent years, many property-preserving encryption (PPE) schemes and
property-revealing encryption (PRE) schemes have been proposed with increased
efficiency or/and security. This condition promotes the occurrence of encrypted
database (EDB) systems. CryptDB [22] has been proposed by Popa et al. as
the first practical EDB system for executing data manipulations on encrypted
data. Because of its onion encryption model and its proxy architecture, CryptDB
supports most of the basic operations on ciphertexts with acceptable efficiency.

As a kind of PPE, order-preserving encryption (OPE) has been gaining more
and more attention and studies because of its applications on EDB. OPE was
first proposed for numeric data by Agrawal et al. [3], where the order of plaintexts
can be obtained by comparing their ciphertexts directly. Later, order-revealing
encryption (ORE) was proposed by Boneh et al. [6] as the generalization of
OPE, where the ciphertexts reveal their order by a special algorithm rather
than comparing themselves directly.

Even though OPE and ORE aim at leaking nothing other than the order of
ciphertexts, many attacks have been proposed against OPE and ORE in recent
years. Naveed et al. [20] proposed several inference attacks against the deter-
ministic encryption (DTE) and OPE in CryptDB. Durak et al. [10] showed that
some ORE schemes, whose security is discussed on uniform inputs, could make
the plaintext recovery of some known attacks more accurate on nonuniform data.
They also proposed an attack, aiming at multiple encrypted columns of corre-
lated data, which reveals more information than prior attacks against columns
individually. Grubbs et al. [13] proposed new leakage-abuse attacks that achieve
high-correctness recovery on OPE-encrypted data. They also presented the first
attack on frequency-hiding OPE proposed in [16].

1.1 Our Contributions

In this paper, we first demonstrate the power of file-injection attacks (FIAs) on
OPE/ORE, by developing two categories of FIA schemes (to the best of our
knowledge, the first such attacks) against OPE/ORE. (The underlying assump-
tions and work flows of FIAs are briefly described in Sect. 3.1). Our FIA attacks
are generic and powerful, in the sense that they only exploit the ideal leak-
age of OPE/ORE. Specifically, for our FIA attacks to work, the adversary only
possesses the plaintext space, some old order by or range queries and the corre-
sponding cipher result sets returned from EDB. In particular, the adversary does
not need either the ability of comparing ciphertexts with the ORE comparison
algorithm, or that of obtaining the ciphertexts outside of the result sets for order
by and range queries.

In comparison with other attacks against OPE/ORE proposed in recent
years, our FIA attacks rely upon less demanding conditions, and are more effec-
tive (particularly for attacking systems, like encrypted email systems, with the
function of data sharing or transferring). For example, compared with the attacks
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against OPE/ORE proposed in [13,20], our FIA attacks have the following fea-
tures simultaneously: (1) no need of data denseness or frequency, and (2) generic
against any OPE/ORE with ideal leakage. Furthermore, as shown in Appendix
A, we compare and clarify in detail the advantages of our attacks over the chosen-
plaintext attack (CPA) and the inference attack (IA). We present more details
and experiments in the extended version [25] of this paper. Moreover, the exper-
iment results show that our FIAs can cause an extreme hazard on most of the
existing OPE and ORE schemes with high efficiency and 100% recovery rate.

The strong security property against FIA is forward security, which ensures
that the previous data manipulations do not cause any leakage of the newly
inserted data. In other words, it is infeasible for the server to produce a correct
response when applying an old query to newly inserted ciphertexts encrypted by
a forward secure scheme. To the best of our knowledge, no OPE/ORE construc-
tion offered the forward security to thwart FIAs up to now.

In this work, we give the formal definition of forward security for OPE/ORE,
which might be of independent interest. Then, we propose a compilation frame-
work for achieving forward secure ORE schemes against FIA attacks. Specifi-
cally, the compilation framework is applicable to most of the existing OPE/ORE
schemes to transform them into forward secure ones. The resultant forward
secure schemes leak nothing about newly inserted data that match the previous
order by or range queries. Moreover, the compilation framework is constructed
with the goal of minimizing the extra burden incurred on computation and stor-
age. In particular, the compilation only uses some simple cryptographical tools
like pseudo-random function (PRF), keyed hash function and trapdoor permuta-
tion (TDP). Finally, we execute some experiments to analyze the additional cost
caused when applying our compilation framework to some prominent OPE/ORE
schemes developed in recent year.

1.2 Related Work

Order-Preserving Encryption (OPE). Agrawal et al. [3] first proposed
an OPE scheme for numeric data. Afterwards, OPE was formally studied
by Boldyreva et al. [4], where, in particular, two leakage profiles were intro-
duced. Boldyreva et al. [5] analyzed the one-wayness security of OPE, and
showed that any OPE scheme must have immutable large ciphertexts if the
scheme is constructed for leaking only order and frequency information. Popa
et al. [21] proposed an OPE scheme in order tree structure, which is the first
OPE scheme achieving the security of IND-OCPA (indistinguishability under
ordered chosen-plaintext attack). Kerschbaum [16] proposed a frequency-hiding
OPE scheme, which supports the security of IND-FA-OCPA (indistinguisha-
bility under frequency-analyzing ordered chosen-plaintext attack) for the first
time. Later, a partial order preserving encryption (POPE), with a method for
frequency-hiding, was developed by Roche et al. [23].

Order-Revealing Encryption (ORE). ORE was first generalized from OPE
by Boneh et al. [6]. Their ORE scheme is built upon multilinear maps, which
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provides better security but at the cost of worse efficiency. Chenette et al. [9] pro-
posed the first practical ORE, which achieves a simulation-based security w.r.t.
some leakage functions that precisely quantify what is leaked by the scheme.
Recently, Cash et al. [8] presented a general construction of ORE with reduced
leakage as compared to [9], but at the cost of using a new type of “property-
preserving” hash function based on bilinear maps.

File-Injection Attack on SSE. As a kind of query-recovery attack, Islam
et al. [15] initiated the study of FIA attack against searchable symmetric encryp-
tion (SSE), by showing that a curious service provider can recover most of the
keywords-search queries with high accuracy. Cash et al. [7] further improved the
power of the attack initiated in [15], by assuming less knowledge about the files
of clients even in a larger plaintext space. Except the encrypted email systems
like Pmail [2], they also discussed how their active attacks (e.g., query recovery
attacks, partial plaintext recovery attacks, FIAs) might be used to break through
other systems such as the systems in [14,17]. Zhang et al. [26] showed that FIA
can recover the keywords-search queries with just a few injected files even for
SSE of low leakage. Their attacks outperform the attacks proposed in [7,15] in
efficiency and in the prerequisite of adversary’s prior knowledge.

2 Preliminaries

In this section we introduce some fundamental knowledge of TDP, ORE and
OPE. We use standard notations and conventions below for writing probabilistic
algorithms, experiments and protocols. If D denotes a domain, x

$←− D is the
operation of picking an element uniformly at random from D. If S is a set, then
for any k, 0 ≤ k ≤ |S| − 1, S[k] denotes the (k + 1)-th element in S. If α is
neither an algorithm nor a set, then x ← α is a simple assignment statement. If
A is a probabilistic algorithm, then A(x1, x2, · · · ; r) is the result of running A on
inputs x1, x2, · · · and coins r. We let A(x1, x2, · · · ) → y denote the experiment
of picking r at random and letting y be A(x1, x2, · · · ; r). By P[R1; · · · ;Rn : E]
we denote the probability of event E, after the ordered execution of random
processes R1, · · · , Rn.

Definition 1 (Trapdoor Permutation). A tuple of polynomial-time algo-
rithms (KeyGen,Π, Inv) over a domain D is a family of trapdoor permutations
(or, sometimes, a trapdoor permutation informally), if it satisfies the following
properties:

– KeyGen(1λ) → (I, td). On input a secure parameter λ, the parameter gener-
ation algorithm outputs a pair of parameters (I, td). Each pair of the param-
eters defines a set DI = Dtd with |I| � λ. Informally, I (resp., td) is said to
be the public key (resp., secret key) of TDP.

– KeyGen1(1λ) → I. Let KeyGen1 be the algorithm that executes KeyGen and
returns I as the only result. Then (KeyGen1, Π) is a family of one-way per-
mutations.
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– Invtd(y) → x. Inv is a deterministic inverting algorithm such that, for every
pair of (I, td) output by KeyGen(1λ) and any x ∈ Dtd = DI and y = ΠI(x),
it holds Invtd(y) = x. For presentation simplicity, we also write the algorithm

Invtd as Π−1
td , and denoted by Πk

I (x) =

k TDPs
︷ ︸︸ ︷

ΠI(ΠI(· · · ΠI(x) · · · )) for some integer
k ≥ 1.

2.1 Definition of ORE

Definition 2 (Order-Revealing Encryption). A secret-key encryption
scheme is an order-revealing encryption (ORE), if the scheme can be expressed
as a tuple of algorithms ORE = (ORE.Setup,ORE.Encrypt,ORE.Compare) which
is defined over a well-ordered domain M.

– ORE.Setup(1λ) → (pp, sp). On input of a secure parameter λ, the setup algo-
rithm outputs the set of public parameters pp and the set of secret parameters
sp which includes the secret key for encryption algorithm.

– ORE.Encrypt(pp, sp,m, σ1) → c. On input of pp, sp and a set σ1 of other aux-
iliary parameters (that are not generated in the setup algorithm), the encryp-
tion algorithm encrypts the input plaintext m ∈ {0, 1}∗ to a ciphertext c that
can reveal the correct order with other ciphertexts.

– ORE.Compare(pp, sp, c1, c2, σ2) → b. On input of pp, sp, two ciphertexts c1, c2,
and the set σ2 of other auxiliary parameters, the comparison algorithm returns
a bit b ∈ {0, 1} as the result of order.

The ORE definition in other literature is simple and only remains the nec-
essary parameters. Our definition above is more complex, and the additional
parameters are used for better describing the latter framework. With the above
formulation, we aim for a generic and basic definition of ORE, where σ1 and
σ2 may depend upon and vary with the concrete implementations of ORE. As
a consequence, we do not introduce many details (that may vary with differ-
ent implementations) and components like clients for interactive queries (as our
FIAs are w.r.t. the generic OPE/ORE structure).

Leakage Profiles. The ideal leakage profile, the random order-preserving func-
tion profile, the most significant-differing bit profile, the RtM profile and the
MtR profile are five leakage profiles that have been proposed in the literature.
The first two were described by Boldyreva et al. [4], and the others were described
by Chenette et al. [9].

We remark that, in Sect. 3, our FIAs are generic in the sense that they are
constructed only with the ideal leakage profile. The ideal leakage profile just
reveals the order and the frequency of the plaintexts. More precisely, only the
leakage of order is necessary for our FIAs.

An adversary is said to be adaptive, if it is allowed to adaptively select data
to be encrypted by the clients and then stored back to the server. Roughly
speaking, an ORE scheme is said to be L-adaptively-secure, if any probabilistic
polynomial-time (PPT) adaptive adversary cannot learn more than the leakage
as described according to the leakage profile L.
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2.2 Definition of OPE

Order-preserving encryption (OPE) is a simplified case of ORE. The ciphertext
domain C of OPE needs to be well-ordered exactly as the plaintext domain M.

Definition 3 (Order-Preserving Encryption). A secret-key encryption
scheme is an order-preserving encryption (OPE), if the scheme can be expressed
as a tuple of algorithms OPE = (OPE.Setup, OPE.Encrypt), which is defined over
a well-ordered plaintext domain M and a well-ordered ciphertext domain C.

– OPE.Setup(1λ) → (pp, sp). On input of a secure parameter λ, the setup algo-
rithm outputs the set of public parameters pp and the set of secret parameters
sp which includes the secret key for encryption algorithm.

– OPE.Encrypt(pp, sp,m, σ1) → c. On input of pp, sp, and a set σ1 of other
auxiliary parameters, the encryption algorithm encrypts the input plaintext
m to a ciphertext c that preserves the correct order with other ciphertexts.

3 File-Injection Attacks on OPE/ORE

3.1 Assumptions and Basic Workflow

File injection attack has the following five assumptions: (1) The target system
has a dependable component used for data-sharing or data-transmitting; (2) The
adversary possesses the plaintext space of the target ciphertexts, and can store
correct ciphertexts by sending some forged data to the client without suspicion;
(3) The adversary possesses some old encrypted queries and can obtain the
correct result sets from the server; (4) The adversary can only get the ciphertexts
included in the result sets. (If the plaintext injected by the adversary does not
match the queries, the corresponding ciphertext will not be known to it;) (5)
The adversary is unable to forge queries or execute any PPE/PRE algorithm.

The basic workflow of FIA is briefly described as following:

– First, the adversary forges some data and sends them to the client from the
server. After being encrypted by the client, the resultant ciphertexts of the
forged data are sent back to the server for storing.

– Second, the adversary replays some old queries and infers the responses from
the database management system (DBMS) with the leakage of newly inserted
data.

– Third, the adversary adaptively executes the first two steps repeatedly. And
the data will be recovered successfully when the adversary obtains enough
leakage.

In some application scenarios like encrypted email system (e.g., Pmail [2])
or the systems in [14,17], FIA can be easily executed. Assuming that the server
has already responded many email-order requests and recorded many encrypted
data manipulation statements, the adversary can forge some emails and send to
the client. When the new emails are encrypted and sent back to the DBMS, the
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adversary can take advantage of the entire set of ciphertexts, as well as the old
queries, to collect more leakage and infer the corresponding plaintexts.

Unlike the FIA attacks against SSE, our FIA attacks against OPE/ORE are
data-recovery attacks, which are more powerful. Moreover, the forged data are
less likely to be detected because of the smaller forged part. Furthermore, by
extending the concept of FIA, with our FIA attacks files do not only represent
the data elements in NoSQL database, but can also be any kind of data which
fit the target system.

Table 1. Notations in Sect. 3

Notation Meaning

m, c Instance variables of plaintext, ciphertext

M, C Ordered spaces of plaintexts and ciphertexts

M,C Set of plaintexts and set of ciphertexts

ω Adversary makes at most ω file-injections

q,Q Instance variable of query and set of queries

φ The flag variable which shows whether the plaintext of the target
ciphertext has been recovered

i The record of counter that is used for efficiency analysis in our experiments

3.2 Notations

Table 1 lists the meaning of some simple notations, which is helpful to com-
prehend the two FIA algorithms against ideal -secure OPEs/OREs presented in
Sect. 3. Let Ri

q and Rq denote the result set of query q before the (i + 1)-th

file-injection and the current result set of query q. Let c
file injection←−−−−−−−−− m denote

the process in which the adversary sends the forged plaintext m from the server
to the client and the resultant ciphertext c is sent back (by client) and stored
in the EDB. Let a and b denote the indices of data which show their locations
in their domains or their sets. Let mid(a, b) denote an arbitrary scheme for effi-
cient median calculation, regardless of the round-off method. Let d and dqueue
denote a structural body contains two indices (a, b) and a queue of the structural
body. Let ml and mr (resp., q.cl and q.cr) denote the left plaintext (resp., cipher-
text) and right plaintext (resp., ciphertext) boundary values of range condition
in a range query q. We use the composite notation to represent the main part
which is related to the additional part. Hence, we let mc denote the plaintext of
the ciphertext c, let Ma,b denote the plaintext space between a and b, let d.a and
d.b denote the parameters a and b in the structural body d. Let M[mid(a, b)]
denotes the (k + 1)-th element in M for k = mid(a, b).

3.3 Binary Search

The two FIA algorithms presented below are based on a common algorithm –
binary search. The difference between the two FIA algorithms lies in the search
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Fig. 1. Depth first binary search (a) and breadth first binary search (b). (Color figure
online)

types they employ: one uses the traditional binary search like the depth first
traversal, and another uses the breadth first traversal. The traditional binary
search is a kind of (depth-first like) search algorithm, which finds the position
of a target value within a sorted array by testing the order of the target value
and the median value. In this work, we import the idea of breadth first traversal
in the second FIA algorithm, with which we can get the relatively near data
(around the target) that does not match the range condition.

We show two types of binary search in Fig. 1, where the colored nodes are the
passed nodes with their order marked, and the crosses mark the target nodes. In
the second FIA algorithm, our FIA attacker, with the range query determined
by (ml,mr), needs to find a value m1 matching the range condition, and a pair
of relatively near unmatched values (m2,m3) in the file-injected dataset, such
that m2 < ml < m1 < mr < m3. The details are presented in Sect. 3.5.

3.4 Basic FIA with order by Query

Our FIA attacks use two kinds of order queries respectively: order by queries and
range queries. The order by query (e.g., select * from table 1 order by column 1,
which ensures that the result data are ordered, is one of two Data Manipulation
Languages (DMLs) that are based on the order of data. And the other one is
the range query with relational operators like “<”, “>” and so on. In Sects. 3.4
and 3.5, we present the attack models and the FIA algorithms, assuming the
attacker possesses these two kinds of order queries respectively.

The attack model of basic FIA, with order by queries, consists of the adver-
sarial information (i.e., leakage) and the adversarial goal. As to the adversarial
information, we limit the power of adversaries in order for more practical attacks
in practice. Specifically, the adversary only possesses, as adversarial information,
the plaintext space M, the set Q of old order by queries, and the result sets of
those queries with forged data. In particular, they do not have any information
about the data not in the result sets of the old queries. About the adversarial
goal, we partition it into two types: recovering the plaintext of a single ciphertext,
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and recovering the plaintexts of all the ciphertexts in the result sets. This parti-
tion facilitates the discussion of time complexity as we show later. We formalize
the attack model as following:

Leakage: L(M, Q, RQ = {
⋃

q∈Q,0≤i≤ω

Ri
q|ordered})

Goal: mc (c ∈ R0
q|ordered, q ∈ Q) or MC (C =

⋃

q∈Q

Rq)

where Ri
q|ordered denotes the ordered result set for order by query q before the

(i+1)-th file-injection, R0
q|ordered denotes the original ordered result set for order

by query q, MC (C =
⋃

q∈Q Rq) denotes the plaintext set MC corresponding to
the ciphertext set C in the current result sets for all the queries in Q. Here, MC

can also be expressed as a mapping relation precisely, denoted T(M,C), between
all the ciphertexts in C (which includes all the original and forged data) and
their corresponding plaintexts in MC.

Algorithm 1.
mc ← FIA Orderby(M, c ∈ R0

q|ordered, q)

1: a ← −1, φ ← 0, b ← |M|
2: for i ← 1 to ∞ do
3: ci

file injection←−−−−−−−−− M[mid(a, b)]
4: if (Comp(ci, c) = 0)
5: φ ← 1, break
6: else if (mid(a, b) = a or mid(a, b) = b) break
7: else if (Comp(ci, c) = 1)
8: b ← mid(a, b)
9: else a ← mid(a, b)

10: end if
11: end for
12: if (φ = 1) return mc ← M[mid(a, b)]
13: else return ⊥

For ease of comprehension, Algorithm 1 describes the elementary FIA based
on utilizing a single order by query over an entire dataset. The adversary will
continually detect the plaintext of the target ciphertext c with an old query q by
file-injections. We use Comp(ci, c) to express the order result of query q about the
target ciphertext c and the i-th injected ciphertext ci, where the result expresses
as following:

Comp(ci, c) =

⎧

⎨

⎩

0 ci = c
1 ci > c

−1 ci < c.

Time Complexity. The time complexity of Algorithm 1 is O(log|M|) obviously
in the worst condition for recovering one plaintext. When the adversarial goal is
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to recover all the N nonrepetitive ciphertexts in the entire result set, the time
complexity is O(N log|M| − N logN) in the worst case. This means, in this case,
the average time complexity of recovering a single ciphertext becomes smaller
because the order of a ciphertext can be used for both sides. In other words, a
file-injection for a target will reveal some order information about other target
ciphertexts as well.

In Algorithm 1, we only take advantage of the leakage L1(M, q, R′
q), where

R′
q = Rq \ R0

q is the result set after file-injections excluding the original result
set. Because the leakage of the original result set R0

q is in the ideal leakage
profile, we can only get some order information between the target ciphertext
ctarget and other ciphertexts. In other words, we can rewrite the original result
set as

R0
q = {C−

ordered, ctarget,C
+
ordered}

where C−
ordered is the set of ordered ciphertexts which are smaller than the target,

and C+
ordered is the set of ordered ciphertexts which are greater than the target.

Under the assumption of knowing nothing about the original ciphertexts except
their order information, we can only take advantage of |C−

ordered| and |C+
ordered|

to curtail the plaintext space. We delete the first |C−
ordered| plaintexts and the

last |C+
ordered| plaintexts from the ordered plaintext space M, and then we get a

smaller new plaintext space M′ for the target ctarget. Thus, the time complexity
of recovering a single ciphertext becomes O(log|M′|) which is even smaller now.
In this way, the adversary can adaptively curtail the plaintext space according
to the number of ciphertexts on both sides after each file-injection.

Moreover, an improved method with hierarchical idea is presented in the
extended version [25] of this paper.

3.5 FIA with Range Queries

The attack model of FIA with range queries also consists of the adversarial
information and the adversarial goal. As to the adversarial information, the
adversary just has the plaintext space M, the old range queries in Q, and the
result sets of those queries without inner order. In this condition, the leakage
is less than that with order by queries, because the adversary only knows the
result set matching the range conditions without knowing the inner order. As to
the adversarial goal, the adversary needs to recover the boundary plaintexts of
the range conditions as well as all the plaintexts matching the range conditions.
We formalize the attack model as following:

Leakage: L(M, Q, RQ = {
⋃

q∈Q,0≤i≤ω

Ri
q})

Goal: Ml, Mr, MC (C = {c | q.cl < c < q.cr, q ∈ Q})

where MC can be expressed as a mapping relation precisely, denoted T(M,C),
between all the ciphertexts in C (which includes all the original and forged
data) and their plaintexts in MC, Ri

q is not ordered, Ml and Mr contain all the
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boundary plaintexts of the range queries in Q. In our construction, we design 3
steps to achieve the goal as following:

– First, the adversary must find a plaintext matching the range condition,
whether its ciphertext is in the original EDB or not.

– Second, the adversary recovers the boundary plaintexts using Algorithm 1.
– Third, the adversary recovers all the plaintexts of the ciphertexts matching

the range condition by several file-injections.

Here, to describe the FIA scheme briefly, Algorithm 2 is based on utilizing a
single range query without any order by operation. In the following descriptions,
q denotes the range query with the boundary ciphertexts denoted q.cl and q.cr

respectively. MRq
denotes the plaintext set corresponding to the cipher result

set Rq for query q.
In Algorithm 2, we adopt the breadth first search, because under the assump-

tion of FIA the adversary does not know the order between file-injected data and
the boundary ciphertexts in case the file-injected data do not match the range
condition. With this limitation, the breadth first search is beneficial to find a
plaintext matching the condition, and to get the relatively near unmatching
plaintexts that are necessary for recovering the boundary plaintexts. Then, the
boundary plaintexts ml and mr are recovered by calling Algorithm 1. Finally, the
plaintext set MRq

is recovered by several file-injections over the entire plaintext
set matching the condition.

Algorithm 2.
ml, mr, MRq

← FIA Rangequery(M, q)
1: a ← −1, b ← |M|, d ← (a, b)
2: insert d into the queue dqueue
3: while dqueue 	= ∅
4: take out the first d in dqueue, a ← d.a, b ← d.b

5: c
file injection←−−−−−−−−− M[mid(a, b)]

6: if |R0
q| 	= |Rq| break

7: if (mid(a, mid(a, b)) 	= a and mid(a, mid(a, b)) 	= mid(a, b))
8: d ← (a, mid(a, b)), insert d into dqueue
9: end if

10: if (mid(mid(a, b), b) 	= b and mid(mid(a, b), b) 	= mid(a, b))
11: d ← (mid(a, b), b), insert d into dqueue
12: end if
13: ml ← FIA Orderby(Ma,mid(a,b), q.cl, q)
14: mr ← FIA Orderby(Mmid(a,b),b, q.cr, q)
15: MRq

← do file-injections from ml to mr and get their mapping table or
corresponding plaintext set briefly
16: return ml, mr, MRq

Most of the boundary values are very special in practice. For instance, the
numbers, which are the multiple of 10γ(γ = 0, 1, 2...), are frequently used for
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range query over numerical data; and the 26 letters are used for the same purpose
over string data usually. Based on the different frequency of the plaintexts which
are between every two adjacent common boundary plaintexts, the adversary may
recover them more rapidly by several file-injections instead of the first step.

For space limitation, the analysis of time complexity, the discussions on FIA
with both order by Queries and Range Queries, the description of our experi-
ments and the FIA against Frequency-Hiding OPE are presented in the extended
version [25] of this paper.

4 Formulating Forward Secure ORE

Forward security is a strong property of the dynamic SSE leakage profile. For a
dynamic SSE scheme, its forward security means that: the previous data manip-
ulations do not cause any leakage of the newly inserted data. Stefanov et al. [24]
proposed this notion informally. Stefanov et al. [24] also proposed the concept of
backward security, which ensures that the previous data manipulations do not
leak any information about the newly deleted data. In this work, we extend this
concept from SSE to OPE/ORE. Specifically, we give the definitions of forward
security and backward security informally, as following:

Definition 4 (Forward/Backward Security). An L-adaptively-secure ORE
scheme is forward (resp., backward) secure if the leakage profile, denoted Lupdate,
of update operation for update = add (resp., update = delete) can be described
as following:

Lupdate(update,Wupdate) = (update, INDupdate)

where add (resp., delete) denotes the addition (resp., deletion) of data. Wupdate

is the data set of the update operations, in which the data have their own data
storage structure, indices, and constraints according to the database. INDupdate is
a set that only describes the modified column (in SQL database) or the document
(in NoSQL database) and the indices of updated data.

Informally, a forward secure ORE ensures that the previous data order manip-
ulations do not leak any information about the newly inserted data. Meanwhile,
the new data order manipulations can be executed normally, and can correctly
leak the order information about the newly inserted data. And in a forward
secure ORE scheme, Wupdate of a simple insertion can be briefly described as
Wadd = (m, s), where s denotes the order space of the related data on which
order queries may be executed. For SQL databases, s can represent a column
of a table. And for NoSQL databases, s can represent a set of documents.
INDupdate of a simple insertion can be briefly described as INDadd = (j, s),
where the incremental timestamp j is initially set to be 0 and is shared by all the
manipulations.

Let e denote the intermediate ciphertext without forward security. Let op(s)
denote the order pattern of an order space s, which lists all the timestamps of
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the order queries. Hist(s) contains all the data-updating histories of s as well as
the index indexs of s. Here, we only use it to list all the data-addition histories
over the time. More formally, they can be defined as:

op(s) = {j : (j, s, order) ∈ ListSQL}

Hist(s) = {indexs, (j, add, e) : (j, s, add, e) ∈ ListSQL}
where add denotes the addition manipulation, order denotes the ordering manip-
ulation, ListSQL denotes the list of data-manipulations. And we give the formal
definition of forward secure ORE below.

Definition 5 (Forward Secure ORE). Let the algorithm tuple

Γ = (ORE Setup,ORE Encrypt,ORE Compare)

be an ORE scheme. Let A denote a PPT adaptive adversary. Define a real
security game FS-ORE-RΓ

A(λ), in which A gets the public parameters output by
ORE Setup(λ) and gets access to the encryption oracle and the comparison oracle
adaptively. Based on the given public parameters and all the answers received
from the oracles, A outputs a bit as the result of the game. Define an ideal
security game FS-ORE-IΓ

A,S,LΓ
(λ), in which a PPT simulator S only takes the

leakage profile LΓ as input. LΓ has two parts as following:

Lupdate(add, (m, s)) = (add, (j, s))

Lcompare(c1, c2, s) = (op(s),Hist(s))

The simulator S will output a bit as the result of the ideal game. The scheme
Γ is said to be forward secure, if the following equation holds for any sufficient
large λ:

|P[FS-ORE-RΓ
A(λ) = 1] − P[FS-ORE-IΓ

A,S,LΓ
(λ) = 1]| ≤ negl(λ)

where negl(λ) denotes a negligible function.

5 A Compilation Framework for Forward Secure ORE

To the best of our knowledge, all the existing OPE and ORE schemes in the
literature do not have forward security precisely. Here, we use “precisely” with
only the special case of POPE [23]. In [23], there is not any statement about
whether the interactive processes need a client authorization or not. For the
common application scenarios of OPE/ORE in practice, there is not any client
authorization for querying. However, if the client authorization is mandated,
POPE has forward security.

In the general case, the ciphertexts in EDB do not cover the entire ciphertext
space. In other words, the ciphertexts in EDB are not dense usually. Thus, it is
difficult to recover all the stored ciphertexts correctly with the limited leakage of
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OPE/ORE. However, according to our FIA constructions and experiments, FIA
schemes are powerful and effective in recovering data encrypted by OPE/ORE
without forward security in practice. Though forward security can be achieved
with oblivious RAM (ORAM) [11,12] in general, it incurs massive overburden
of performance [19] (large bandwidth consumption, multiple data round-trips,
and/or large client storage complexity). Thus, it is desirable to have practical
forward secure OPE/ORE schemes.

Table 2. Notations in Sect. 5

Notation Meaning

e Instance of intermediate ciphertext output by the original
ORE or OPE scheme in EDB

Π, KeyGen, sk, pk A TDP scheme, its key-generation algorithm and its secret
key, public key

PRF, H A pseudo-random function and a keyed hash function

OT,OT,OT Instance of order token, map of order token stored on the
client and domain of order token

i The counter of order tokens, which is equal to the number of
order tokens minus one

s Instance of order space, which ensures that the data in
different order spaces cannot be ordered

In this section, we present a practical compilation framework that transforms
most of the existing OPE/ORE schemes into forward secure ones. To ease the
understanding of the framework, we first give the meaning of some notations in
Table 2.

5.1 Basic Ideas

With forward security, the add operation should leak nothing to server. In other
words, the server should not distinguish between the ciphertexts output by a
forward secure ORE and the ciphertexts encrypted by a perfect encryption
scheme, when they are just inserted to the database before undergoing any
search operation. In order to realize this goal, the ciphertext e generated by
original OPE/ORE should be salted in our compilation framework. And we use
TDP to link the salts to reduce the bandwidth consumption.

The salt is a hash value of an order token OT in our construction. To insert
a new datum to EDB (say, the (i + 1)-th insertion, i ≥ 0), the client generates
an order token OTi based on the TDP scheme Π, its secret key sk, and the last
order token OTi−1. If OTi (i = 0) is the first order token in the order space,
it will be randomly selected from the domain of order token OT . In order to
reduce the client storage, the client only stores the latest order token OTi and the
corresponding counter i in our basic construction. When an order query needs
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to be executed, the client sends the current order token OTi and the counter i
to the server. The server can then calculate all the order tokens with the public
key pk, and gets the original OPE/ORE ciphertexts by desalting operations. At
last, the client will receive the correct comparison result which is calculated with
the comparison algorithm of the original OPE/ORE by the server.

5.2 The Compilation Framework

Given any OPE or ORE scheme, denoted Γ = (ORE Setup,ORE Encrypt,
ORE Compare), the compiled ORE scheme is described in Algorithm 3, which
is denoted by Γfp = (Setup,Encrypt,Compare). In Algorithm 3, the parts of the
original OPE/ORE are only briefly described.

Algorithm 3. Γfp

Setup(1λ)

1: (pp, sp) ← ORE Setup(1λ)
2: OT ← empty map
3: (sk, pk) ← KeyGen(1λ)

4: k0
$←− {0, 1}λ

5: return ((pk, pp), (sk, sp, k0,OT))
Encrypt(pp, (sk, sp, k0,OT),m, (add, s, σ1))

Client :
1: ks ← PRFk0 [s]
2: (OTi, i) ← OT[s]

3: if (OTi, i) =⊥ {i ← −1, OTi+1
$←− OT }

4: else OTi+1 ← Π−1
sk (OTi)

5: end if
6: OT[s] ← (OTi+1, i + 1)
7: ci+1 ← ORE Encrypt(pp, sp,m, (add, s, σ1)) ⊕ H(ks,OTi+1)
8: Send ci+1 to server.

Server :
9: Insert ci+1 into EDB.

Compare((pk, pp), (sp, k0,OT), csα
, csβ

, (s, σ2))
Client :

1: ks ← PRFk0 [s]
2: (OTi, i) ← OT[s]
3: if (OTi, i) =⊥ OR i = 0 return ∅
4: Send (OTi, i, ks) to server.

Server :
5: esα

← csα
⊕ H(ks,Π

i−α
pk (OTi))

6: esβ
← csβ

⊕ H(ks,Π
i−β
pk (OTi))

7: b ← ORE Compare(pp, sp, esα
, esβ

, (s, σ2))
8: Send the result b to client
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In our construction, we let λ denote the secure parameter. Let k0 denote the
main key of our compilation framework. For each order space s, the key ks of
keyed hash function H is calculated by pseudo-random function PRFk0 [s]. Let add
denote the addition/insertion of data. The order tokens are calculated with TDP
one by one in sequence, and the hash values of these tokens will xor the original
OPE/ORE ciphertexts to generate the final ciphertexts without extra storage
consumption at the server side. The salt of the final ciphertext is of λ bits, and
will be desalted in the comparison algorithm. In the comparison algorithm, we
let csα

and csβ
denote two ciphertexts to be compared in the order space s with

their indices α and β respectively. We let esα
and esβ

denote their intermediate
ciphertexts output by the original OPE/ORE respectively.

For space limitation, the methods of data deletion and batch encryption is
postponed to Appendix B.

5.3 Analysis of Forward Security

In our framework, the ciphertexts output by the original OPE/ORE xor the one-
way generated salts. Hence, the newly inserted data leak nothing to the server
if they have not been queried. Once the data have been queried and desalted,
the ciphertexts turn into the security level of the original OPE/ORE scheme for
the adversary with continuous monitoring. Hence, the security of the composite
forward secure ORE cannot be weaker than that of the original OPE/ORE. On
the other hand, our compilation framework is powerful against FIAs, because
the forged data will not leak any information with the old queries. The data
need a new credible order query from the client to desalt.

For space limitation, the formal proof of forward security is presented in the
extended version [25] of this paper. Moreover, the description of our experiments
is postponed to Appendix C.

6 Conclusion and Future Work

In this work, we study the leakage of OPE and ORE. We propose generic yet
devastating FIA attacks which only exploit the ideal leakage of OPE/ORE. We
also propose various improved methods to further boost the efficiency. Compared
with existing attacks against OPE/ORE, our FIA attacks rely upon less demand-
ing conditions, and can be more effective. We executed some experiments on real
datasets to test the performance, and the results show that our FIA attacks can
cause an extreme hazard on most of the existing OPE and ORE schemes with
high efficiency and 100% recovery rate.

We then formulate forward-secure ORE, which may be of independent inter-
est. In order to resist the disastrous effectiveness of FIA, we propose a practi-
cal compilation framework for transforming most existing OPE/ORE schemes
into forward-secure ones. Finally, we execute experiments on some prominent
OPE/ORE schemes developed in recent years, and the results show that our
compilation framework is practical and useful for most of the systems.
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Our compilation framework does not fit the OPE/ORE schemes which store
the inserted data in order trees. Achieving forward security for these OPE/ORE
schemes is an interesting direction for future research.

Acknowledgement. We thank the anonymous reviewers for their insightful com-
ments. We are grateful to Yuan Li and Hongbing Wang for many helpful discussions.

A Comparison Among FIA and Other Generic Attacks
Against OPE/ORE

Known- and chosen-plaintext attacks (CPAs) have been considered in many
OPE/ORE works. To the best of our knowledge, the latest discussion of CPA is
in [13]. Besides these attacks against OPE/ORE, inference attack (IA) is also a
kind of powerful generic attack which has been described in [20] detailedly. In
this subsection, we make brief comparisons among FIA, CPA and IA.

About the adversarial prerequisite, these three attacks all need an unbroken
auxiliary dataset as the plaintext space, but only IA needs the data-frequency
statistics. About the source of leakage information, CPA only utilizes the data
which are chosen by the adversary and encrypted by the encryption scheme in the
system; IA only utilizes the original ciphertexts in the EDB; but FIA can utilize
both the main forged data (which are chosen by the adversary and encrypted by
the system) and the secondary original ciphertexts in the EDB. Specially, the
leakage information in FIA is obtained through old queries. In other words, the
ciphertexts, which are not included in the result sets of the old queries, are not
required in the adversarial prerequisite. As for the comparison algorithm, CPA
and IA must use it; FIA only calls it normally through the old queries. About
the performance, 100% accuracy can be achieved easily with either CPA or FIA,
but it is difficult to achieve with IA. Additionally, CPA and FIA can attack the
frequency-hiding OPE, but IA cannot do this without the decline of accuracy
and applicability.

Overall, FIA and CPA require less auxiliary information, while IA needs more
auxiliary information. CPA needs more adversarial abilities, but FIA/IA need
less adversarial abilities. Because of the utilization rate of leakage, FIA is more
efficient than CPA, while the efficiency of IA depends on the size of plaintext
space overly.

B The Methods of Data Deletion and Batch Encryption

For data deletion, the first method is to store the deleted data in another EDB.
Then a checking procedure should be added into the comparison algorithm to
ensure that the ordered data have not been deleted. When the computing and
bandwidth resource are sufficient and the server does not receive any query, the
system can execute a refresh operation, which deletes all the deleted data from
both EDB and recalculate all the order tokens and ciphertexts in sequence for
curtailing storage and lifting efficiency. In this case, the scheme also achieves
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backward security. The second method is to insert the sequence numbers into
EDB when inserting data. Then, for the situation where some data have been
deleted, the server can calculate the salts of the remaining data by executing
TDP exact times according to the interval leaked by sequence numbers. For space
limitation, the analysis of storage and computational complexity is presented in
the extended version [25] of this paper.

For batch encryptions, we can simply arrange all the elements in random
order, and run the Encrypt algorithm in sequence. If batch encryptions are com-
mon in the system, we can add an extra batch index in the database for each
datum, and use the same calculated order token for salting all the intermediate
ciphertexts in a batch. This solution reduces the average computational complex-
ity at the expense of leaking some information (e.g. equality) of the elements in
the same batch.

C Applicability and Experiments

Our compilation framework can be applied to all the OPE/ORE schemes
except the OPE schemes (like the ideal -secure schemes proposed in [16,21]) that
store the ciphertexts in order trees. These OPE schemes [16,21] leak all the
ciphertext order from the tree structure. Hence, the salting of our framework is
useless in this case.

In the experiments, we combined the OPE/ORE schemes in [4] and [9] with
our forward secure framework. The experiments are implemented in C/C++,
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Fig. 2. The comparison of average encryption time between two existing OPE/ORE
schemes and the composite forward secure ORE schemes with our compilation frame-
work.
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and our experiments were performed using a single core on a machine with an
Intel Pentium G2020 2.9 GHz CPU and 4 GB available RAM. We operate at
128-bits of security. We use HMAC as the PRF and the keyed hash function,
and we use the RSA implementation (with 2048 bits RSA keys) in OpenSSL’s
BigNum library as the TDP. We use Blake2b as the underlying hash function.
For our basic implementation of Boldyreva et al.’s OPE scheme, we use the C++
implementation from CryptDB [22], and for the implementation of Chenette et
al.’s ORE scheme, we use the C-implemented FastORE mentioned in [18]. We
use the California public employee payroll data from 2014 [1] as the experimental
plaintext sets.

Figure 2 shows the comparison results of the average encryption time between
the original schemes and the composite schemes. We respectively used 100000
data for testing each of the points in Fig. 2 and calculated the average results.

About the additional average encryption time, the composite forward secure
ORE schemes demand about 1.5 ms for each datum encryption. Moreover, as
to the additional average comparison time, the composite forward secure ORE
schemes demand about 47µs. Because we chose two of the most practical
OPE/ORE schemes as the contrasts, the composite forward secure ORE schemes
seem slower. However, the additional comparison time is still at the microsec-
ond level. Hence, our scheme is still practical and useful for the most common
systems.
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