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Abstract. Recent advances in cryptography promise to let us run com-
plex algorithms in the encrypted domain. However, these results are still
mostly theoretical since the running times are still much larger than their
equivalents in the plaintext domain. In this context, Majority Judgment
is a recent proposal for a new voting system with several interesting
practical advantages, but which implies a more involved tallying process
than first-past-the-post voting. To protect voters’ privacy, such a process
needs to be done by only manipulating encrypted data.

In this paper, we then explore the possibility of computing the
(ordered) winners in the Majority Judgment election without leaking
any other information, using homomorphic encryption and multiparty
computation. We particularly focus on the practicality of such a solution
and, for this purpose, we optimize both the algorithms and the imple-
mentations of several cryptographic building blocks. Our result is very
positive, showing that this is as of now possible to attain practical run-
ning times for such a complex privacy-protecting tallying process, even
for large-scale elections.

1 Introduction

1.1 Motivation

Practical Cryptography. Homomorphic encryption allows running algo-
rithms in a way that preserves the confidentiality of sensitive data, and thus, in
a lot of practical use-cases, the privacy of some individuals. Fully homomorphic
encryption permits to treat almost all applications in the encrypted domain, but
is today too slow for practical use. Conversely, additively homomorphic encryp-
tion (such as in ElGamal and Paillier cryptosystems) is reasonably efficient, but,
since an algorithm is, most of the time, not solely a combination of additions,
practical uses typically involve a hybrid approach. In this case, part of the process
is done in the encrypted domain, but some intermediate results are decrypted,
and the final stages are realized in the clear. This approach can give reasonable
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confidentiality while remaining very effective. But, for most of existing prac-
tical needs, there is today no possibility to obtain at the same time real-world
performances and full confidentiality (without revealing any intermediate value).

Electronic Voting. Electronic voting concerns itself with the problem of giving
voters strong guarantees regarding their own privacy, as well as the integrity of
the whole election.

Referendums adapt very well to additively homomorphic encryption, since it
then suffices to have voters encrypt 1 for “Yes” and 0 for “No”, and then tally
the ballots using homomorphic addition. It is moreover usually required that
each voter provides a cryptographic proof that their ballot contains either 0 or 1
(without revealing which). First-past-the-post voting, where each voter selects a
single candidate among several possible ones, and for which the candidate with
the most votes wins, can be implemented in a similar fashion (but in less efficient
way, since cryptographic proofs become more complicated).

Other voting systems such as Majority Judgment or Single Transferable Vote
(STV) offer interesting properties, such as strategy-resistance, but are more com-
plex, especially for the tallying phase. In both examples, one possibility is to
homomorphically aggregate all the votes before decryption, and then perform
the final steps in the clear. Although this approach is generally acceptable with
relation with the confidentiality of the voters, it does reveal information such as
the scores of all the candidates. But candidates who were eliminated may not
want their exact scores to be known.

As a consequence, we explore in this paper the possibility of running such a
voting system in a way that only reveals the winning candidate, or the ordered
winners. As we will see, the related work in this domain (with such strong desired
confidentiality property) is quite inexistent.

1.2 Related Work

Secure implementations of referendum and first-past-the-post voting have been
regularly studied in cryptographic literature. In particular, [DK05] offers a solu-
tion for running referendums without revealing the exact count (only whether
“Yes” or “No” won) that does not rely on MixNets or on any trusted server.
As for strategy-resistant voting systems, [TRN08,BMN+09] explore the case of
privacy-preserving STV using a mixing protocol. As far as we know, no such
study nor implementation has been done for the Majority Judgment voting
system.

1.3 Our Contributions

In this paper, we propose an implementation of the Majority Judgment vot-
ing system on a restricted set of logical gates, which we build using the Paillier
cryptosystem so as to provide distributed trust, while keeping performance man-
ageable. We then run benchmarks against our Python implementation based on
the gmpy2 wrapper library.
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+ ← → −
⎧⎨
⎩

⎛
⎝ 0 0 1 0 0

0 1 0 0 0
0 0 0 1 0

⎞
⎠ = Bi

Fig. 1. Single ballot: this voter attributes C to Alice, B to Bob and D to Charlie

We stress that our approach provides strong cryptographic guarantees regard-
ing confidentiality and integrity of all the voters. Additionally, we support multi-
seat elections, where several winners can be determined. All this is done with-
out revealing any intermediate value while obtaining real-world practical results
since, e.g., for 5 candidates and 1000 voters, the tallying phase works in less than
10 min to give the winner.

Additionally to the real voting application, we think that our work serves
to show that it is really possible to use cryptography in a very conservative
setting (revealing as little information as possible) while still being very practical
(actually revealing the result in reasonable time). We hope it can help bridge the
gap that continues to exist between theoretical cryptography (strong guarantees)
and industrial practices (high efficiency) and encourage a more widespread use
of cryptography to improve users’ privacy in many applications.

2 Majority Judgment

2.1 Definition

Principle. Majority Judgment was presented by Michel Balinski and Rida
Laraki in [BL07,BL10]: this is a voting mechanism that claims to improve the
legitimacy of the elected candidates.

In Majority Judgment, each voter Vi attributes a grade to each candidate Ci.
Grades need not be numbers, but do need to be ordered (with a strict ordering,
from the best to the worst grade, such as, e.g., from A to E). For this, the ballot
is structured as a matrix where each row represents a candidate and each column
represents a grade; the voter writes a 1 in the chosen grade for each candidate
and 0 in other cells (See Fig. 1).

After summing all the votes into an Aggregate Matrix A, the median grade
(or “majority-grade”) of each candidate is computed: the median grade cor-
responds to the grade for which there are as many votes for worse grades as
for better grades. The candidate with the best median grade is elected, or the
candidate with the worst median grade is eliminated.

In Fig. 2, Alice and Bob have the same best median grade, C, and Charlie has
the worst median grade, E. Charlie is eliminated, but we cannot yet decide the
winner (here, all the candidates get the same total number of grades, so values
can be seen as ratios).
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Solving Ties. As in our above example, it is likely that several candidates get
the same median grades. In that case, for these candidates, we consider the grades
lower than the median grade and the grades greater than the median grade to
make a decision. We construct the Tiebreak Matrix T by aggregating grades to
the left and to the right of the median grade, see Fig. 3. To make a decision, the
largest of these values is considered. If it pertains to the right column (many low
grades), then the corresponding candidate is eliminated. If it pertains to the left
column (many high grades), then the corresponding candidate wins.

More formally, from Balinski and Laraki, the result of each candidate can
be summed up into a triplet (p, α, q) where α represents the majority-grade,
p represents the ratio of votes above the candidate’s majority-grade α, and q
the ratio of those below. For any two candidates CA and CB with corresponding
triplets (pA, αA, pB) and (pB , αB , qB), then CA wins against CB when one of the
following (mutually exclusive) conditions is met:

1. αA > αB (better median grade);
2. αA = αB ∧ pA > qA ∧ pB < qB (“stronger”1 median grade);
3. αA = αB ∧ pA > qA ∧ pB > qB ∧ pA > pB (more secure median grade);
4. αA = αB ∧ pA < qA ∧ pB < qB ∧ qA < qB (less insecure median grade).

This defines a total ordering on the candidates with high probability. Our goal
is to output the names of the candidates according to this ordering.

We now consider a set of voters Vi, of candidates Ci and of authorities Ai (that
will perform the counting). Our aim is to propose an implementation of Majority
Judgment in the encrypted domain, in order to output the above ordering, but
without leaking any additional information. For this purpose, we have to both
find the suitable encryption scheme and provide the best possible description
of such a voting system, so as to obtain the best possible privacy-preserving
achievement for our problem.

Justification. As an electoral system, Majority Judgment gives the voters bet-
ter incentives to simply vote for their preferred candidates rather than strategi-
cally vote for another candidate. For instance, in first-past-the-post voting, voters

+ ← → −
⎧⎨
⎩

⎛
⎝ 31 151 529 254 35

21 48 442 301 188
101 7 2 86 804

⎞
⎠ = A

Fig. 2. Aggregate Matrix: each cell represents the number of voters who gave this grade
to that candidate; in bold are the candidates’ median grades.

1 when p > q, the median grade is strong and noted α+; when p < q, weak, noted α−.
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(
31 + 151 254 + 35
21 + 48 301 + 188

)
=

(
182 289
69 489

)
= T

Fig. 3. Tiebreak Matrix: candidates with equal median; the largest value rejects Bob.

select a single candidate on their ballots, and the candidates who was selected
by the most voters wins the election; in this settings, voters are incentivized not
to vote for lesser-known candidates, feeling like they are wasting their vote on
a candidate with little chance of winning the election. This is partly addressed
in two-round systems, where voters are given two opportunities to state their
opinions: in the first round, they can vote for their favorite candidate, knowing
that they will be able to express their preference between the candidates selected
for the second round, who are usually among the most well-known ones.

However, even the two-round system remains imperfect, which translates in a
restricted number of parties gathering most of the votes (usually two in the US,
three in France). Several ranking systems propose to ameliorate this situation
by allowing the voters to explicitly list their favorite candidates, ensuring that
their opinion is take into account even when their first choice is eliminated. The
most well-known such system is the Single Transferable Vote, also known as
Instant-Runoff Voting for single-winner elections. However, this voting system
is particularly complex as it requires each individual ballot to be considered
potentially several times, usually by hand. Majority Judgment is a more recent
proposal for a ranked voting system which allows to aggregate the ballots before
counting.

By shifting the incentives of the voters away from strategic voting, such voting
systems might improve the legitimacy of political and administrative elections
by giving each voter the feeling that their opinion was fully taken into account,
and potentially increase the turnout.

2.2 Removing Branching

At first sight, it may seem like an algorithm implementing Majority Judgment
would require complex control flow with branching instructions (conditional
structures and loops), depending on whether a candidate is eliminated or not.
This would incur important overheads when evaluated in the encrypted domain
(both branches must be computed). However, it is possible to devise a branchless
algorithm without introducing such an important overhead.

Early Elimination of Candidates. The first remark is that we can avoid
explicitly checking condition 1, but we can build the Tiebreak Matrix with just
the best median grade. In the previous use-case, C is the best median grade (for
Alice and Bob), which leads to the following Tiebreak Matrix
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T =

⎛
⎝

31 + 151 254 + 35
21 + 48 301 + 188
101 + 7 86 + 804

⎞
⎠ =

⎛
⎝

182 289
69 489

108 892

⎞
⎠

Then Charlie gets eliminated, since he holds the highest number on the right
column.

More generally, let W and L be candidates such that W wins against L
by above condition 1 (e.g. αW < αL). Let us define p′

L (resp. q′
L) the ratio

of votes for L that are better (resp. worse) than αW (instead of αL). Since
αW < αL, p′

L < 1/2 < q′
L, but we also have qW < 1/2, and thus qW < q′

L. As
a consequence, we only need to compute the p′ and q′ values, defined around
the best median grade (rather than each candidate’s median grade) and use the
following (mutually exclusive) conditions to determine whether candidate CA

wins against candidate CB :

2’. p′
A > q′

A ∧ p′
B < q′

B ;
3’. p′

A > q′
A ∧ p′

B > q′
B ∧ p′

A > p′
B ;

4’. p′
A < q′

A ∧ p′
B < q′

B ∧ q′
A < q′

B .

Building the Tiebreak Matrix T . To build the Tiebreak Matrix T , we need
to detect which elements are to the left (resp. right) of the best median grade.
For this, we first compute the Candidate Matrix C = (ci,j), such that ci,j = 1
when column j represents a grade which is better than the candidate’s median
grade. From the Aggregate Matrix A = (ai,j) (with the number of grades for
each candidates), we want

ci,j =
{

1 if 2 × ∑
k<j ai,k <

∑
k ai,k

0 otherwise.

In our use-case, one gets the following Candidate Matrix C, where the zeroes
in bold are first in their each line, and correspond to the median grade for each
candidate:

C =

⎛
⎝

1 1 0 0 0
1 1 0 0 0
1 1 1 1 0

⎞
⎠ .

Then, we can compute the Grade Vector G = (gj), such that gj = 1 when
column j represents a grade which is greater than the global median grade. We
can easily compute G = (gj) from C = (ci,j) since gj = ∧ici,j , where G and C
are Boolean matrices, and 0 and 1 respectively represent False and True:

G =
(
1 1 0 0 0

)
.

Again, the first zero, in bold, corresponds to the global (the best) median grade.
Once we have this Grade Vector G, we can build the two columns of the

Tiebreak Matrix T = (ti,k), from the Aggregate Matrix A = (ai,j), as:

ti,1 =
∑

j
gj=1

ai,j and ti,2 =
∑

j
gj−1=0

ai,j .
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Note that the second column uses a shifted version of G to filter votes below the
median grade. With the integer representation of Boolean, that can be written
as ti,1 =

∑
j gj × ai,j and ti,2 =

∑
j(1 − gj−1) × ai,j .

Identifying the Winner. Once we have built the Tiebreak Matrix T = (ti,k),
it only remains to reveal for each candidate the result of the following explicit
Boolean formula, which selects the Winner:

wi =
∧
j

j �=i

⎛
⎜⎝

(ti,1 > ti,2 ∧ tj,1 < tj,2)
∨(ti,1 > ti,2 ∧ tj,1 > tj,2 ∧ ti,1 > tj,1)
∨(ti,1 < ti,2 ∧ tj,1 < tj,2 ∧ ti,2 < tj,2)

⎞
⎟⎠

Notice that wi = 1 when candidate i beats all the other candidates by either
condition 2’, 3’ or 4’, hence the definition for the Winner Vector W = (wi). Once
W has been computed, we search the unique component equal to 1, identifying
the elected candidate.

If one wants more than one winner, one can run again the above protocol,
after having removed the line of the winner in the Candidate Matrix C. The
computation has to be run again to generate G, T , and W , interactively for all
the winners.

2.3 Expected Features for Encrypted Scheme

If we assume that the votes are encrypted, running the Majority Judgment
algorithm means that we need to use an encryption scheme that allows the
following operations (without knowing the decryption key):

– addition of two plaintexts, to compute the Aggregate Matrix A and the
Tiebreak Matrix T ;

– comparison of two plaintexts, to compute the Candidate Matrix C and the
Winning Vector W ;

– AND/OR Boolean gate between two plaintexts, to compute the Grade Vector
G and the Winning Vector W ;

– multiplication of two plaintexts, to compute the Tiebreak Matrix T .

Eventually, a distributed decryption of the Winning Vector W would provide
the final result.

Notice that the operations required for computing the Tiebreak Matrix T
actually only multiply some value by 0 or 1 (i.e. one operand is restricted to
{0, 1}, actually a Boolean). Indeed, multiplications are merely a conditional filter
on the elements to be summed. We can thus relax our requirement from a full
multiplication gate to a “conditional gate”: CondGate(x, y) = x×y for y ∈ {0, 1}.

If we use an additively homomorphic encryption scheme, addition gives us
the logical NOT gate, since ¬x = 1 − x when 0 means False and 1 means True.
Then, the conditional gate gives us the AND Boolean gate, as x ∧ y = x × y.
Eventually, these two gates let us construct the OR and XOR gates.
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In the following, we will thus use an additively homomorphic encryption
scheme, together with efficient Multi-Party Computation (MPC) protocols for
distributed decryption, distributed evaluation of the conditional gate, and dis-
tributed comparison. As we will explain, multi-party computation necessitates in
particular the use of some zero-knowledge proofs of correctness of the computed
values. In the next section, we then give all the basic cryptographic material we
will need for our solution.

3 Cryptographic Tools

3.1 Paillier Encryption Scheme

Our scheme relies on the Paillier encryption scheme [Pai99], for its additively
homomorphic property, and the fact that distributed decryption can be effi-
ciently done on arbitrary ciphertexts.

Let p and q be two large safe primes (so that p = 2p′+1 and q = 2q′+1 where
p′ and q′ are also primes), set n = pq, ϕ = 4p′q′, g = 1 + n, and s = n−1 mod ϕ.
Then pk = (n, g) and sk = (pk, s). The encryption/decryption algorithms work
as follows, for M ∈ Zn.

– Encrypt(pk,M): pick r
$← Z

∗
n, return C = gMrn mod n2;

– Decrypt(sk, C): compute R = Cs mod n, and return M = (CR−n mod n2)−1
n .

Indeed, since g = 1 + n, C = rn mod n, we can recover R = Cs = r mod n and
thus obtain M from CR−n = gM = 1 + Mn mod n2.

This encryption scheme is well-known to be additively homomorphic, but it
also allows efficient distributed decryption among the authorities, with a thresh-
old: as explained in [Sho00], one can distribute s using a Shamir Secret Sharing
mechanism, modulo ϕ = 4p′q′. Since |n − ϕ| = 2(p′ + q′) + 1 < n1/2, a random
element in Zϕ follows a distribution that is statistically indistinguishable from a
random element in {0, . . . , n − 1}. Hence, one can choose a random polynomial
P of degree t − 1 in Zϕ so that P (0) = s = n−1 mod ϕ, and set si = P (i) for
i = 1, . . . , k, the k authorities. If less than t of these authorities collude, no infor-
mation leaks about s, while any t of them can reconstruct Δs, where Δ = k!,
with

λS
i =

⎛
⎝ ∏

j∈S\{i}
j

⎞
⎠ ×

(
Δ∏

j∈S\{i}(j − i)

)

since for any set S of t elements,
∑

i∈S λS
i · si = Δ · P (0) = Δ · s. One should

remark that the denominator divides i!(k − i)!, which in turns divides Δ = k!,
as noted in [Sho00]. Hence, λS

i is an integer.
Then, each authority Ai just has to compute Ri = Csi mod n, and the simple

combination leads to R: with R′ =
∏

i∈S R
λS

i
i = CΔs, one has R′n = CΔ mod n.
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But Δ and n are relatively prime and so there exist u and v such that un+vΔ =
1: (CuR′v)n = C mod n. As a consequence, from the Ri’s, anybody can compute

R = Cu ×
(∏

i∈S

R
λS

i
i

)v

mod n.

Then, any subset of t authorities can compute and publish R, which leads to
M = (CR−n mod n2 − 1)/n.

This encryption scheme achieves indistinguishability against chosen-plaintext
attacks (IND-CPA) under the High-Residuosity assumption, which claims that
the following High-Residuosity problem is hard.

High-Residuosity Problem (HR). For an RSA modulus n = pq, the chal-
lenger chooses a random element r0

$← Z
∗
n2 , a random element R

$← Z
∗
n and sets

r1 = Rn mod n2, and eventually outputs rb for a random bit b, the adversary
has to guess b.

This also holds for the distributed decryption, when the authorities are
honest-but-curious. To ensure correctness of the decryption values Ri, each
authority Ai must prove that Ri is the result of the exponentiation of C to
the power si.

3.2 Zero-Knowledge Proofs

In the following, we will have two kinds of proofs of equality of discrete loga-
rithms: when the order of the group is known, and when the order of the group
is not known.

Chaum-Pedersen Protocol [CP93]. Let G be a cyclic group of known order
q, and κ the security parameter. To prove knowledge (or just existence) of x ∈ Zq

such that y1 = gx
1 and y2 = gx

2 for g1, g2, y1, y2 ∈ G, the prover P can proceed
as follows with a verifier V:

– P picks u
$← Zq and sends commitments t1 ← gu

1 and t2 ← gu
2

– V sends a challenge h
$← Z2κ

– P returns w ← u − hx mod q
– V checks that gw

1 = t1y
−h
1 and that gw

2 = t2y
−h
2 .

This protocol is only known to be zero-knowledge when the verifier is honest.
But one can make it non-interactive, in the random oracle model using the Fiat-
Shamir heuristic [FS87,PS96].

Fiat-Shamir Heuristic [FS87,PS96]. The challenge can be replaced by the
output of hash function (modeled as a random oracle), removing the interaction
needed to obtain h, and thus making the proof non-interactive and fully zero-
knowledge. Then, one can set h = H(g1, g2, y1, y2, t1, t2), and the verifier can
simply check whether h = H(g1, g2, y1, y2, gw

1 yh
1 , gw

2 yh
2 ). The proof just consists

of the pair (h,w) ∈ Z2κ × Zq.
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Girault-Poupard-Stern Protocol [GPS06]. After Girault’s [Gir91] work,
Poupard and Stern [PS98,PS99] studied the proof of knowledge of a discrete
logarithm in groups of unknown order. It leads to a similar protocol as above,
for the proof of equality of discrete logarithms, but with some margins: to prove
knowledge (or just existence) of x ∈ Zq, for an unknown q < Q with Q public,
such that y1 = gx

1 and y2 = gx
2 for g1, g2, y1, y2 ∈ G, the prover P can proceed

as follows with a verifier V:

– P picks u
$← Z22κQ and sends commitments t1 ← gu

1 and t2 ← gu
2

– V sends a challenge h
$← Z2κ

– P returns w ← u − hx
– V checks that 0 < w < 22κQ, and both gw

1 = t1y
−h
1 and gw

2 = t2y
−h
2 .

Again, to make this proof non-interactive, one can set h = H(g1, g2, y1, y2, t1, t2),
and the verifier can simply check whether h = H(g1, g2, y1, y2, gw

1 yh
1 , gw

2 yh
2 ). The

proof just consists of the pair (h,w) ∈ Z2κ × Z22κQ.
Since w can fall outside the correct set, but with negligible probability, the

verifier can just verify it, and re-start the proof when w is wrong.

3.3 Proofs of Valid Decryption

During the counting phase, the authorities have to provide a proof that they have
properly decrypted some values. We here give some details on that cryptographic
tool.

In fact, in the Paillier cryptosystem, the main operation of decryption is to
raise the ciphertext to the secret power si. Let C ∈ Z

∗
n2 be a ciphertext, si ∈ Zϕ

be a secret exponent known to the prover P only (one authority Ai in our case);
P must provide Ri = Csi mod n, and prove it. For this, one can use the above
proof of equality of discrete logarithms, with a reference value vi = vsi mod n,
where v is a generator of Qn, the cyclic group of the quadratic residues in Z

∗
n.

Now going to the threshold version, one can thus assume that when each
prover/authority receives their secret si, the verification value vi = vsi mod n is
published, with a public generator v. Since we need to work in a cyclic group,
the prover will prove that the same exponent si has been used in

R2
i = (C2)si mod n and in vi = vsi mod n.

Batch Proofs. We can reduce the cost of this protocol by batching the proofs of
valid decryptions, when several decryptions are performed by the same prover on
several ciphertexts, as done in [APB+04, Appendix C, pp. 15–16]. For several
ciphertexts (Cj)j , P first publishes the computations Rj = Cs

j mod n, for all
j; then, the verifier V (or a hash function if using the Fiat-Shamir heuristic),
generates a sequence of random scalars αj

$← Z2κ to build the aggregations
C∗ =

∏
j C

αj

j mod n and R∗ =
∏

j R
αj

j mod n. They should also satisfy (R∗)2 =
(C∗2)si mod n, which can be proven as above: logv vi = logC∗2 R∗2.
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3.4 Proof of Private Multiplication

As explained above in the Majority Judgment description, the tallying process
requires multiplication gates which, in the encrypted domain, should be evalu-
ated privately, and in a provable manner. Then, an authority Ai, acting as a
prover P, needs to provide a proof of private multiplication, which can be done
as follows.

Let x, y ∈ Zn and Cy an encryption of y. Let P be a prover (an authority in
our case) knowing x and Cy. It computes Cz, an encryption of x×y mod n, which
can be done using private multiplication: Cz = Cx

y rn
z for rz

$← Z
∗
n. Then, P must

provide Cx and Cz to verifier V and prove that Cx, Cy, Cz are encryptions of
some x, y, and z such that z = x × y mod n. For this:

– P draws u
$← Zn, ru, ryu

$← Z
∗
n and sends Cu = gurn

u mod n2 and Cyu =
Cu

y rn
yu mod n2 to V;

– V draws a challenge e
$← Z2κ and sends it to P;

– P sends w = u − xe mod n, rw = rur−e
x mod n and ryw = ryur−e

z mod n to
V;

– V checks that Cu = gwrn
wCe

x mod n2 and Cyu = Cw
y rn

ywCe
z mod n2.

This proof can be converted into a non-interactive zero-knowledge proof as above,
using the Fiat-Shamir heuristic.

When several proofs have to be conducted in parallel, with the same x and
multiple yi, the above batch proof technique can be applied again, thanks to the
linear property of the multiplication: x×(

∑
i αiyi) =

∑
i αi(x×yi) mod n. Unfor-

tunately, it cannot be applied for independent pairs (xi, yi). In consequence, most
of the running-time of our implementation is spent computing these proofs and
verifying them.

4 Gate Evaluation with Multi-party Computation

We now present how to implement the operations listed in Subsect. 2.3 using
MPC protocols.

– Decryption: this is a common operation in MPC protocols, and is also used
by the other two protocols below;

– Conditional gate: this can be performed by randomizing the Boolean operand,
decrypting it using the previous protocol, and then performing a private mul-
tiplication;

– Comparison: this is the most complex operation, which implies to first extract
the bits of the operands (using masked decryption), and then performing a
bitwise addition (using conditional gates).

As we will see, they can be turned into the malicious setting by additionally
providing proofs of correct execution, which will essentially be proofs of equality
of discrete logarithms, as already seen for the proof of valid (partial) decryption.
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Input: Cx, the encryption of x ∈ Zn and Cy, the encryption of y ∈ {−1, 1}
Output: Cz, the encryption of z = x × y
foreach authority do

o
$← {−1, 1}

Cx ← Cx
o ; /* homomorphically compute encryption of x × o */

Cy ← Cy
o ; /* homomorphically compute encryption of y × o */

pass Cx, Cy to the next authority
end
y ← Decrypt(Cy)
assert y ∈ {−1, 1}
return Cz = Cx

y ; /* homomorphically compute encryption of x × y */

Algorithm 1: CondGate: Conditional gate

4.1 Decryption Gate

As already seen in Subsect. 3.3, one must compute R = Cs = r mod n in order
to allow full decryption. And this can be performed when s has been distributed
using a secret sharing scheme “à la Shamir”. We do not detail more, since this
just consists on one flow from each authority, even in the malicious setting, with
non-interactive zero-knowledge proofs of valid exponentiation (see above).

4.2 Conditional Gate

Schoenmakers and Tuyls introduced the conditional gate in [ST04]. Given x ∈ Zn

and y ∈ {−1, 1}, this gates computes x × y, which is thus either x or −x mod n.
Although the second parameter is restricted to {−1, 1}, it is very easy to adapt
this into a gate taking y ∈ {0, 1} using the homomorphic property of the Paillier
cryptosystem. Thus, it can be used to implement logical AND gates, as well as
multiplications by a Boolean.

Conditional Gate. The idea is simply to mask y by a random element in
{−1, 1} before decrypting it; then, it is easy to compute x×y mod n using private
multiplication. To mask y, each authority will in turn multiply it by either −1
or 1. They will also apply the same transformation on x to keep the product
unchanged. The algorithm is presented on Algorithm1, where the decryption of
Cy is performed in a distributed way as shown before.

To ensure the security of this gate against malicious adversary, each authority
must provide a proof of equality of discrete logarithm o in the exponentiation of
Cx and Cy, and verify the proofs of the other authorities before decrypting the
final result of the election. Note that, as explained in [ST04], it is not necessary
to require proofs that o ∈ {−1, 1} as long as Cy indeed eventually decrypts to
y ∈ {−1, 1}. However, such proofs may be requested when the condition does
not hold, so as to prune misbehaving authorities.

Mapping to {0,1}. As said above, the conditional gate can be easily adapted
to accept its second operand from {0, 1} using the additive property: it allows to
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Input: (Cxi), the bitwise encryption of x ∈ Zn and (yi), the bitwise notation of
y ∈ Zn

Output: (Czi), the bitwise encryption of z = x + y
Cc ← Encrypt(0) ; /* carry */

foreach index i, from 0 — the least significant bit— do
Cxi⊕yi ← Cxi × Cyi ÷ Cxi

2yi ; /* xi ⊕ yi = xi + yi − 2xiyi */

Czi ← Cxi⊕yi × Cc ÷ CondGate(Cxi⊕yi , Cc)
2 ; /* (xi ⊕ yi) ⊕ c */

Cc ← (Cxi × Cyi × Cc ÷ Czi)
n+1
2 ; /* (xi + yi + c − zi)/2 */

end
return (Czi)

Algorithm 2: PrivateAddGate: Private Addition Gate

convert the ciphertext Cy of y into a ciphertext of 2y −1. This leads to Cz being
a ciphertext of z = 2xy−x. Using Cx, the ciphertext of x, one can additively get
the ciphertext of 2xy, which one can multiply by 2−1 mod n to get a ciphertext
of xy.

4.3 Greater-Than Gate

Comparing two integers is done by evaluating a classical comparison circuit on
their bitwise encryptions (each of their bit encrypted separately). Converting a
scalar encryption of an integer into its bitwise encryption is performed by the
bit-extraction gate.

Conceptually, the bit-extraction gate works as follows: one first masks the
input integer, decrypts the result, encrypts the individual bits of this result,
and then applies a binary addition circuit to unmask the bitwise encryption.
Note that this binary addition circuit will take the masking operand into its
unencrypted form, since it saves several executions of the conditional gate.

Private Addition Gate. The private addition gate is used to unmask an
encrypted value. In the following algorithm (Algorithm2), xi is known as an
encrypted value Cxi

, while yi is a plaintext value. Knowing yi, we can trivially
compute encryptions Cyi

for homomorphic operations.
We note that [DFK+06, Section 6, pp. 13–15] offers a constant round circuit

for addition (both operands encrypted). However, the constant is 37. Having one
operand in the clear let us avoid interactions in line 1 of CARRIES (using private
multiplications), bringing this constant down to 36. In contrast, our straight-
forward private addition gate implies � rounds for up to 2� − 1 votes. In most
practical cases, we expect � < 36, so using the constant round version is not
preferable in our practical use case.

Bit-Extraction Gate. From this private addition gate, Schoenmakers and
Tuyls propose a method to extract the bits of an integer encrypted with the
Paillier cryptosystem [ST06, LSBs gate]. The general idea is to create a mask
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Input: Cx, the encryption of x ∈ Zn

Output: (Cxi), the bitwise encryption of x

/* Cy is the encryption of y
$← Zn, and (Cyi) of the bits yi */

/* Mask Cx with Cy, decrypt it into z, reencrypt bitwise, unmask */

Cz ← Cx ÷ Cy ; /* z = x − y */

z ← DecryptGate(Cz) ; /* as relative number in [−n/2, n/2] */

(Cxi) ← PrivateAddGate((Cyi), (zi)) ; /* (xi) = (yi) + (zi) */

return (Cxi)

Algorithm 3: BitExtractGate: Bit Extraction Gate

whose scalar and bitwise encryptions are both known, apply it to the scalar
input, and then remove it bitwise after reencryption.

To generate the mask, two more protocols are used to generate encrypted
random integers and encrypted random bits. We skip the details of these pro-
tocols since they can be executed in the precomputation step. Details can be
found in [ST06]. See Algorithm 3.

Greater-Than Gate. Using the conditional gate, we can compare two integers
given as bitwise encryptions (Cxi

) and (Cyi
). For this, we can use the comparison

circuit from [ST04], which evaluates ti+1 ← (1−(xi−yi)2)ti+xi(1−yi), starting
from t0 = 0. See Algorithm 4.

Input: (Cxi), (Cyi) the bitwise encryptions of x, y ∈ Zn

Output: Cx>y, encryption of 1 if x > y, and 0 otherwise
Ct ← Encrypt(0) ; /* temporary result */

foreach index i, from 0 — the least significant bit— do
Cxi∧yi ← CondGate(Cxi , Cyi)
Ca ← C1 ÷ Cxi ÷ Cyi × Cxi∧yi

2 ; /* 1 − (xi − yi)
2 */

Cb ← CondGate(Ca, Ct) ; /* (1 − (xi − yi)
2)ti */

Ct ← Cb × Cxi ÷ Cxi∧yi ; /* (1 − (xi − yi)
2)ti + xi(1 − yi) */

end
return Ct

Algorithm 4: GTGate: Greater-Than Gate

We note that [DFK+06] also offers a constant round circuit for comparison.
However, the constant is 19, which is not necessarily lower than the number of
bits required in our use-case.

5 Implementation

5.1 Encryption of the Ballots

We remind a voter that attributes C to Alice, B to Bob and D to Charlie will
cast a ballot as shown on Fig. 1, which consists of a series of 0 and 1, with
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exactly one 1 per row. To participate in our secure version of an election using
Majority Judgment, a voter encrypts their ballot element-wise and provides zero-
knowledge proofs that each element is either 0 or 1 (OR-proof), and that there
is one 1 per row (for instance, prove that the sum of each row decrypts to 1).

From this, it is easy to assemble the Aggregate Matrix A. A purely additively
homomorphic implementation would decrypt A at this point and then proceed in
the clear, assuming that aggregating the votes together provides adequate confi-
dentiality. In our implementation however, we implement the approach described
in Subsect. 2.2.

5.2 Avoiding Final Logical Gates

Notice that, since we use 0 and 1 to represent our Boolean values,
∨

i xi ⇔∑
xi �= 0 for any Boolean values (xi). We can apply this remark to avoid evalu-

ating the last part of the Boolean circuit on the negation of wi:

¬wi =
∨
j �=i

⎛
⎜⎝

¬(ti,1 > ti,2 ∧ tj,1 < tj,2)
∧¬(ti,1 > ti,2 ∧ tj,1 > tj,2 ∧ ti,1 > tj,1)
∧¬(ti,1 < ti,2 ∧ tj,1 < tj,2 ∧ ti,2 < tj,2)

⎞
⎟⎠

Thus, we can instead compute the Losing Vector L = (�i) as

�i =
∑
j �=i

⎛
⎜⎝

¬(ti,1 > ti,2 ∧ tj,1 < tj,2)
∧¬(ti,1 > ti,2 ∧ tj,1 > tj,2 ∧ ti,1 > tj,1)
∧¬(ti,1 < ti,2 ∧ tj,1 < tj,2 ∧ ti,2 < tj,2)

⎞
⎟⎠

and test whether �i = 0 or not. For this, each authority multiplies it by a secret
non-zero value before decryption in order to hide the non-zero values.

5.3 Summary

We reproduce below the full protocol for evaluating Majority Judgment in
the encrypted domain (See Algorithm 5). To improve readability, we note
CondGate(xi) the fact of reducing (xi) through CondGate (depth can be reduced
by using a binary tree).

To make the protocol secure against malicious adversary, we use crypto-
graphic proofs in the basic gates, as detailed in Subsects. 4.1 and 4.2 and when
randomizing �i. Since all participants will execute the same protocol in parallel,
they can reproduce all the other steps and ensure the consistency of the com-
putation. The verifications of these proofs need not be done synchronously, but
they must be finished before the final result is decrypted (which actually reveals
information).

Remark 1. After candidate CW is elected, it is possible to reveal the next candi-
date by removing the line W of A and repeating the algorithm. This allows for
multi-seat elections, but does reveal the order of the elected candidates.
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Input: encrypted Aggregate Matrix (Cai,j )
Output: index of elected candidate
/* Candidate matrix ci,j =

∑
k<j ai,k < 1

2
× ∑

k ai,k */

Cci,j ← GTGate(
∏

k Cai,k , (
∏

1≤k≤j Cai,k)2)

/* Grade vector gj = ∧ici,j */

Cgj ← CondGate(Cci,j )
/* Tiebreak matrix left column ti,1 =

∑
j gj × ai,j */

Cti,1 ← ∏
j CondGate(Cai,j , Cgj )

/* Tiebreak matrix right column ti,2 =
∑

j(1 − gj−1) × ai,j */

Cti,2 ← ∏
j CondGate(Cai,j , (C1 ÷ Cgj−1))

/* Each assignment maps to an inner parenthesis of li */

Cp1
i,j

← CondGate(GTGate(Cti,1 , Cti,2),GTGate(Ctj,2 , Ctj,1))

Cp2
i,j

← CondGate(GTGate(Cti,1 , Cti,2),GTGate(Ctj,1 , Ctj,2),GTGate(Cti,1 , Ctj,1))

Cp3
i,j

← CondGate(GTGate(Cti,2 , Cti,1),GTGate(Ctj,2 , Ctj,1),GTGate(Ctj,2 , Cti,2))

/* Losing Vector �i =
∑

j �=i ¬p1
i,j ∧ ¬p2

i,j ∧ ¬p3
i,j */

C�i ← ∏
j �=i CondGate(C1 ÷ Cp1

i,j
, C1 ÷ Cp2

i,j
, C1 ÷ Cp3

i,j
)

foreach authority do

o
$← Zn

C�i ← Co
�i

end
�i ← DecryptGate(C�i)
return unique i such that �i = 0

Algorithm 5: Full Protocol

5.4 Optimizations

Batching. As noted previously when discussing the theoretical aspects of zero-
knowledge proofs, it is possible to batch certain operations to reduce the total
number of modular exponentiations that are performed in the protocol. To take
full advantage of this, we have designed our software implementation to batch
operations as much as possible. To be more specific, each gate was implemented
in a “batch” version, where it receives a list of inputs to process; instead of
processing these inputs sequentially, it can group them as much as possible when
calling other “batch” gates. At the lowest level are the proofs of valid decryption
and the proofs of private multiplication which actually take advantage of this
batching.

Pipelining. The multi-party computation gates presented above target the-
oretical metrics such as a low number of exchanged messages or a low circuit
depth. However, during implementation, more practical considerations must also
be taken into account.

For instance, during the main loop of the conditional gate, only one authority
is active at any given time, since they must wait for the previous authorities to
provide them with the inputs. Since this operation is one of the most frequent
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210 − 1
220 − 1

Fig. 4. Time to tally the ballots for 3 authorities and 5 possible grades, all run on a
single computer with two physical CPU cores (i5-4300U)

ones during the execution of the protocol (almost as frequent as decryption), a
straightforward implementation would imply that most of the runtime would be
spent waiting for input.

However, we can virtually erase idle CPU time by exploiting pipelining:
as shown previously, executions the conditional gate can be batched together.
Although it is not possible to batch the multiplication proofs used during this
operation, we can exploit this. For this, we remark that the order in which the
values circulate among the authorities is of no importance. It only matters that
each authority has the opportunity to negate each value. Thus, for α authorities,
we can split the batch in α sub-batches, give one sub-batch to each authority,
and then have the authorities consider each sub-batch in turn. This approach
reduces most of the idle time due to the sequential nature of this operation.

5.5 Benchmarks

We implemented this protocol in Python using the gmpy2 library (GMP’s powmod
is faster than CPython’s pow). In contrast to a real-life implementation, we have
all communications go through a central point of coordination (but confidential-
ity and integrity do not rely on it), and we use a simpler secret sharing. Run
times are shown in Fig. 4. They should be improved when using several CPU
cores for each node, but we are below 20 min for electing one candidate among
5 by more than 1 million of voters! Our implementation can as of now be truly
used in a real-world election.

These do not include the encryption (on each voter’s computer), verification
of the ballots, nor their aggregation into (Cai,j

) (assumed to be done on-the-fly).
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