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Abstract. The proliferation of 4G/LTE (Long Term Evolution)-capable
mobile devices calls for new techniques and tools for assessing their vul-
nerabilities effectively and efficiently. Existing methods require signifi-
cant human efforts, such as manual examination of LTE protocol speci-
fications or manual analysis of LTE network traffic, to identify potential
vulnerabilities. In this work, we investigate the possibility of automating
vulnerability assessment of 4G/LTE mobile devices based on AI (Artifi-
cial Intelligence) techniques. Towards this end, we develop LEFT (LTE-
Oriented Emulation-Instrumented Fuzzing Testbed), which perturbs the
behavior of LTE network modules to elicit vulnerable internal states
of mobile devices under test. To balance exploration and exploitation,
LEFT uses reinforcement learning to guide behavior perturbation in an
instrumented LTE network emulator. We have implemented LEFT in
a laboratory environment to fuzz two key LTE protocols and used it
to assess the vulnerabilities of four COTS (Commercial Off-The-Shelf)
Android mobile phones. The experimental results have shown that LEFT
can evaluate the security of 4G/LTE-capable mobile devices automati-
cally and effectively.

1 Introduction

The last decade has witnessed rapid advancement of mobile technologies, evolv-
ing from the 2G/GSM systems to the 3G/UMTS systems and then to the current
4G/LTE systems. The GSMA Intelligence estimates that the number of 4G/LTE
connections will increase from 500 million at the end of 2014 to 2.8 billion by
2020 worldwide [12]. Currently, the majority of LTE-capable mobile devices run
on Android, which has dominated the mobile OS market with a market share
of 87.7% in the second quarter of 2017 [5]. The security risks posed by vulner-
able mobile devices have been revealed in a number of reports, including SMS
flooding attacks [18], man-in-the-middle attacks [26], and botnet attacks [13,14].

Existing research on LTE network security has mainly focused on manual
analysis of potential attacks against 4G/LTE networks [28,29] or manually con-
structing abstract models from 3GPP standards to validate 4G/LTE protocol
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implementations with model checkers [20,31]. Although shedding lights on the
vulnerabilities of a small number of 4G/LTE mobile devices, the level of human
efforts required in these works makes it difficult, if not impossible, to perform
device-specific vulnerability assessment at a large scale. As there have been more
than 24,000 distinct Android devices from over 1000 brands [3], there is neces-
sity for new techniques that can automate vulnerability assessment of various
4G/LTE Android mobile devices.

Against this backdrop, we develop a testbed called LEFT (LTE-Oriented
Emulation-Instrumented Fuzzing Testbed) for fuzz testing COTS (Commercial-
Off-The-Shelf) 4G/LTE Android mobile devices. LEFT uses high-fidelity LTE
network emulation to create an immersive environment for testing these devices.
By perturbing the behavior of the emulated LTE network according to a user-
provided threat model, LEFT elicits unexpected sequences of messages from the
LTE network that, hopefully, can expose vulnerable internal states of the mobile
device under test. Moreover, different from most existing fuzzers which are based
upon evolutionary algorithms, LEFT uses reinforcement learning (RL) to train
a fuzzer agent that not only balances its vulnerability discovery efforts between
exploration and exploitation but also avoids the undesirable crashes of the LTE
network emulator due to inconsistent process states after behavior perturbation.

In a nutshell, our key contributions are summarized as follows:

– We have developed three novel fuzzing methodologies, emulation-
instrumented fuzzing, threat-model-aware fuzzing, and RL-guided fuzzing in
LEFT to assess the vulnerabilities in LTE-capable mobile devices;

– We have implemented LEFT in a laboratory environment based on an open-
source LTE network emulator and commodity SDR (Software-Defined Radio)-
based devices. To achieve full automation, we adopt both a systematic app-
roach to recover from process failures by catching OS (Operating System)-
level signals and an algorithmic approach that can train the fuzzer agent to
avoid actions likely to cause emulator crashes.

– Using LEFT, we have fuzzed the behavior of two key LTE protocols, one
responsible for managing the connections between end devices and base sta-
tions and the other providing mobility services to end devices by the core
network. The experimental results on four COTS Android mobile phones
have demonstrated that LEFT is capable of discovering LTE protocol vulner-
abilities automatically and effectively.

The remainder of the paper is organized as follows. Section 2 summarizes the
related work. Section 3 discusses the background and methodology of this work.
Section 4 presents the design of LEFT and Sect. 5 its implementation. We show
the evaluation results of LEFT in Sect. 6 and draw concluding remarks in Sect. 7.

2 Related Work

LTE Network Security. Due to the rising popularity of 4G/LTE services, a
number of previous works have been dedicated to analyzing and improving their
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security. A comprehensive survey was given in [16] on the vulnerabilities in LTE
networks at different levels; it also offered suggestions on how to address these
vulnerabilities. The work in [22] surveyed possible attacks against the availability
of LTE networks, including DoS (Denial of Service) attacks, DDoS (Distributed
Denial of Service) attacks, and insider attacks. In [31], six types of vulnerabili-
ties in cellular networks were reported due to problematic protocol interactions.
Another recent survey summarizes the security challenges in different generations
of mobile communication networks based on a variety of root causes, including
specification issues, implementation issues, protocol context discrepancy, and
wireless channel [27]. A theoretical security architecture was proposed in [23] to
thwart smart jamming attacks in LTE networks. The work in [25] investigated
the vulnerabilities of 4G/LTE modem implementations by several manufactur-
ers. The work [32] addresses the issue of open transmission of IMSIs (Interna-
tional Mobile Subscriber Identities) with Pseudo Mobile Subscriber Identifiers.
Our work has been motivated by the work in [29], which demonstrated practical
attacks against privacy and availability in 4G/LTE networks. The work in [20]
proposed LTEInspector, which combines symbolic model checking and crypto-
graphic protocol verifier to identify vulnerabilities in LTE network protocols. A
semi-automated framework was proposed in [28] to evaluate the implementation
compliance of the security procedures of LTE devices.

Our contributions in this work differ from the existing works on 4G/LTE net-
work security. First, it relies on fuzzing to reveal vulnerabilities automatically,
which differs from the verification-based methods used in [20,31,32]. Protocol
security verification requires significant efforts in developing accurate abstrac-
tion models of the protocols based on their specifications and cannot reveal
implementation-specific vulnerabilities; verification based on model checking is
also time consuming and thus may not be applicable to analysis of complex
security protocols. Second, although the works in [20,25,28,29] also use an emu-
lated LTE network environment for security evaluation, they used emulation to
validate the vulnerabilities found instead of using it to fully automate the pro-
cess of vulnerability discovery. Our work, instead, instruments an LTE network
emulator to support perturbation of network protocol behavior. Finally but not
least, our work explores a new direction in applying AI-based methods to search
for vulnerabilities in LTE networks automatically.

Network Protocol Fuzzing. Fuzzing is a technique widely used to evaluate
security protocols. Fuzzing was used to assess the security of IKE (Internet Key
Exchange) implementations [30] and the security of TLS (Transport Layer Secu-
rity) implementations [15,17]. The work in [21] developed T-Fuzz, a model-based
fuzzing framework to assess the robustness of telecommunication protocols, and
used it to fuzz a simplified state machine of a key protocol in LTE. T-Fuzz is
useful for testing a protocol at its design phase but cannot be used directly
to test the security of a COTS system. Our work has explored a new direc-
tion in network protocol fuzzing: it leverages the protocol implementation of an
existing network emulator and instruments it to support fuzzing capabilities. As
such implementation code provides more low-level details than abstract models
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derived from protocol specifications, it can be used to reveal fine-grained protocol
implementation vulnerabilities in COTS systems.

3 Background and Methodology

The architecture of a typical 4G/LTE network, which is shown in Fig. 1(1),
consists of three key components:

– UE (User Equipment): A UE is a mobile device (e.g., a cell phone) used
by an end user to communicate through the LTE network.

– E-UTRAN (Evolved Universal Terrestrial Radio Access Network):
The E-UTRAN consists of base stations called eNobeBs in LTE parlance.

– EPC (Evolved Packet Core): The EPC is an LTE system’s packet-only
core network. Its S-GW (Serving Gateway) is responsible for handoffs among
different eNodeBs and data transfer of packets across the u-plane of LTE.
The P-GW (PDN Gateway) acts as a middleman between the LTE network
and other packet data networks such as the Internet. The MME (Mobility
Management Entity) is the key control node of an LTE system, performing
functionalities such as initiating paging and authentication of mobile devices,
location tracking and radio resource management. The HSS (Home Subscriber
Server) is a database that stores users’ subscription information. Finally, the
PCRF (Policy and Charging Rules Function) module supports flow-based
charging and enforces policy rules on users’ data flows.

The LTE protocol specification defined by the 3GPP organization is com-
plex, covering thousands of pages [1], and as illustrated in Fig. 1(2), it describes
the rules and conventions at multiple protocol layers in each LTE module.
Clearly, it is a daunting task to verify whether a COTS 4G/LTE mobile device
has a security vulnerability due to its non-conformance with the 3GPP stan-
dards. Moreover, vendors usually do not reveal the details on how their Modem
firmware implement the LTE protocols, making it difficult for white-hat security
researchers to find vendor-specific security bugs. Finally but not least, as evi-
denced by previous security analysis of LTE protocols [20,31], the LTE protocol
specification itself may have design flaws that can pose serious security risks to
the mobile users.

In the design of LEFT – a testbed dedicated to assessing the vulnerabilities of
COTS 4G/LTE-capable Android mobile devices – we adopt three novel fuzzing
methodologies to overcome the aforementioned challenges:

(1) Emulation-instrumented blackbox fuzzing: Due to the difficulty of
knowing the LTE implementation specifics in a mobile device under test,
we treat it as a blackbox when assessing its vulnerabilities. To this end, we
create an immersive environment in which the test device can interact with
an emulated LTE network. By instrumenting the emulation code, we perturb
the behavior of the emulated LTE network, hoping that the reply packets
from the network are unexpected by the LTE protocol implementation of
the test device and thus elicit its vulnerable internal states.
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(1) 4G/LTE network architecture (2) 4G/LTE protocol stacks

Fig. 1. The architecture and protocol stacks of an LTE network. Its key protocols
include: NAS (Non-Access Stratum), RRC (Radio Resource Control), PDCP (Packet
Data Convergence Protocol), and RLC (Radio Link Control).

(2) Threat-model-aware fuzzing: In a network environment, there can be a
wide spectrum of threat vectors, who may have different capabilities and
attack goals. By differentiating threat models, we are able to design cus-
tomized fuzzing strategies aimed at specific attack scenarios to improve
fuzzing efficiency. For instance, an attack scenario aimed at compromising
confidentiality may differ significantly from that targeting availability.

(3) RL-guided fuzzing: Inspired by the success of RL in solving real-world
problems (e.g., playing against professional go players), we use RL-guided
fuzzers to balance efforts on exploring new regions in the fuzzing space and
exploiting previous fuzzing experiences. One hurdle we face in perturbing
the behavior of the emulated LTE network is that it constantly causes the
LTE emulator to crash due to inconsistent process states after behavior
perturbation. When the LTE emulator crashes, we have to restart the LTE
emulator from a clean state, which incurs significant computational overhead.
Using reinforcement learning, we train the fuzzer to avoid actions that are
likely to cause emulator crashes.

4 Design

The high-level architecture of LEFT is illustrated in Fig. 2. It requires a user-
provided threat model, which defines the security goal of the attacker (e.g.,
information leakage) as well as his prior knowledge. Based on the threat model,
a configuration file is generated to set up the testbed. The hardware needed by
the testbed includes the 4G/LTE Android device under test, a combination of
USRP B210 boards and LTE antennae that enable SDR-based communications
between the UE and the emulated LTE network, and workstations that are used
to emulate the LTE network and perform fuzzing. The LEFT software adopts a
client-server structure which includes:

– Client: The client interacts with the 4G/LTE Android device under test
through ADB (Android Debug Bridge). The client can execute ADB com-
mands to elicit responses from the device, and has a sensor that parses these
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Fig. 2. The architecture of LEFT

responses to infer its internal states. The client reports these inferred states
to the server and also accepts commands from it.

– Server: The controller of the server is a fuzzer that perturbs the behavior
of an emulated LTE network. The LTE network emulator is instrumented to
take a perturbation action requested by the fuzzer for each incoming message
from the test device. It also includes sensors that can assess the vulnerabilities
based on the messages received.

The output of a fuzzing campaign is a list of vulnerabilities in the test device
that are exploitable under the threat model assumed. The vulnerability report
is sent to a human evaluator for further examination.

4.1 Threat Model

Due to the integrated emulation functionality within LEFT, it can be used to
construct a variety of attack scenarios. For each attack scenario, the LEFT user
needs to specify the following:

– Knowledge: Does the attacker know the victim UE’s authentication creden-
tial, such as the secret key stored in its SIM card?

– Security goal: What security goal does the attacker want to compromise
(e.g., confidentiality, integrity, or availability)?

– Capability: Can the attacker emulate a malicious LTE network or UE?
– Protocol: What is the specific LTE protocol, as illustrated in Fig. 1(2), that

the attacker would like to focus on?
– Action: What kind of actions can the attacker take? There are two options

for fuzzing protocol messages, bit-level and order-level. Most network protocol
fuzzers implement bit-level message fuzzing, which randomly flips the bits in a
protocol message. In contrast, order-level message fuzzing perturbs the order
of protocol messages to find logic flaws in the protocol implementation.

Focus of This Work. As the attack surface in an LTE network is so large that
it cannot be tackled all at once within a single work, this study focuses on a
practical threat model where the attacker is able to emulate a malicious LTE
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network, including its core EPC network and eNodeBs, but knows nothing about
the victim’s secrets such as the keys stored in the SIM card. The malicious
eNodeB can force a victim UE to make a connection to itself with high signal
power, as a typical UE constantly measures the received signal strengths from
neighboring eNodeBs and chooses the one with the strongest power during a
hand-over procedure [24]. Moreover, the threat model assumed in this work
considers the attack scenarios where the attacker is interested in compromising
either confidentiality or availability, although the work can be easily extended
to evaluate the integrity of the test UE. Finally, this work assumes the actions
of the attacker as perturbing the order of protocol messages, so its focus is to
find logic-level vulnerabilities in the LTE protocol implementation of the test
UE instead of its low-level software vulnerabilities such as buffer overflow or
use-after-free bugs.

4.2 Sensors

To evaluate the security status of the victim UE, we deploy two types of sensors:

– Client-side sensors: A client-side sensor parses the UE’s responses to ADB
commands and infers its status. For example, the client can issue an ADB
shell ping to test the UE’s network connectivity. Its responses can be used to
assess the availability of the network to the UE.

– Server-side sensors: On the server side, we instrument the code of an LTE
network emulator and place a sensor at each protocol layer to infer leakage
of sensitive data without proper encryption. As a protocol layer only parses
a certain portion of an incoming message, its corresponding sensor detects if
there exists any sensitive data unencrypted at that layer. If it is true and no
other sensor at any lower layer on the protocol stack detects that the payload
has been decrypted by the protocol on that layer, an information leakage
compromising confidentiality occurs.

It is noted that to compromise confidentiality, the attacker can sniff LTE
packets in the air and parse them with tools such as Wireshark [11]. Although it
is possible to use passive packet sniffers along with sensors to detect information
leakage, their deployment requires additional computational resources and incurs
unnecessary communication latency between the sensors associated with the
sniffers and the fuzzer. As the LTE network emulator needs to parse the messages
anyway, we can place the sensors inside the network emulator in a non-intrusive
manner to infer the possible leakage of sensitive information.

4.3 RL-Guided Fuzzing

The key component of LEFT is its fuzzer, which decides how to perturb the
behavior of the LTE network emulator based on the reports collected from the
various sensors deployed. Due to the No-Free-Lunch-Theorem [33], there is no
optimal fuzzing strategy suitable for all situations. As LEFT is aimed at discov-
ering vulnerabilities in a variety of 4G/LTE Android mobile devices, we design
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the fuzzer inside the server to be an intelligent agent that can balance exploring
test scenarios with unsure results and exploiting those close to the expecta-
tion based on its previous experiences. Such a tradeoff between exploration and
exploitation is well studied within the RL framework, which is built upon the
Markov decision process (MDP) model (S,A, P,R, γ):

– S: a finite set of states, including both environment states and agent states;
– A: a finite set of actions that can be taken by the agent;
– P: Pa(s, s′) gives the transition probability from state s to s′ after the agent

takes action a;
– R: Ra(s, s′) is the immediate reward received by the agent after taking action

a, which leads to state transition from s to s′;
– γ: γ ∈ [0, 1] is a per-step discount of the reward.

An important concept in RL is its value functions, including state values
V (s) and state-action values Q(s, a), which reflect the agent’s long-term returns
of entering state s and taking action a at state s, respectively. To apply RL
for perturbing the behavior of the LTE network emulator, we need to extract a
MDP model from its emulation code. Network protocols are usually developed
from FSM (Finite State Machine) specifications, and as a result, they are often
implemented in an event-driven programming style. Hence, when an incoming
message is received by a protocol layer, the event is processed by the emulator
based on the message type and sometimes a few internal state variables. Accord-
ingly, in the MDP model, we use the collection of message types as its state set
S. The action set of the agent A includes all possible cases dealing with the dif-
ferent types of incoming messages. In some cases, the emulator’s action depends
upon an internal state variable. For example, after receiving the same type of
messages, the emulator does a if an internal state c is true, or does a′ otherwise.
Then, both actions a and a′ are added to the agent’s action set A.

In the RL framework, the fuzzer agent works by demanding the LTE emulator
to choose a certain action a ∈ A when a message of type s ∈ S is received. This
action a may not be the proper one according to the LTE protocol specification.
Our hope is that, by choosing nonconforming actions on the LTE network side, it
returns unexpected messages to the victim UE that can reveal its vulnerabilities.

The key challenge in applying RL-guided fuzzing is the delayed reward issue,
which manifests itself for both confidentiality and availability:

– Confidentiality: For state-action pair (s, a), action a in state s may induce
a message M , which is sent to the victim UE by the LTE network emulator;
after the UE receives this packet, it sends back another one M ′ to the LTE
network emulator according to its LTE implementation. The reward of state-
action pair (s, a) is calculated by a sensor inside the LTE network emulator
after it receives message M ′. Hence, there is a round-trip delay before the
agent can collect its reward.

– Availability: Consider the case where the security goal is to assess whether
the victim UE is able to connect to a benign LTE network (which is emulated
separately from the malicious one being perturbed) after the attack. The
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agent, however, cannot assess the UE’s loss of network connectivity directly;
instead, it sends a command to the client (see Fig. 2), which further sends
an ADB command to the UE to test its network connectivity with a benign
LTE network. The sensor located inside the client reports the test result to
the agent in the server for calculating its reward. Different from the case of
confidentiality, the fuzzer agent cannot calculate its reward after each state-
action pair (s, a) because this requires the victim UE to test its network
connectivity with a benign LTE network after every message it has received.

With the delayed reward issue in mind, we develop the RL-guided fuzzing
algorithm as illustrated in Algorithm1. In parlance of RL, an episode consists of
a sequence of states and actions: (s0, a0, s1, a1, ..., an−1, sn) where sn is a terminal
state. In LEFT, a terminal state is defined as one of the following three cases:

– Stimeout: After taking action an−1, the LTE network emulator has not heard
from the UE after τ seconds. This indicates either the end of a normal protocol
procedure or a preemptive termination action by the test UE.

– Slimit: To prevent an episode from running indefinitely without revealing any
vulnerability, we set an upper bound δ on the number of steps in each episode.
If the length of an episode exceeds the limit, it is forced to terminate.

– Scrash: Perturbing the behavior of the LTE network emulator may crash the
process due to inconsistent internal states of the emulator process. When the
emulator crashes, the current episode terminates.

Table 1. Notations used in Algorithm 1 and their meanings

Notation Meaning Default value

goal Security goal (CONFIDENTIALITY or AVAILABILITY) User-provided

N Order of the UE being tested 0

Qavg
c Average Q-table for evaluating confidentiality 0

Qavg
a Average Q-table for evaluating availability 0

Qc Q-table for evaluating the current UE’s confidentiality Qavg
c

Qa Q-table for evaluating the current UE’s availability Qavg
a

δ Maximum number of steps in an episode 50

τ Timeout for waiting the UE’s messages 10 s

α Learning rate 0.1

γ Reward discount per step 0.9

εmin Minimum probability of exploration per step 0.1

βcrash Agent’s reward if the emulator crashes −100

βleak
c Agent’s reward if there is an information leakage 100

βloss
a Agent’s reward if the UE loses network connectivity 100

episodes Number of episodes performed for the current UE 0

steps Number of steps performed within the current episode 0

L List of state-action pairs in the current episode ∅
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Algorithm 1. RL guided fuzzing(goal, Qavg
c , Qavg

a , N)

1: α ← 0.1, εmin ← 0.1, δ ← 50, γ ← 0.9, τ ← 10
2: βcrash ← −100, βleak

c ← 100, βloss
a ← 100

3: initialize Qc and Qa to be Qavg
c and Qavg

a , respectively
4: episodes ← 0
5: for each episode do
6: episodes ← episodes + 1, (s, a) ← (null, null), steps ← 0, L ← []
7: restart the LTE network emulator, command the client to restart the UE
8: for each new message M received from the victim UE do
9: if M leads to information leakage then

10: rc ← βleak
c

11: else
12: rc ← 0
13: end if
14: append state-action pair (s, a) to list L
15: s′ ← the type of message M
16: if goal = CONFIDENTIALITY then
17: Q = Qc

18: else if goal = AVAILABILITY then
19: Q = Qa

20: else
21: error
22: end if
23: a′ ← ε-greedy(s′, Q, max{1/episodes, εmin})
24: Qc(s, a) ← Qc(s, a) + α(rc + γ maxa′′(Qc(s

′, a′′) − Qc(s, a)))
25: steps ← steps + 1
26: if steps > δ then break end if
27: let the LTE network emulator take action a′

28: if the emulator crashes then
29: Qc(s

′, a′) ← βcrash, Qa(s
′, a′) ← βcrash

30: append state-action pair (s′, a′) to list L
31: break
32: end if
33: (s, a) ← (s′, a′)
34: schedule a timer which fires after τ seconds
35: wait for a new incoming message or the firing of the timer
36: if the timer fires then break else cancel the timer end if
37: end for
38: send a command to client to test the UE’s network connectivity
39: wait for the report from the client
40: if the client reports that the UE has good network connectivity then
41: ra ← 0
42: else
43: ra ← βloss

a

44: end if
45: for the i-th state-action pair (si, ai) on list L where 1 ≤ i ≤ |L| do
46: Qa(si−1, ai−1) ← Qa(si−1, ai−1)+α( 1/2(|L|−i+1)

1−1/2|L| ·ra +γ maxa′′(Qa(si, a
′′)−

Qa(si−1, ai−1)))
47: end for
48: end for
49: N ← N + 1, Qavg

c ← Qavg
c + 1

N
(Qc − Qavg

c ), Qavg
a ← Qavg

a + 1
N

(Qa − Qavg
a )
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Table 1 summarizes the notations used in Algorithm 1 and their meanings. In
Algorithm 1, function ε-greedy(s,Q, ε) returns a random action with probability
ε (i.e., exploration) and argmaxaQ(s, a) with probability 1−ε (i.e., exploitation).

Algorithm 1 is called when a new UE needs to be tested for a user-provided
security goal, either confidentiality or availability. Assuming that this UE is the
N -th one tested, the average Q-tables for both confidentiality and availability
calculated over the previous N − 1 UEs are used to initialize the Q-tables for
evaluating the current UE. In RL, these Q-tables are crucial to the agent’s
decision-making as each entry (s, a) stores the agent’s estimated long-term value
of taking action a at state s. By initializing the current UE’s Q-tables as the Q-
tables averaged over the previous ones tested, it is assumed at the very beginning
that there is nothing special about this new UE, which should have similar
vulnerabilities as the ones tested.

It is, however, possible that the new UE may be different from the ones
previously tested (e.g., a new model just released to the market). We thus update
the Q-tables associated with this UE dynamically based on its test results, hoping
that they can lead to an optimal policy in generating test cases (by perturbing
the behavior of the LTE network emulator) for revealing its vulnerabilities. After
the evaluation of this UE, its Q-tables are used to update the average Q-tables
in an incremental manner (see Line 49 in Algorithm 1).

As no explicit MDP model is needed in Algorithm1, it adopts a model-free
approach to reinforcement learning. This is desirable because in practice it is
usually difficult to derive an accurate yet efficient environment model such as
its state transition probabilities. Model-free control samples the environment by
repeating test episodes (see Line 5 in Algorithm 1). Algorithm 1 uses Q-learning,
a popular model-free off-policy RL technique, to update its Q-tables (Lines 24
and 46). For confidentiality, the agent knows the reward of its previous action at
each step of an episode (when it receives a new message from the UE). Hence,
the agent can use its reward received to update its Qc-table immediately without
waiting for the episode to terminate (see Line 24 of Algorithm1). For availability
(i.e., network connectivity), the agent needs to test if the UE is able to connect
to the benign LTE network after each episode finishes; hence, the corresponding
Qa-table is updated after an episode finishes (see Line 46 of Algorithm 1).

There is a subtle issue when assessing the UE’s vulnerabilities related to net-
work connectivity. Consider a complete episode (s0, a0, ..., sn−1, an−1, sn), which
ends due to either a timeout (sn = Stimeout), the limit on the episode length
(sn = Slimit), or a crash of the LTE network emulator (sn = Scrash). Suppose
that after the episode, through the client, it is found that the UE cannot connect
to a benign LTE network any more. The overall reward for this episode is βloss

a ,
but we need to assign the credits among the state-action pairs in it, which is a
classical problem in reinforcement learning. In Algorithm1, we use an exponen-
tial credit assignment scheme based on the assumption that later state-actions
in the episode should be given more credits than the previous ones: the credit
assigned to each state-pair (si, ai) is half of that of (si+1, ai+1), which leads to
the equation on Line 46 in the algorithm.
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Different from a standard RL algorithm, Algorithm1 updates two Q-tables,
Qc for confidentiality and Qa for availability. As seen among Lines 16–23, the
security goal (i.e., the goal parameter of Algorithm 1) decides which Q-table
should be used to generate the next action for perturbing the emulator’s behavior
(on-goal learning), while the other one is updated in an offline fashion (off-
goal learning). It is noted that on/off-goal learning should not be confused with
on/off-policy learning in RL parlance because the Q-learning technique, which
belongs to the category of off-policy learning, is used for updating both Qc

and Qa (Lines 24 and 46). The purpose of combining both on-goal and off-
goal learning is to improve efficiency: although the LEFT user specifies one
security goal in her threat model, the fuzzing experiments performed may reveal
a different type of vulnerabilities in the UE. By incorporating these findings into
the corresponding average Q-table, they can benefit later experiments aimed at
finding the same type of vulnerabilities.

Algorithm 1 can be easily extended for finding multiple fine-grained types of
UE vulnerabilities. For example, sensitive information of a UE includes its IMSI,
its exact location, and the user’s voice data. At the cost of maintaining a separate
Q-table for each vulnerability type, it may be useful to learn a separate policy
for perturbing the LTE emulator’s behavior for revealing each fine-grained type
of information leakage. With the aforementioned off-goal learning approach, we
can use the same set of experiments to update the multiple Q-tables maintained
for different types of vulnerabilities.

5 Implementation

The software component of LEFT adopts a client/server architecture, as seen in
Fig. 2. The client is written in around 280 lines of Python code, and on the server
side, the RL-guided fuzzing algorithm is written in around 350 lines of C code
embedded within the OpenAirInterface LTE network emulator [8]. The fuzzer
agent uses the same process as the network emulator, but replaces its control
flow with Algorithm 1.

5.1 Emulator Instrumentation

There are multiple open-source LTE network emulators, such as LENA [7], Ope-
nAirInterface [8], openLTE [9], and srsLTE [19]. After surveying these differ-
ent emulators, we decide to use OpenAirInterface for the LTE network emu-
lator in LEFT because it offers the most comprehensive functionalities with
emulation code for all the key LTE network elements. The drawback of this
choice, however, is that the codebase of OpenAirInterface is complex, making
it a daunting task to understand and revise its source code. Another challenge
in incorporating the OpenAirInterface emulator into LEFT is that some of its
documentation has become outdated due to its active development. As illus-
trated in Fig. 1(1), an LTE network consists of a variety of network elements.
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The OpenAirInterface LTE network emulator separates them into two differ-
ent modules, openair-cn and openairinterface5G. The openair-cn module
emulates the LTE core network (i.e., its EPC), including its MME, HSS, S-
GW, and P-GW, while openairinterface5G focusing on emulation of UEs and
eNodeBs. The current implementation of LEFT builds upon the development
branch of openairinterface5G downloaded on November 14, 2017 and the
nas pdn type ipv6 handle branch of openair-cn downloaded on July 28, 2017
from their respective github pages.

To reveal the protocol-level vulnerabilities of a test UE, we need to instru-
ment the emulation code of the corresponding protocol in the OpenAirInterface
emulator by supporting the perturbation functionality. There are various pro-
tocols involved in LTE communications, as seen from Fig. 1(2). In this work,
we focus two of them, RRC and EMM (EPS (Evolved Packet System) Mobility
Management), both of which play a key role in LTE network security.

RRC: The RRC protocol is responsible for controlling the air interface between
the UE and the E-UTRAN, and its functions include broadcast of system infor-
mation for both the non-access and the access strata, establishment, mainte-
nance and release of RRC connections between the UE and the E-UTRAN
and radio bearers, RRC connection mobility functions, paging, control of
ciphering, RRC message integrity protection, UE measurement reporting, and
so on [2]. The RRC protocol is implemented by the openairinterface5G
module. In file openairinterface5g/openair2/RRC/LITE/rrc eNB.c, function
rrc enb task(void* args p) contains a message processing loop, which uses
the message type of an incoming message msg p (i.e., ITTI MSG ID(msg p)) to
decide how to process the message. The loop contains 16 switch cases, including
the default one, and each of these cases defines a respective action. Hence, we
have 16 states and 16 actions defined for the purpose of RL.

EMM: EMM is a NAS-stratum protocol dealing with mobility over an E-
UTRAN access in the control plane between the UE and the MME module in the
core network. The 3GPP organization specifies three types of EMM procedures:
common procedures include GUTI (Global Unique Temporary ID) reallocation,
authentication, security mode control, identification, and EMM information, spe-
cific procedures define mechanisms for attaching to the EPC and detaching from
it, and connection management procedures manage UEs’ connections with the
core network such as service request, paging procedure, and transport of NAS
messages. The EMM protocol is implemented within the openair-cn module as
it deals with functionalities of the LTE core network.

In openair-cn, message processing by the EMM protocol is done in two func-
tions in file openair-cn/SRC/NAS/EMM/SAP/emm as.c: emm as recv(), which
decodes and processes normal EMM messages, and emm as establish req(),
which processes connection establishment requests for EMM access stratum SAP
(Service Access Point). In function emm as recv(), there are 12 switch cases
for the message type (emm msg->header.message type), each representing a
unique state in RL. In nine of these 12 cases, the emulator’s action further
depends on a Boolean variable, emm cause; hence, we define 21 separate actions.
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In function emm as establish req(), there are five switch cases for the mes-
sage type (emm msg->header.message type), but two of them are identical as in
function emm as recv(). As processing one of these five cases does not depend
on variable emm cause, function emm as establish req() introduces five new
actions. In total, there are 15 states and 26 actions defined for the purpose of RL.

5.2 Testbed Automation

An important goal of LEFT is to minimize human efforts in assessing vulnerabil-
ities of 4G/LTE Android mobile devices. A key challenge in testbed automation
is to prevent emulator crashes. As we perturb the behavior of the LTE network
emulator, it is possible that the action taken by the emulator results in a faulty
internal state and thus causes it to crash or freeze. In Algorithm1, we use a neg-
ative reward βcrash to discourage the fuzzer agent from taking an action that
causes the emulator to crash at a certain state. However, the network emula-
tor may still crash or freeze due to an inappropriate action taken by the agent
working in an exploration mode.

The fuzzer agent’s internal states, such as its Q-tables and reward tables, are
declared as global variables of the network emulator. To prevent loss of these
states after the emulator crashes, we modify the emulator’s handler of its logging
timer, which fires every 30 s, and periodically save these states onto persistent
storage. Moreover, LEFT applies two techniques deployed at different places to
detect if the network emulator crashes or freezes:

– On the server side, we add sensors inside the LTE network emulator to catch
certain Linux signals that indicate system failures. These signals include
SIGTERM (process termination), SIGSEGV (invalid memory reference),
SIGABRT (abort), and SIGFPE (floating point exception). When a sensor
catches such a signal, it saves the fuzzer’s internal states, as well as the last
state-action pair retrieved from the crashed network emulator, onto persis-
tent storage. When the fuzzer agent recovers, it collects a reward for the last
state-action pair as βcrash.

– For the rare cases where some faulty situations are not caught by the Linux
signal handlers, LEFT uses heartbeat messages communicated between the
client and the server every two seconds. If the client has not received the
heartbeat message from the server after 20 s, the client restarts the server.
Since the client does not know the exact state-action pair that causes the
emulator to crash, the fuzzer agent, after it is restarted, cannot collect a
negative reward for its last action (we do not save every state-action pair onto
persistent storage due to its high overhead). In this case, the RL algorithm
cannot prevent the agent from taking the same action that has caused the
network emulator to crash or freeze in the future.

At the end of each episode, the client clears the test UE’s internal state by
toggling its airplane mode with appropriate ADB shell commands.
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6 Evaluation

We perform experiments to evaluate the effectiveness of LEFT in assessing both
confidentiality and availability. We configure LEFT to emulate two LTE net-
works, one benign and the other malicious:

– Benign LTE network: Its EPC is emulated with a Lenovo ThinkCenter
mini-workstation (CPU: Intel i7 6700T, RAM: 16 GB, and Ubuntu 16.04 with
kernel 4.13) and its eNodeB is emulated with a Dell Inspiron 5000 laptop
(CPU: Intel i7 6500U, RAM: 8G, and Ubuntu 16.04 with low-latency kernel
4.13). The communications between the test UE and the benign eNodeB are
supported by a set of USRP B210 board and LTE antenna. The benign LTE
network is assumed to know each test UE’s authentication credentials.

– Malicious LTE network: A single commodity desktop PC (CPU: Intel i7
4790, RAM 32G, and Archlinux with kernel 4.15) is used to emulate both
the malicious LTE network’s EPC and eNodeB. The EPC is emulated within
a VirtualBox VM (Virtual Machine) configured to have 4G RAM and run
Ubuntu 16.04 with kernel 4.10, and the eNodeB within another VirtualBox
VM configured similarly, except that it uses a low-latency kernel. A different
set of USRP B210 board and LTE antenna is used for the communications
between the UE and the malicious eNodeB. The malicious LTE network can
be configured based on the user-provided threat model (see Sect. 4.1).

The parameters of Algorithm 1 in LEFT are configured with their default val-
ues, which have been shown in Table 1. We use LEFT to assess the vulnerabilities
of four COTS Android mobile phones, Samsung Note II (unknown LTE Cat 4
Modem), LG G5 (Snapdragon X12 LTE Modem), Huawei Honor 8 (Balong 720
chipset), and BLU LifeOne X2 (Snapdragon X6 LTE Modem). Each of these
phones uses a sysmoUSIM-SJS1 SIM card [6] recommended by the OpenAirIn-
terface developers.

We consider two sets of experiments: fuzzing the RRC protocol to compromise
confidentiality and fuzzing the EMM protocol in NAS to compromise availability
(see Fig. 1(2)). As it is trivial to catch the IMSIs in the air [32], such vulnerabil-
ities are thus ignored from our experiments. For checking network connectivity,
we let the test UE ping any machine on the Internet through the benign LTE
network, and if the ping test fails after 30 s, the UE is deemed to lose the LTE
network connectivity.

6.1 Perturbation Sequences with Vulnerabilities Discovered

We first assess the performance of LEFT in discovering the vulnerabilities in
the four test UEs individually without off-goal learning. In each experiment, we
evaluate one test UE for 200 episodes, with either confidentiality or availability
as the goal. All experiments are performed independently. After each experiment,
we collect the unique perturbation sequences that have led to the compromise
of the pre-defined security goal, where a perturbation sequence is defined as the
sequence of state-action pairs observed in an episode.
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(1) Confidentiality, RRC fuzzing (2) Availability, EMM fuzzing

Fig. 3. Number of unique perturbation sequences with vulnerabilities discovered

Figure 3 shows the number of unique perturbation sequences with vulnerabil-
ities discovered throughout an evaluation experiment for each phone. We observe
that for each phone tested, there are two to four unique perturbation sequences
that have revealed a confidentiality vulnerability, and four to six unique pertur-
bation sequences that lead to loss of network connectivity.

To verify whether each vulnerability discovered is correct, we present in
Table 3 the list of state-action pairs in each unique perturbation sequence that
has revealed a confidentiality vulnerability in LG G5. Common to each perturba-
tion sequence is a measurement report received from the test UE in a Connection
Reconfiguration Complete message. According to 3GPP standard, the mea-
surement report from a UE may include detailed location information (e.g.,
GNSS (Global Navigation Satellite System) location information), physical cell
identity of the logged cell, and cell identities and carrier frequencies of neigh-
boring cells [4], which presents a confidentiality risk. This vulnerability has been
reported in the work in [29] but our work discovers it automatically through
fuzzing.

In Table 3, we show the six perturbation sequences that cause loss of network
connectivity for Samsung Note II. Common to these sequences are responses
with TAU reject or attach reject. As neither TAU reject nor attach reject
messages are integrity-protected, for certain rejection causes, the UE may not
only lose the connectivity with the malicious eNodeB but also with the benign
one [10,29]. Hence, the vulnerabilities automatically found by LEFT are indeed
exploitable by an adversary under the assumed threat model.

On average, for each phone it takes 253 min to finish a confidentiality test
of 200 episodes, and 277 min an availability test of 200 episodes – without any
human supervision. It may seem unintuitive that an availability test needs only
slightly more time than a confidentiality test, because it requires testing the net-
work connectivity with the benign LTE network and if the network connectivity
is lost the UE has to wait for 30 s of ping tests. Actually the fraction of episodes
with lost network connectivity is small, which explains why the execution times
for a confidentiality test and an availability test are comparable.
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Table 2. Perturbation sequences leading to location leakage (each tuple shows the
type of message received and the type of message by which it is processed)

No Perturbation sequence

1 (RRC Connection Request, RRC Connection Setup),
(RRC Connection Setup Complete, RRC Connection Reconfiguration),
(RRC Connection Reconfiguration Complete + Measurement Report,
RRC Connection Release)

2 (RRC Connection Request, RRC Connection Setup),
(RRC Connection Setup Complete, RRC Connection Reconfiguration),
(RRC Connection Reconfiguration Complete + Measurement Report,
Security Mode Command),
(Security Mode Reject, RRC Connection Release)

3 (RRC Connection Request, RRC Connection Setup),
(RRC Connection Setup Complete, RRC Connection Reconfiguration),
(RRC Connection Reconfiguration Complete + Measurement Report,
RRC Connection Release)

4 (RRC Connection Request, RRC Connection Setup),
(RRC Connection Setup Complete, RRC Connection Reconfiguration),
(RRC Connection Reconfiguration Complete + Measurement Report,
RRC Connection Reconfiguration)

Table 3. Perturbation sequences leading to loss of network connectivity (each tuple
has the same meaning as in Table 2)

No Perturbation sequence

1 (TAU request, TAU reject)
2 (TAU request, detach request), (detach accept, paging),

(attach request, attach reject (with random cause))
3 (TAU request, TAU reject), (attach request, identity request),

(identity response, detach request (reattach required)),
(detach accept, paging), (attach request, attach reject (with random
cause))

4 (TAU request, TAU reject), (attach request, attach reject (with
random cause))

5 (TAU request, TAU reject), (attach request, authentication request),
(authentication response, authentication reject)

6 (TAU request, TAU reject), (attach request, authentication request),
(authentication failure, identity request), (identity response, detach
request), (detach accept, paging), (attach request, attach reject (with
random cause))

Note: TAU stands for Track Area Update.
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6.2 Prevention of Emulator Crashes

The RL-guided fuzzing algorithm shown in Algorithm 1 assigns a negative reward
to discourage the fuzzer agent from taking actions that may lead to emulator
crashes. To show its effect, we compare the numbers of emulator crashes with
and without using a negative reward when the emulator crashes. The results
are illustrated in Fig. 4. In the case of confidentiality with RRC fuzzing, using
a negative reward, after 200 episodes the number of emulator crashes has been
reduced by 39.47%, 43.18%, 40.00%, and 31.70% for Samsung Note II, LG G5,
Huawei Honor 8, and BLU LifeOne X2, respectively, and the average reduction
rate over the four phones is 38.59%. Similarly in the case of availability with
EMM fuzzing, using a negative reward reduces the number of emulator crashes
by 34.88%, 39.02%, 48.89%, and 51.06%, respectively, for these same phones
after 200 episodes, leading to an average reduction rate of 43.47%. Clearly, the
fuzzer agent benefits significantly from exploiting its previous crash experiences
to avoid crash-causing actions.

(1) Confidentiality, RRC fuzzing (2) Availability, EMM fuzzing

Fig. 4. Number of emulator crashes

6.3 Cross-Device Learning

In addition to using a negative reward to avoid actions likely to crash the emu-
lator process, the fuzzer agent can also exploit the experiences with previous
test UEs. Recall that in Algorithm 1, for each of confidentiality and availability,
an average Q-table is maintained over all the UEs tested. We next perform a
set of experiments to evaluate the effects of using such an average Q-table to
bootstrap the Q-table when evaluating a new UE. In each experiment, we use
Huawei Honor 8 as the target phone (always evaluated last). To calculate the
average Q-table, we choose zero to three phones from Samsung Note II, LG G5,
and BLU LifeOne X2 in the same order and evaluate them sequentially. When
a security goal is specified for the target phone, the remaining phones can be
tested either on goal (using the same security goal) or off goal (using a different
security goal).

Figure 5 confirms the advantages of cross-device learning. When the target
phone is evaluated first without any previous experiences for guiding vulnerabil-
ity discovery, the fuzzer agent needs more episodes to find the same number of
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(1) Confidentiality, RRC fuzzing (2) Availability, EMM fuzzing

Fig. 5. Effects of cross-device learning

unique perturbation sequences with vulnerabilities discovered, regardless of the
security goal. Moreover, the differences between on-goal and off-goal learning
are small, suggesting that we can improve the efficiency of security evaluation
by updating the Q-tables maintained for different security goals with the same
set of episodes.

7 Conclusions

This work explores a new direction of using AI-based techniques to assess vul-
nerabilities of LTE-capable Android mobile phones. We have developed LEFT,
a testbed adopting three novel fuzzing methodologies, emulation-instrumented
blackbox fuzzing, threat-model-aware fuzzing, and RL-guided fuzzing to assess
vulnerabilities of 4G/LTE Android mobile phones. We have demonstrated that
LEFT can be used to discover automatically the vulnerabilities in four COTS
Android mobile phones, which may be exploited to compromise confidentiality
or availability. In our future work, we plan to extend the capabilities of LEFT
to discover new types of vulnerabilities in LTE networks automatically.
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ANSSI Symposium sur la sécurité des Technologies de l’information et des Com-
munications (2016)

https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
http://sysmocom.de
http://networks.cttc.es/mobile-networks/software-tools/lena/
http://networks.cttc.es/mobile-networks/software-tools/lena/
http://www.openairinterface.org/
https://github.com/osh/openlte
http://www.sharetechnote.com/html/Handbook_LTE_AttachReject.html
https://www.wireshark.org
http://www.gsma.com/spectrum/wp-content/uploads/2015/06/GSMA-Data-Demand-Explained-June-2015.pdf
http://www.gsma.com/spectrum/wp-content/uploads/2015/06/GSMA-Data-Demand-Explained-June-2015.pdf
https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-todays-massive-internet-outage/
https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-todays-massive-internet-outage/
http://arxiv.org/abs/1602.04629
https://jis-eurasipjournals.springeropen.com/track/pdf/10.1186/1687-417X-2014-7
https://jis-eurasipjournals.springeropen.com/track/pdf/10.1186/1687-417X-2014-7
https://doi.org/10.1007/978-981-10-4355-0_2
https://doi.org/10.1007/978-981-10-4355-0_2


40 K. Fang and G. Yan

26. Onwuzurike, L., De Cristofaro, E.: Danger is my middle name: experimenting with
SSL vulnerabilities in android apps. In: Proceedings of the 8th ACM Conference
on Security & Privacy in Wireless and Mobile Networks (2015)

27. Rupprecht, D., Dabrowski, A., Holz, T., Weippl, E., Pöpper, C.: On security
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