
Scalable Wildcarded Identity-Based
Encryption

Jihye Kim1, Seunghwa Lee1, Jiwon Lee2, and Hyunok Oh2(B)

1 Kookmin University, Seoul, Korea
{jihyek,ttyhgo}@kookmin.ac.kr

2 Hanyang University, Seoul, Korea
{jiwonlee,hoh}@hanyang.ac.kr

Abstract. Wildcarded identity-based encryption allows a sender to
simultaneously encrypt messages to a group of users matching a cer-
tain pattern, defined as a sequence of identifiers and wildcards. We pro-
pose a new wildcarded identity-based encryption scheme with generalized
key delegation, which reduces the ciphertext size to be constant. To the
best of our knowledge, our proposal is the first wildcarded identity-based
encryption scheme that generates a constant size ciphertext regardless
of the depth of the identities. The proposed scheme also improves the
decryption time by minimizing the wildcard conversion cost. According
to our experiment results, decryption of the proposed scheme is 3, 10, and
650 times faster than existing WIBE, WW-IBE, and CCP-ABE schemes.
The proposal also subsumes the generalized key derivation naturally by
allowing wildcards in the key delegation process. We prove CPA security
of the proposed scheme and extend it to be CCA secure.

Keywords: Wildcard identity based encryption
Constant ciphertext · Key delegation · Pattern

1 Introduction

The advanced information technology has increased the popularity and diversity
of embedded systems (or IoT devices) in a variety of applications such as smart
city, transport, smart grid, production control, medical, military, and so on. In
these distributed settings, messages often need to be securely delivered to a
specific group of devices or users for communication and management. Some
examples are as follows:

– The official commands or monitoring messages from a commander or sen-
sors deployed to jointly monitor malicious activity for city security must be
securely communicated to a specific group or user determined by its region,
role, class, function, etc.

– Secure firmware updates in many systems including vehicles are crucial to
improve performance and provide fixes for defective software that can lead to

c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11099, pp. 269–287, 2018.
https://doi.org/10.1007/978-3-319-98989-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98989-1_14&domain=pdf

270 J. Kim et al.

costly product recalls. The firmware, the intellectual property of a company,
must be distributed securely to a distinct group specified by the brand, model,
year, device type, version, etc.

– In the military, tactical communications such as real-time video and target-
ing data need to be securely transmitted according to the access structure
determined by the receiver’s class, mission, location, etc.

1.1 Related Work

Identity-based encryption (IBE) is one of most powerful building blocks to pro-
vide data confidentiality, which encrypts a message without retrieving and ver-
ifying the public key separated from the identity. The IBE scheme proposed
by Shamir [12] uses an actual user identity (e.g., alice@cs.univ.edu) as a public
key for encryption. The first practical IBE scheme construction was presented
by using bilinear maps [7,13]. It has advanced to a hierarchical identity-based
encryption (HIBE) scheme in [6] where an identity is defined by multiple identity
strings in a hierarchy such that keys for each identity string can be generated
in a hierarchically distributed way: users at level l can derive keys for their chil-
dren at level l + 1. The advantage of HIBE is to reduce the burden of a trusted
key distribution center by distributing key derivation and solving a bottleneck
problem.

Motivated by the fact that many email addresses correspond to groups of
users rather than single individuals, Abdalla et al. [2] extended HIBE to wild-
carded identity-based encryption (WIBE) by combining a concept called wild-
card (∗), which can be replaced by any identity string in a sequence of identity
strings. A pattern (or an identity) defined as a sequence of multiple identity
strings and wildcards efficiently determines a group of identities as well as a
single identity. Abdalla et al. proposed three different WIBE constructions by
extending the previous HIBE schemes; however, all constructions suffer from
comparatively larger ciphertext size which is at least O(L) where L denotes the
maximum depth of a pattern (i.e., the maximum number of identity strings).
Later, Birkett et al. [5] presented compilation techniques that convert any L-level
CPA-secure WIBE scheme into L-level CCA-secure identity-based key encapsu-
lation mechanisms with wildcards (WIB-KEM). They constructed more efficient
CCA-secure WIBE variants by applying their compilation techniques to the
CPA-secure WIBE schemes from [2]. However, the ciphertext size is still as large
as that for the underlying WIBE schemes, i.e., at least O(L) size ciphertext.
In [1], Abdalla et al. upgraded the WIBE notion to the WW-IBE notion by
combining the generalized key delegation notion in [3] to provide the full secu-
rity with pattern anonymity. They utilize bilinear groups of composite order to
support the full security when the maximum hierarchy depth is a polynomial in
the security parameter. Although key delegation is useful to minimize the key
management overhead in the distributed setting, the non-scalable ciphertext size
in [1] has not been improved and remained an obstacle so far.

There are attribute-based encryption schemes (ABE) that allow more expres-
sive policies than WIBE. Ciphertext-policy attribute-based encryption (CP-

https://www.alice.org/

Scalable Wildcarded Identity-Based Encryption 271

ABE) in [4] associates to each ciphertext an access structure consisting of a
logical combination of attribute values using AND and OR gates. A decryption
key is given for a set of attributes and can only decrypt a ciphertext whose access
structure is satisfied by the set of its attributes. WIBE schemes are a special case
of CP-ABE schemes by mapping the identity vector (*, Tesla, *, Model S) to
the access structure (2||Tesla ∧ 4||Model S) where an identity is concatenated
with its position index. The ciphertext size in [4] grows linearly with the number
of attributes in the access structure. The authors in [10] proposed a CP-ABE
scheme with constant ciphertext size, but, without supporting wildcards in its
access policy. Later, the ABE scheme proposed in [14] supports wildcards with a
restricted setting of only binary identities. When it is converted into the string-
based identity version, the number of attributes grows exponentially to cover all
possible identities in a binary notation, which results in an exponential number
of public parameters. Otherwise, each attribute should be denoted in a binary
format, which increases the the maximum depth of a pattern by the binary string
length times.

In general, the ciphertext size is an important issue because the ciphertext
is the actual payload that is transmitted via network in real applications. How-
ever, the existing schemes [1,2] produce a non-constant size ciphertext linearly
increasing by the maximum depth of a pattern. It is mainly because the cipher-
text should include additional information for each wildcard such that wildcards
in a pattern can be transformed for every matching key element in WIBE/WW-
IBE scheme. With the approach that the ciphertext contains all information
required to conversion, it is not clear how to construct a wildcarded identity
based encryption scheme with constant size ciphertext.

In this paper, we devise a method to convert the key pattern into matching
ciphertext patterns, contrary to the approach by Abdalla et al. [1,2]. In our
method, each user stores a conversion key for each non-wildcard identity in order
to replace the identity by a wildcard. A pattern with l specific identity strings
leads to a secret key with l conversion keys. The number of the conversion keys in
a secret key is bounded by the maximum depth L. The benefit of this approach
is that the extra conversion keys do not have to be delivered in the ciphertext
any more because the keys deal with conversion into matching patterns. The
details of the construction are described in Sect. 3.

Contributions. In this paper, we propose a new wildcarded identity based
encryption scheme with constant size ciphertext and with polynomial overhead
in every parameter. Our main contributions are summarized as follows:

– We propose a novel scalable wildcarded identity based encryption scheme
called SWIBE. To the best of our knowledge, the proposed scheme is the
first WIBE (or WW-IBE) scheme that generates a constant size ciphertext
regardless of the depth, i.e., the maximum number of attributes; the cipher-
text consists of just four group elements, which is comparable even to the
HIBE scheme [6] that contains three group elements for its ciphertext.

– The SWIBE scheme also improves decryption performance of WIBE (or WW-
IBE). Much of the decryption overhead in the existing wildcarded schemes is

272 J. Kim et al.

in the conversion operation of wildcards in a ciphertext into identity strings
of a user’s secret key. While the WIBE and WW-IBE schemes [1,2] convert a
ciphertext to another ciphertext for a specific matching identity strings, our
scheme replaces any identity string by a wildcard; this method reduces point
multiplications (i.e., exponentiations) required in the previous WIBE/WW-
IBE and speeds up the decryption.

– The SWIBE scheme allows wildcards in the key delegation process as well as
in the encryption procedure, naturally subsuming the generalized key deriva-
tion of wicked-IBE [3] and distributing the key management overhead. The
SWIBE schemes with and without generalized key delegation correspond to
WW-IBE [1] and WIBE [2], respectively.

– We formally prove the selective CPA-security of the proposed scheme under
the L-BDHE assumption. We also extend it to be a CCA secure scheme.

Table 1. Comparison of HIBE, WIBE, wicked-IBE, WW-IBE, CCP-ABE, and pro-
posed SWIBE schemes. cf. e = time of scalar multiplication, p = time of pairing, and
L = hierarchy depth, IDi is represented using a q-bit string, size indicates the number
of group elements, Enc = Encryption, and Der = Key derivation.

HIBE [6] WIBE [2] wicked-IBE [3] WW-IBE [1] CCP-ABE [14] SWIBE

pp size L + 4 L + 4 L + 2 2L + 2 2L2q + 1 L + 4

SK size L + 2 L + 2 L + 2 L + 1 3L2q + 1 2L + 3

CT size 3 L + 3 3 3L + 2 2 4

Enc time (L + 3)e + p (L + 3)e + p (L + 1)e + p (3L + 2)e 2L2qe + p (L + 3)e + p

Dec time 2p Le + 2p Le + 2p Le + (2L + 1)p 2L2qe + 4L2qp Le + 3p

Wildcard use None Enc Der Enc & Der Enc Enc & Der

Table 1 compares the HIBE scheme [6] (that does not support wildcards as
identities), the WIBE scheme [2], HIBE with the generalized key delegation
(wicked-IBE) [3], WIBE scheme with generalized key delegation (WW-IBE) [1],
constant-size ciphtertext policy attribute-based encryption (CCP-ABE) [14], and
the proposed SWIBE scheme subsuming wildcards as identities as well as the
generalized key delegation. The table shows the public parameter size (pp size),
the user secret key size (SK size), the ciphertext size, the encryption time (Enc
time), and the decryption time (Dec time) according to the maximum depth of
the pattern (L) where e and p denote the numbers of scalar multiplications and
pairings, respectively. It is assumed that each ID is represented using a q-bit
string maximally. For the wildcard use, the table specifies whether wildcards are
used in an encryption (Enc) algorithm or in an key derivation (Der) algorithm.
Note that the SWIBE scheme has O(L) size of the secret key, while it produces
a constant-size ciphertext with allowing wildcards in a ciphertext pattern. Note
that if each bit in ID representation is regarded as an attribute in CCP-ABE
then pp size, SK size, the encryption, and the decryption time are 2Lq + 1,
3Lq + 1, 2Lqe + p, and 2Lqe + 4Lqp, respectively. In WW-IBE and CCP-ABE,

Scalable Wildcarded Identity-Based Encryption 273

the decryption time is a major hurdle to be used in practical applications since
the decryption requires pairing operations of which number is proportional to
the maximum depth level L. Especially, in CCP-ABE, the number of pairing
operations is dependent on the length of a bit string in each ID, in addition. In
experiment, the decryption times in WW-IBE and CCP-IBE are 10 times and
650 times larger than the proposed approach.

This paper is organized as follows: Sect. 2 introduces the definitions and cryp-
tographic assumptions. In Sect. 3, we explain the main idea of the proposed
scheme and how to construct it in details. Section 4 formally proves the security
of the proposed scheme and Sect. 5 extends it to be CCA secure. In Sect. 6, we
show the experimental results and in Sect. 7, we conclude.

2 Definitions and Background

Wildcarded identity based encryption with generalized key delegation (WW-
IBE) extends hierarchical identity based encryption (HIBE). In this section,
we recall IBE, HIBE, WW-IBE, and the security definition of WW-IBE. The
decryption of WIBE is omitted because WW-IBE subsumes the WIBE defini-
tion. We also describe mathematical background necessary to understand our
proposal.

Identity-Based Encryption: An identity-based encryption (IBE) scheme is a
tuple of algorithm IBE = (Setup,KeyDer,Enc,Dec). A public/master key pair
(pp, msk) is generated from Setup by the trusted authority. A user decryption

key with identity ID is computed as dID
$← KeyDer(msk, ID). To encrypt a

message m for a user with identity ID, a ciphertext C
$← Enc(pp, ID,m) is

computed, which can be decrypted by the user with ID as m ← Dec(dID, C).
We refer to [8] for details on the security definitions for IBE schemes.

Hierarchical IBE: In a hierarchical IBE (HIBE) scheme, users are organized in
a tree of depth L, with the root being the master trusted authority. The identity
of a user at level 0 ≤ l ≤ L in the tree is given by a vector ID = (P1, . . . , Pl) ∈
({0, 1}q)l. A HIBE scheme is a tuple of algorithms HIBE = (Setup, KeyDer,
Enc, Dec) providing the same functionality as in an IBE scheme, except that a
user ID = (P1, . . . , Pl) at level l can use its own secret key skID to generate

a secret key for any of its children ID′ = (P1, . . . , Pl, . . . , PL) via skID′
$←

KeyDer(skID, ID′). The secret key of the root identity at level 0 is skε = msk.
Encryption and decryption are the same as for IBE, but with vectors of bit
strings as identities instead of ordinary bit strings. We use the notation P|l−1 to
denote vector (P1, . . . , Pl−1). We refer to [6] for details on the security definitions
for HIBE schemes.

Wildcarded Identity Based Encryption with Generalized Key Delega-
tion: WW-IBE as a wildcarded identity based scheme allows general key del-
egation and encryption to a group that is denoted by multiple identity strings

274 J. Kim et al.

and wildcards. To make the further description simple and clear, we define the
following notations similarly to [2].

Definition 1. A pattern P is a vector (P1, . . . , PL) ∈ (Z∗
p ∪{∗})L , where ∗ is a

special wildcard symbol, p is a q-bit prime number, and L is the maximal depth
of the identity strings.1

Definition 2. A pattern P ′ = (P ′
1, . . . , P

′
L) belongs to P , denoted P ′ ∈∗ P , if

and only if ∀i ∈ {1, . . . , L}, (P ′
i = Pi) ∨ (Pi = ∗).

Definition 3. A pattern P ′ = (P ′
1, . . . , P

′
L) matches P , denoted P ′ ≈ P , if and

only if ∀i ∈ {1, . . . , L}, (P ′
i = Pi) ∨ (Pi = ∗) ∨ (P ′

i = ∗).

Notice that a set of matching patterns of P is a super set of belonging patterns
of P . For a pattern P = (P1, . . . , PL), we define W (P) is the set containing all
wildcard indices in P , i.e. the indices 1 ≤ i ≤ L such that Pi = ∗, and W (P)
is the set containing all non-wildcard indices. Clearly, W (P) ∩ W (P) = ∅ and
W (P) ∪ W (P) = {1, . . . , L}.

Definition 4. W (P) is the set containing all wildcard indices in a pattern P .

Definition 5. W (P) is the set containing all non-wildcard indices in a pattern
P .

Wildcarded identity-based encryption with generalized key delegation WW-
IBE consists of four algorithms:

Setup(L) takes as input the maximal hierarchy depth L. It outputs a public
parameter pp and master secret key msk.

KeyDer(skP , Pnew) takes as input a user secret key skP for a pattern P =
(P1, . . . , PL) and can derive a secret key for any pattern Pnew ∈∗ P . The
secret key of the root identity is msk = sk(∗,...,∗).

Encrypt(pp, P,m) takes as input pattern P = (P1, . . . , PL), message m ∈ {0, 1}∗

and public parameter pp. It outputs ciphertext CP for pattern P .
Decrypt(skP , CP ′) takes as input user secret key skP for pattern P and cipher-

text C for pattern P ′. Any user in possession of the secret key such that
P ′ ≈ P decrypts the ciphertext using skP , outputting message m. Otherwise,
it outputs ⊥.

Correctness requires that for all key pairs (pp, msk) output by Setup, all
messages m ∈ {0, 1}∗, and all patterns P, P ′ ∈ (Z∗

p ∪ {∗})L such that P ≈ P ′,
Decrypt(KeyDer(msk, P),Encrypt(pp, P ′,m)) = m.

Security: We define the security notion of WW-IBE similarly to [1,2]. An adver-
sary is allowed to choose an arbitrary pattern and query its secret key, except
the query to the key derivation oracle for any pattern matching with a challenge
pattern. The security is defined by an adversary A and a challenger C via the
following game. Both C and A are given the hierarchy depth L and the identity
bit-length q as input.
1 We denote pattern P as in (Z∗

p ∪ {∗})L instead of ({0, 1}q ∪ {∗})L, since {0, 1}q can
be easily mapped to Z

∗
p with a hash function.

Scalable Wildcarded Identity-Based Encryption 275

Setup:Challenger C runs Setup(L) to obtain public parameter pp and master
secret key msk. C gives A public parameter pp.

Query phase 1:
– A issues key derivation queries qK1 , . . . , qKm

in which a key derivation
query consists of a pattern P ′ ∈ (Z∗

p ∪ {∗})L, and challenger C responds

with skP ′
$← KeyDer(msk, P ′).

– A issues decryption queries qD1 , . . . , qDn
in which a decryption query

consists of pattern P for skP , ciphertext C, and pattern P ′ for C, next
challenger C responds with Decrypt(skP , CP ′).

Challenge:A outputs two equal-length challenge messages m∗
0,m

∗
1 ∈ {0, 1}∗ and

a challenge identity P ∗ = (P ∗
1 , . . . , P ∗

L∗) s.t. P ∗ �≈ P ′ for all queried P ′. C
runs algorithm C∗ $← Encrypt(pp, P ∗,m∗

b) for random bit b and gives C∗ to
A.

Query phase 2:
– A continues to issue key derivation queries qKm+1 , . . . , qqK

as in Query
phase 1, except for pattern P ′ �≈ P ∗.

– A continues to issue decryption queries qDn+1 , . . . , qqD
as in Query phase

1, except for C∗.
Guess:A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

We also define the IND-ID-CPA game similarly with the IND-ID-CCA game,
without allowing any decryption query.

Definition 6. A WW-IBE is (t, qK , qD, ε, L) IND-ID-CCA (or IND-ID-CPA)
secure if all t-time adversaries making at most qK queries to the key derivation
oracle and at most qD queries to the decryption oracle have at most advantage
ε in the IND-ID-CCA game (or the IND-ID-CPA game) described above.

Selective Security. A selective-identity (sID) security notion IND-sID-CCA (or
IND-sID-CPA) is defined analogously to the IND-ID-CCA (IND-ID-CPA) one:
every procedure is the same except that the adversary has to commit to the
challenge identity at the beginning of the game, before the public parameter is
made available.

Definition 7. A WW-IBE is (t, qK , 0, ε, L) IND-sID-CCA (IND-sID-CPA)
secure if all t-time adversaries making at most qK queries to the key deriva-
tion oracle have at most advantage ε in the IND-sID-CCA (or IND-sID-CPA)
game.

Bilinear Groups and Pairings: We review the necessary facts about bilinear
maps and bilinear map groups, following the standard notation [8,11].

1. G and G1 are two (multiplicative) cyclic groups of prime order p.
2. g is a generator of G.
3. e : G × G → G1 is a bilinear map.

276 J. Kim et al.

Let G and G1 be two groups as above. A bilinear map is a map e : G×G → G1

with the following properties:

1. Bilinear: for all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab

2. Non-degenerate: e(g, g) �= 1.

We say that G is a bilinear group if the group action in G can be computed
efficiently and there exist a group G1 and an efficiently computable bilinear map
e : G × G → G1 as above.

BDHE Assumption [6]: Let G be a bilinear group of prime order p. Given a
vector of 2L + 1 elements (h, g, gα, g(α

2), . . . , g(α
L), g(α

L+2), . . . , g(α
2L) ∈ G

2L+1)
as input, output e(g, h)αL+1 ∈ G1. As shorthand, once g and α are specified,
we use yi to denote yi = gαi ∈ G. An algorithm A has advantage ε in solving
L-BDHE in G if

Pr[A(h, g, y1, . . . , yL, yL+2, . . . , y2L) = e(yL+1, h)] ≥ ε

where the probability is over the random choice of generators g, h in G, the
random choice of α in Zp, and the random bits used by A.

The decisional version of the L-BDHE problem in G is defined analogously.
Let yg,α,L = (y1, . . . , yL, yL+2, . . . , y2L). An algorithm B that outputs b ∈ {0, 1}
has advantage ε in solving decisional L-BDHE in G if

|Pr[B(g, h,yg,α,L,e(yL+1, h)) = 0]− Pr[B(g, h,yg,α,L, T) = 0]| ≥ ε

where the probability is over the random choice of generators g, h in G, the
random choice of α in Zp, the random choice of T ∈ G1, and the random bits
consumed by B.

Definition 8. We say that the (decisional) (t, ε, L)-BDHE assumption holds in
G if no t-time algorithm has advantage at least ε in solving the (decisional)
L-BDHE problem in G.

Occasionally we omit the t and ε, and refer to the (decisional) L-BDHE in G.

3 The Proposed Scheme

In this section, we describe a scalable WW-IBE scheme called SWIBE. Since
our SWIBE is based on the BBG-HIBE scheme proposed by Boneh et al. [6], we
briefly overview the BBG-HIBE protocol and explain our idea to allow wildcards
as identities in encryption. And then we illustrate our SWIBE protocol.

3.1 Overview

BBG-HIBE [6]: In the BBG-HIBE scheme, the secret key is composed of
two types of keys for its purposes: decryption and key delegation. Given
pp = (g, g1, g2, g3, h1, h2, . . . , hL) and msk = gα

2 , a secret key for pattern

Scalable Wildcarded Identity-Based Encryption 277

P = {P1, · · · , Pl} consists of elements (a1 = gα
2 (g3 · hP1

1 · · · hPl

l)r, a2 = gr, b =
{bi = hr

i }i∈[l+1,··· ,L]). The ciphertext encrypted for P = {P1, · · · , Pl} is com-
posed of CP = (gs, (g3 · ∏

i∈[1,··· ,l] h
Pi
i)s,M · e(g1, g2)s). To decrypt a given

ciphertext CP = (C1, C2, C3) with private key skP = (a1, a2, bl+1, · · · , bL), we
compute C3 · e(a2,C2)

e(C1,a1)
= M . Notice that the first two elements a1 and a2 are

used for decryption, while the remaining elements {bi = hr
i }i∈[l+1,··· ,L] are used

for key delegation. For the easy delivery of description, we first describe our
idea focusing on the decryption key without delegation, assuming the maximum
depth is l.

Adding Gadgets for Wildcard Conversion: Multiple identity strings in a
pattern P = (P1, · · · , Pl) are merged into a single element in the decryption key:
a1 = gα

2 (g3·hP1
1 · · · hPl

l)r. We observe that given extra gadget values, each identity
string of a pattern in a1 can be replaced by another identity by multiplication.
For instance, given h

(P ′
1−P1)r

1 , it is possible to change a1 = gα
2 (g3 · hP1

1 · · · hPl

l)r

into a′
1 = gα

2 (g3 · h
P ′

1
1 · · · hPl

l)r.

Step 1: Assume that a wildcard ∗ is mapped to some element w ∈ Z
∗
p. In order

to allow a pattern to include a wildcard, we consider a way to include gadgets
di = (hw

i /hPi
i)r for every identity string Pi in a secret key. Then each identity

part (hPi
i)r can be substituted by (hw

i)r. The method, however, is not secure
yet. From this extra secret key di and the values w and Pi, it is possible to
compute hr

i = di
1/(w−Pi); this leads to extract the top level secret key: gα

2 gr
3 =

a1/(hr
1)

P1 · · · (hr
l)

Pl . To avoid this attack, the gadgets need to be randomized.

Step 2: We randomize the gadget using an independent random value t ∈ Zp.
Thus, the extra gadget value is revised as di = hwt

i /hPir
i and gt is additionally

appended so that they can be canceled out correctly in decryption. For example,
the key gα

2 (g3 ·hP1
1 hP2

2 hP3
3)r for (P1, P2, P3) is changed to gα

2 (g3 ·hP2
2)r ·(hw

1 hw
3)t for

(∗, P2, ∗) by multiplying d1d3. The encryption needs to be slightly changed to be
compatible with this modification. To encrypt a message to (∗, P2, ∗), the pattern
must be divided into non-wildcard and wildcard identity groups so that they can
be treated as follows: the encryption for the non-wildcard identities (·, P2, ·) is
the same as the BBG-HIBE which generates three elements: (gs, (g3 · hP2

2)s,M ·
e(g1, g2)s). The encryption for the wildcard identities (∗, ·, ∗) is computed as
(hw

1 hw
3)s, which is used to cancel out the gadget part of user’s secret key in

decryption. As a result, the ciphertext size increases by a single group element
to support wildcards in the proposed scheme. The key size increases linearly to
the number of identity strings, which is still polynomial to the maximum depth
of a pattern.

Generalized Key Delegation: Finally, the key delegation can be subsumed
independently to the wildcard support in encryption and our scheme follows the
key delegation method of BBG-HIBE. Only difference is that our key delegation
is more flexible because it does not have to follow the hierarchical order as in
BBG-HIBE.

278 J. Kim et al.

The complete scheme is described in the following Sect. 3.2 with w = 1 and
we prove the security of the proposed scheme in Sect. 4.

3.2 Construction

We propose a new WW-IBE scheme called SWIBE with constant size ciphertexts
and O(L) size keys.

Setup(L): L indicates the maximum hierarchy depth. The generation of a random
initial set of keys proceeds as follows. Select a random integer α ∈ Z

∗
p, and O(L)

random group elements g, g2, g3, h1, h2, . . . , hL ∈ G, and compute g1 = gα. The
public parameter is given by pp ← (g, g1, g2, g3, h1, h2, . . . , hL). A master secret
key is defined as msk = gα

2 .

KeyDer(pp, skP , P ′): To compute the secret key skP ′ for a pattern P ′ =

(P ′
1, . . . , P

′
L) ∈ (Z∗

p∪{∗})L from the master secret key, first two randoms r, t
$← Z

∗
p

are chosen, then secret key skP ′ = (a′
1, a

′
2, a

′
3, b

′, c′, d′) for P ′ is constructed as

a′
1 = msk(g3 ·

∏

i∈W (P ′)

h
P ′

i
i)r, a′

2 = gr, a′
3 = gt, b′ = {b′

i = hr
i }i∈W (P ′),

c′ = {c′
i = ht

i}i∈W (P ′), d
′ = {d′

i = ht
i/h

P ′
i r

i }i∈W (P ′)

In order to generate secret key skP ′ for a pattern P ′ from secret key skP =
(a1, a2, a3, b, c) for a pattern P such that P ′ ∈∗ P , simply choose two randoms

r′, t′ $← Z
∗
q and output skP ′ = (a′

1, a
′
2, a

′
3, b

′, c′, d′), where

a′
1 = a1 · (

∏

i∈W (P ′)∩W (P)

b
P ′

i
i) · (g3

∏

i∈W (P ′)

h
P ′

i
i)r′

, a′
2 = a2 · gr′

, a′
3 = a3 · gt′

,

b′ = {b′
i = bi · hr′

i }i∈W (P ′), c
′ = {c′

i = ci · ht′
i }i∈W (P ′)

d′ = {d′
i = di · ht′

i

h
P ′

i r′
i

}i∈W (P ′)∩W (P) ∪ {d′
i =

ci

b
P ′

i
i

· ht′
i

h
P ′

i r′
i

}i∈W (P ′)∩W (P)

Encrypt(pp, P , m): To encrypt a message m ∈ G1 to pattern P = (P1, . . . , PL)

under pp, choose s
$← Z

∗
p, and compute CP = (C1, C2, C3, C4)

C1 = gs, C2 = (g3 ·
∏

i∈W (P)

hPi
i)s, C3 = m · e(g1, g2)s,C4 = (

∏

i∈W (P)

hi)s

Decrypt(skP , CP ′): Set C = (C1, C2, C3, C4) and skP = (a1, a2, a3, b, c, d).
If P ′ ≈ P then compute a′

1 = a1 · ∏
i∈W (P ′)∩W (P) b

P ′
i

i · ∏
i∈W (P ′)∩W (P) ci ·

∏
i∈W (P ′)∩W (P) di and output

C3 · e(a2, C2) · e(a3, C4)
e(C1, a′

1)
= m.

Scalable Wildcarded Identity-Based Encryption 279

Otherwise, output ⊥.
The fact that decryption works can be seen as follows. We denote WP ′P =

W (P ′)∩W (P), WP
′
P = W (P ′)∩W (P), WP ′P = W (P ′)∩W (P), and WP

′
P =

W (P ′) ∩ W (P) to simplify notations.
Since a1 = gα

2 (g3
∏

i∈W (P) hPi
i)r, bi = hr

i , ci = ht
i, and di = ht

i

h
Pir

i

,

a′
1 =a1 ·

∏

i∈W
P ′P

b
P ′

i
i ·

∏

i∈WP ′P

ci ·
∏

i∈WP ′P

di

=gα
2 (g3 ·

∏

i∈W (P)

hPi
i)r ·

∏

i∈W
P ′P

h
P ′

i r
i ·

∏

i∈WP ′P

ht
i ·

∏

i∈WP ′P

ht
i

hPir
i

=gα
2 (g3 ·

∏

i∈W (P)

hPi
i ·

∏

i∈W
P ′P

h
P ′

i
i ·

∏

i∈WP ′P

h−Pi
i)r ·

∏

i∈WP ′P

ht
i ·

∏

i∈WP ′P

ht
i

=gα
2 (g3 ·

∏

i∈W
P ′P

hPi
i ·

∏

i∈W
P ′P

h
P ′

i
i)r ·

∏

i∈W (P ′)

ht
i

=gα
2 (g3 ·

∏

i∈W
P ′P

h
P ′

i
i ·

∏

i∈W
P ′P

h
P ′

i
i)r ·

∏

i∈W (P ′)

ht
i (∵ P ′ ≈ P)

=gα
2 (g3 ·

∏

i∈W (P ′)

h
P ′

i
i)r ·

∏

i∈W (P ′)

ht
i.

e(a2, C2) · e(a3, C4)
e(C1, a′

1)
=

e(gr, (g3 · ∏
i∈W (P ′) h

P ′
i

i)s) · e(gt, (
∏

i∈W (P ′) hi)s)

e(gs, gα
2 (g3 · ∏

i∈W (P ′) h
P ′

i
i)r · ∏

i∈W (P ′) ht
i)

=
1

e(g, g2)sα
=

1
e(g1, g2)s

.

4 Security Proof

We show an IND-sID-CPA-security of the SWIBE scheme in the standard model
and then transform the scheme to achieve IND-ID-CPA-security in the random
oracle model.

4.1 Selective Security

Theorem 1. Let G be a bilinear group of prime order p. Suppose the decisional
(t, ε, L)-BDHE assumption holds in G. Then our SWIBE is (t′, qK , 0, ε, L) IND-
sID-CPA secure for arbitrary L, and t′ < t − O(Le + p), where e is a time of
scalar multiplication and p is a time of pairing in G.

Proof is available in Appendix.

280 J. Kim et al.

4.2 Full Security

Theorem 1 demonstrates that the SWIBE scheme is IND-sID-CPA secure. There-
fore, the SWIBE scheme is secure when the attacker in advance commits to the
pattern to attempt to attack.

Any HIBE or WIBE scheme that is IND-sID-CPA secure can be transformed
into a HIBE or WIBE scheme that is IND-ID-CPA secure in the random oracle
model, as described in [2,6] for the case of HIBE schemes and the case of WIBE
schemes, respectively, with losing a factor O(qH

L) in reduction tightness. The
transformation is as follows:

Let H : {0, 1}∗ → {0, 1}d be a hash function and let SWIBEH be a SWIBE
scheme where a pattern P = (P1, · · · , PL) is replaced by P ′ = (P ′

1, · · · , P ′
L) with

P ′
i = H(Pi) if Pi �= ∗ and P ′

i = ∗ if Pi = ∗ before it is used in key gener-
ation, encryption and decryption algorithms. Then, if H is collision resistant,
SWIBEH becomes fully secure, but the reduction introduces a loss factor of
O(qH

dL). In the random oracle model, SWIBEH is fully secure with a reduction
loss factor of O(qH

L). Thus, this transformation only works when the hierarchy
depth is small enough.

Theorem 2. [2] Suppose the SWIBE scheme is (t, qK , 0, ε, L) IND-sID-CPA
secure for arbitrary L with a pattern space |P |. The SWIBEH scheme described
above is (t′, q′

K , q′
H , 0, ε′, L) IND-ID-CPA secure in the random oracle model for

all
t′ ≤ t, q′

K ≤ qK and ε′ ≥ (L + 1)(q′
H + 1)L · ε + q′2

H/|P |.

5 Extension to CCA Security

We extend the semantically secure scheme to obtain chosen ciphertext security
using the similar technique in [9]. Given a strong one-time signature scheme
(SigKeyGen, Sign, V erify), we enable construction of an L-level IND-sID-
CCA secure scheme Π = (Setup, KeyDer, Encrypt, Decrypt) from the (L+1)-level
IND-sID-CPA scheme Π ′ = (Setup′, KeyDer′ Encrypt′, Decrypt′). The intuition
is that P = (P1, · · · , PL) ∈ {Z∗

p ∪ {∗}}L in Π is mapped to P ′ = (P1, · · · ,

PL, ∗) ∈ {Z∗
p ∪ {∗}}L+1 in Π ′ and the (L + 1)-th identity string is deter-

mined by the verification key of one-time signature scheme. When encrypt-
ing a message m with P = (P1, · · · , PL) in Π, the sender generates a one-
time signature key (Ksig, Vsig) such that Vsig ∈ Z

∗
p and then encrypts m with

P ′ = (P1, · · · , PL, Vsig) using Encrypt′ in Π ′. We describe how to construct L-
level Π with (L + 1)-level Π ′ and a one-time signature scheme in the following:

Setup(L) runs Setup′(L + 1) to obtain (pp′,msk′). Given pp′ ← (g, g1, g2, g3, h1,
· · · , hL+1) and msk′, the public parameter is pp ← pp′ and the master secret
key is msk ← msk′.

KeyDer(pp, skP , P ′) is the same as the KeyDer′ algorithm.

Encrypt(pp, P,m) runs SigKeyGen(1λ) algorithm to obtain a signature signing
key Ksig and a verification key Vsig. For a given pattern P = (P1, · · · , PL),

Scalable Wildcarded Identity-Based Encryption 281

encode P to P ′ = (P1, · · · , PL, Vsig), compute C
$← Encrypt′(pp′, P ′,m) and

σ
$← Sign(Ksig, C), and output CT = (C, σ, Vsig)

Decrypt(skP , CP ′): Let CP ′ = (C, σ, Vsig).

1. Verify that σ is the valid signature of C under the key Vsig. If invalid, output
⊥.

2. If P ≈ P ′ then run Decrypt′ (skP , CP ′) to extract the message. Otherwise,
output ⊥.

Theorem 3. Let G be a bilinear group of prime order p. The above SWIBE Π
is (t, qK , qD, ε1 + ε2, L) IND-sID-CCA secure assuming the SWIBE Π ′ is (t′,
q′
K , 0, ε1, L + 1) IND-sID-CPA secure in G and signature scheme is (ts, ε2)
strongly existentially unforgeable with qK < q′

K , t < t′ − (Le+3p)qD − ts, where
e is exponential time, p is pairing time, and ts is sum of SigKeyGen, Sign and
V erify computation time.

Proof is available in Appendix.

6 Experiment

In this section, we measure the execution times of encryption and decryption of
the proposed SWIBE, WIBE [2], wicked-IBE [3], WW-IBE [1], and CCP-ABE
[14]. We have implemented the algorithms based on the PBC (pairing based
cryptography) library with a param and executed them on Intel Edison with a
32-bit Intel Atom processor 500 MHz and ublinux 3.10.17.

Figure 1a illustrates encryption and decryption times of SWIBE, WIBE, and
CCP-ABE by varying the maximal hierarchy depth (L) from 5 to 20. Note that
in WIBE and CCP-ABE, only a ciphertext can include wildcards, while the
proposed SWIBE allows wildcards in both key and ciphertext. While WIBE
performs point multiplications to convert a ciphertext to another ciphertext for
a specific matching ID, SWIBE computes point additions to replace any ID by a
wildcard. In CCP-ABE, each bit in an ID is regarded as an attribute where each
pattern (ID) is 32 bit. Since the decryption requires pairing operations of which
number is proportional to the number of attributes in CCP-ABE, the decryption
is very slow. On the other hand, since point additions is negligible compared with
a pairing operation, decryption time of SWIBE remains as constant. SWIBE
improves decryption performance by up to 3 times and 650 times compared
with WIBE and CCP-ABE.

Figure 1b compares encryption and decryption performance between SWIBE
and wicked-IBE. In this case, a private key may include wildcards but no wild-
card is allowed in a ciphertext in wicked-IBE. Since a point multiplication is
required to decrypt a ciphertext in both SWIBE and wicked-IBE, both schemes
show similar encryption and decryption performance even though SWIBE allows
wildcards in a ciphertext which is prohibited in wicked-IBE.

282 J. Kim et al.

Figure 1c compares encryption and decryption performance between SWIBE
and WW-IBE. Both SWIBE and WW-IBE allow wildcards in a key and a cipher-
text. While a point multiplication is required to decrypt a ciphertext in SWIBE,
2L number of pairing operations are required in WW-IBE. SWIBE improves
decryption performance by 10 times compared with WW-IBE.

5 10 15 20
10−1

100

101

102

The maximal depth (L) of a pattern

T
im

e
(s
)

SWIBE-enc
WIBE-enc

CCP-ABE-enc
SWIBE-dec
WIBE-dec

CCP-ABE-dec

(a)

5 10 15 20

0.2

0.4

0.6

0.8

1

The maximal depth (L) of a pattern

T
im

e
(s
)

SWIBE-enc
wicked-IBE-enc
SWIBE-dec

wicked-IBE-dec

(b)

5 10 15 20

0

2

4

6

The maximal depth (L) of a pattern

SWIBE-enc
WW-IBE-enc
SWIBE-dec
WW-IBE-dec

(c)

Fig. 1. Encryption and decryption time in (a) SWIBE, WIBE, and CCP-ABE, (b) in
SWIBE and wicked-IBE, and (c) in SWIBE and WW-IBE

7 Conclusion

In this paper, we propose a new wildcard identity-based encryption called
SWIBE, define appropriate security notions for SWIBE, and provide an efficient
provably secure SWIBE construction with constant size ciphertext. Our SWIBE
scheme allows wildcards for both key derivation and encryption, and it is the first
success on constructing a constant-size ciphertext in a wildcarded identity-based

Scalable Wildcarded Identity-Based Encryption 283

encryption (WIBE) with fast decryption. We prove that our scheme is seman-
tically secure based on L-BDHE assumption. In addition, we extend it to be
CCA secure. Experimental results show that the proposed SWIBE improves the
decryption performance by 3, 10, and 650 times compared with WIBE, WW-
IBE, and CCP-ABE, respectively. It is our future work to construct a fully
secure efficient scheme with a decent reduction loss factor in the standard model
by considering a different setting such as a composite order group.

Acknowledgement. This work was supported by Institute for Information and com-
munications Technology Promotion (IITP) grant funded by the Korea government
(MSIT) (No. 2016-6-00599, A Study on Functional Signature and Its Applications and
No. 2017-0-00661, Prevention of video image privacy infringement and authentication
technique), by Basic Science Research Program through the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Education (No. 2017R1A2B4009903
and No. 2016R1D1A1B03934545), and by Basic Research Laboratory Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of Science,
ICT and Future Planning (MSIP) (No. 2017R1A4A1015498).

A Appendix

Theorem 1. Let G be a bilinear group of prime order p. Suppose the decisional
(t, ε, L)-BDHE assumption holds in G. Then our SWIBE is (t′, qK , 0, ε, L) IND-
sID-CPA secure for arbitrary L, and t′ < t − O(Le + p), where e is a time of
scalar multiplication and p is a time of pairing in G.

Proof. Suppose A has advantage ε in attacking the SWIBE scheme. Using A,
we build an algorithm B that solves the (decisional) L-BDHE problem in G.

For a generator g ∈ G and α ∈ Z
∗
p, let yi = gαi ∈ G. Algorithm B is given as

input a random tuple (g, h, y1, . . . , yL, yL+2, . . . , y2L, T) that is either sampled
from PBDHE (where T = e(g, h)(α

L+1)) or from RBDHE (where T is uniform
and independent in G1). Algorithm B’s goal is to output 1 when the input tuple
is sampled from PBDHE and 0 otherwise. Algorithm B works by interacting with
A in a selective subset game as follows:

Init: The game begins with A first outputting an identity vector P ∗ =
(P ∗

1 , . . . , P ∗
L) ∈∗ (Z∗

p ∪ {∗})L.

Setup: To generate a public parameter, algorithm B picks a random γ in Zp

and sets g1 = y1 = gα and g2 = yLgγ = gγ+(αL). Next, B picks ran-
dom γi ∈ Z

∗
p for i = 1, . . . , L, and sets hi = gγi/yL−i+1 for i ∈ W (P ∗) and

hi = gγi for i ∈ W (P ∗). Algorithm B also picks a random δ in Z
∗
p and sets

g3 = gδ
∏

i∈W (P ∗) y
P ∗

i

L−i+1.

Key derivation queries: Suppose adversary B makes a key derivation query for
pattern P = (P1, . . . , PL) ∈∗ (Z∗

p ∪ {∗})L. By the definition of the security
experiment, we know that P ∗ �≈ P . That means that there exists an index
k ∈ W (P ∗) ∩ W (P) such that Pk �= P ∗

k . We define k to be the smallest one

284 J. Kim et al.

among all possible indices. B picks two random r̃, t̃ ∈ Z∗
p and (implicitly) sets

r ← − αk

P ∗
k −Pk

+ r̃ and t ← r · P ∗
k + t̃. Secret key skP = (a1, a2, a3, b, c, d) for P is

constructed as

a1 = gα
2 · (g3

∏

i∈W (P)h
Pi
i

)r; a2 = gr; a3 = gt,

b = {bi = hr
i }i∈W (P), c = {ci = ht

i}i∈W (P), d = (di = ht
i/h

P ∗
i r

i)i∈W (P)

We have

(g3
∏

i∈W (P)

hPi
i)r = (gδ

∏

i∈W (P ∗)

y
P ∗

i

L−i+1

∏

i∈W (P)

gγiPiy−Pi

L−i+1)
r

=(gδ+
∑

i∈W (P) Piγi ·
∏

i∈{1,...,k−1,k+1,...,L}
y

P ∗
i −Pi

L−i+1 · y
P ∗

k −Pk

L−k+1)
r

where let P ∗
j = 0 for j ∈ W (P ∗) and Pj = 0 for j ∈ W (P).

We split this term up into two factors A · Z, where A = (yP ∗
k −Pk

L−k+1)
r. It can

be checked that Z can be computed by A, i.e. the terms yi only appear with
indices i ∈ {1, . . . , L}. Term A can be expressed as

A = g
αL−k+1(P ∗

k −Pk)(− αk

P ∗
k

−Pk
+r̃)

= y−1
L+1 · y

(P ∗
k −Pk)r̃

L−k+1

Hence,

a1 =gα
2 · A · Z = yL+1y

γ
1 · y−1

L+1y
(P ∗

k −Pk)r̃
L−k+1 · Z = yγ

1 · y
(P ∗

k −Pk)r̃
L−k+1 · Z

can be computed by A. Furthermore,

gr = g
− αk

P ∗
k

−Pk
+r̃

= y
− 1

P ∗
k

−Pk

k · gr̃

and for each i ∈ W (P),

hr
i = (gγi/yL−i+1)

− αk

P ∗
k

−Pk
+r̃

= y
− γi

P ∗
k

−Pk

k y
1

P ∗
k

−Pk

L+k−i+1 · gγir̃ · y−r̃
L−i+1

ht
i = (hi)r·P ∗

k +t̃ = h
P ∗

k r
i · ht̃

i = y
− γiP ∗

k
P ∗

k
−Pk

k y

P ∗
k

P ∗
k

−Pk

L+k−i+1 · gγi(r̃P ∗
k +t̃) · y

−(r̃P ∗
k +t̃)

L−i+1

can be computed since k �∈ W (P).
And for each i ∈ W (P),

ht
i/h

P ∗
i r

i = h
rP ∗

k +t̃
i /h

P ∗
i r

i = h
(P ∗

k −P ∗
i)r+t̃

i = (gγi/yL−i+1)
(P ∗

k −P ∗
i)(− αk

P ∗
k

−Pk
+r̃)+t̃

= (y
− γi

P ∗
k

−Pk

k y
1

P ∗
k

−Pk

L+k−i+1 · gγir̃ · y−r̃
L−i+1)

(P ∗
k −P ∗

i) · (gγi/yL−i+1)t̃.

If i = k, P ∗
k − P ∗

i = 0. So A can compute it. Otherwise also A can compute
it since i �= k and yL+1 does not appear in the equation.

Scalable Wildcarded Identity-Based Encryption 285

Challenge: To generate a challenge, B computes C1, C2, and C4 as h,
hδ+

∑
i∈W (P ∗)(γiP

∗
i), and h

∑
i∈W (P ∗) γi , respectively. It then randomly chooses a

bit b ∈ {0, 1} and sets C3 = mb · T · e(y1, h)γ . It gives C = (C1, C2, C3, C4) as
a challenge to A. We claim that when T = e(g, h)(α

L+1)(i.e. the input to B is
an L-BDHE tuple) then (C1, C2, C3, C4) is a valid challenge to A as in a real
attack. To see this, write h = gc for some (unknown) c ∈ Z

∗
p. Then

hδ+
∑

i∈W (P ∗)(γiP
∗
i) = (gδ+

∑
i∈W (P ∗)(γiP

∗
i))c

=(gδ ·
∏

i∈W (P ∗)

y
P ∗

i

L−i+1

∏

i∈W (P ∗)

(
gγi

yL−i+1
)P ∗

i)c = (g3
∏

i∈W (P ∗)

h
P ∗

i
i)c,

h
∑

i∈W (P ∗) γi = (g
∑

i∈W (P ∗) γi)c = (
∏

i∈W (P ∗)

gγi)c

and

e(g, h)(α
L+1) · e(y1, h)γ = e(y1, yL)c · e(y1, g)γ·c = e(y1, yLgγ)c = e(g1, g2)c.

Therefore, by definition, e(yL+1, g)c = e(g, h)(α
L+1) = T and hence C =

(C1, C2, C3, C4) is a valid challenge to A. On the other hand, when T is random
in G1 (i.e. the input to B is a random tuple) then C3 is just a random independent
element in G1 to A.

Guess: Finally, A outputs a guess b′ ∈ {0, 1}. Algorithm B concludes its own
game by outputting a guess as follows. If b = b′ then B outputs 1 meaning
T = e(g, h)(α

L+1). Otherwise, it outputs 0 meaning T is random in G1.
When the input tuple is sampled from PBDHE (where T = e(g, h)(α

L+1)) then
A’s view is identical to its view in a real attack game and therefore A satisfies
|Pr[b = b′]−1/2| ≥ ε. When the input tuple is sampled from RBDHE (where T is
uniform in G1) then Pr[b = b′] = 1/2. Therefore, with g, h uniform in G, α uni-
form in Zp, and T uniform in G1 we have that |Pr[B(g, h,yg,α,L, e(g, h)(α

L+1)) =
0] − Pr[B(g, h,yg,α,L, T) = 0]| ≥ |(1/2 + ε) − 1/2| = ε as required, which com-
pletes the proof of the theorem.

Theorem 3. Let G be a bilinear group of prime order p. The above SWIBE Π
is (t, qK , qD, ε1 + ε2, L) IND-sID-CCA secure assuming the SWIBE Π ′ is (t′,
q′
K , 0, ε1, L + 1) IND-sID-CPA secure in G and signature scheme is (ts, ε2)
strongly existentially unforgeable with qK < q′

K , t < t′ − (Le+3p)qD − ts, where
e is exponential time, p is pairing time, and ts is sum of SigKeyGen, Sign and
V erify computation time.

Proof. Suppose there exists a t-time adversary A breaking IND-sID-CCA secu-
rity. We build an algorithm B breaking IND-sID-CPA. Algorithm B proceeds as
follows:

A announces P ∗ = (P ∗
1 , · · · , P ∗

L). B runs SigKeyGen(1λ) algorithm to obtain
a signature signing key K∗

sig and a verification key V ∗
sig, and announces P ∗ =

(P ∗
1 , · · · , P ∗

L, V ∗
sig).

286 J. Kim et al.

Setup: B gets the public parameter pp from the challenger and forwards it to A.

Key derivation queries: For a query on P �≈ P ∗ from A, B responds with
KeyDer(pp, msk, P).

Decryption queries: Algorithm A issues decryption queries on (skP , CP ′). Let
CP ′ = ((C1, C2, C3, C4), σ, Vsig). If P �≈ P ∗ then output ⊥. If P ′ =
(P ∗

1 , · · · , P ∗
L, V ∗

sig) then B aborts. (A forge event occurs.) Otherwise, B queries
KeyDer(pp,msk, P), gets skP , and decrypts CP ′ using skP .

Challenge: A gives the challenge (m0,m1) to B. B gives the challenge (m0,m1) to
C and gets the challenge (Cb) from C. To generate challenge for A, B computes
C∗ as follows:

σ∗ $← Sign(Cb,K
∗
sig), C∗ $← (Cb, σ

∗, V ∗
sig)

B replies with C∗ to A.

Query phase2: Same as in query phase 1 except decryption query for C* is not
allowed.

Guess: The A outputs a guess b ∈ {0, 1}. B outputs b.

In the above experiment, A causes an abort by submitting a query that
includes an existential forgery under K∗

sig on some ciphertexts. Our simulator is
able to use this forgery to win the existential forgery game. Note that during the
game the adversary makes only one chosen message query to generate the sig-
nature needed for the challenge ciphertext. Thus, Pr[forge] < ε2. It now follows
that B’s advantage is at least ε1 as required.

References

1. Abdalla, M., Caro, A.D., Phan, D.H.: Generalized key delegation for wildcarded
identity-based and inner-product encryption. IEEE Trans. Inf. Forensics Secur.
7(6), 1695–1706 (2012). https://doi.org/10.1109/TIFS.2012.2213594

2. Abdalla, M., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G., Smart, N.P.:
Identity-based encryption gone wild. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 300–311. Springer, Heidelberg
(2006). https://doi.org/10.1007/11787006 26

3. Abdalla, M., Kiltz, E., Neven, G.: Generalized key delegation for hierarchical
identity-based encryption. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS,
vol. 4734, pp. 139–154. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74835-9 10

4. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion, pp. 321–334. IEEE Computer Society (2007)

5. Birkett, J., Dent, A.W., Neven, G., Schuldt, J.C.N.: Efficient chosen-ciphertext
secure identity-based encryption with wildcards. In: Pieprzyk, J., Ghodosi, H.,
Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 274–292. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73458-1 21

https://doi.org/10.1109/TIFS.2012.2213594
https://doi.org/10.1007/11787006_26
https://doi.org/10.1007/978-3-540-74835-9_10
https://doi.org/10.1007/978-3-540-74835-9_10
https://doi.org/10.1007/978-3-540-73458-1_21

Scalable Wildcarded Identity-Based Encryption 287

6. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 26

7. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

8. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. SIAM J.
Comput. 32(3), 586–615 (2003)

9. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 13

10. Emura, K., Miyaji, A., Nomura, A., Omote, K., Soshi, M.: A ciphertext-policy
attribute-based encryption scheme with constant ciphertext length. In: Bao, F., Li,
H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 13–23. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00843-6 2

11. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 19

12. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

13. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 7

14. Zhou, Z., Huang, D.: On efficient ciphertext-policy attribute based encryption and
broadcast encryption: extended abstract. In: Proceedings of the 17th ACM Con-
ference on Computer and Communications Security, CCS, pp. 753–755 (2010)

https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-642-00843-6_2
https://doi.org/10.1007/978-3-540-28628-8_19
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/11426639_7

	Scalable Wildcarded Identity-Based Encryption
	1 Introduction
	1.1 Related Work

	2 Definitions and Background
	3 The Proposed Scheme
	3.1 Overview
	3.2 Construction

	4 Security Proof
	4.1 Selective Security
	4.2 Full Security

	5 Extension to CCA Security
	6 Experiment
	7 Conclusion
	A Appendix
	References

