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Abstract. While big data becomes a main impetus to the next genera-
tion of IT industry, big data privacy, as an unevadable topic in big data
era, has received considerable attention in recent years. To deal with
the privacy challenges, differential privacy has been widely discussed as
one of the most popular privacy-enhancing techniques. However, with
today’s differential privacy techniques, it is impossible to generate a san-
itized dataset that can suit different algorithms or applications regard-
less of the privacy budget. In other words, in order to adapt to various
applications and privacy budgets, different kinds of noises have to be
added, which inevitably incur enormous costs for both communication
and storage. To address the above challenges, in this paper, we propose
a novel scheme for outsourcing differential privacy in cloud computing,
where an additive homomorphic encryption (e.g., Paillier encryption)
is employed to compute noise for differential privacy by cloud servers to
boost efficiency. The proposed scheme allows data providers to outsource
their dataset sanitization procedure to cloud service providers with a low
communication cost. In addition, the data providers can go offline after
uploading their datasets and noise parameters, which is one of the criti-
cal requirements for a practical system. We present a detailed theoretical
analysis of our proposed scheme, including proofs of differential privacy
and security. Moreover, we also report an experimental evaluation on real
UCI datasets, which confirms the effectiveness of the proposed scheme.

1 Introduction

There is a general consensus that we are currently in the era of big data, with
tremendous amounts of information being collected by various organizations
c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11099, pp. 187–206, 2018.
https://doi.org/10.1007/978-3-319-98989-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98989-1_10&domain=pdf


188 J. Li et al.

and entities. Often, these data providers may wish to contribute their data to
studies involving tasks such as statistical analysis, classification, and prediction.
Because cloud service providers (CSPs) offer data providers (owners) great flex-
ibility with respect to computation and storage capabilities, CSPs are presently
the most popular avenue, through which data providers can share their data.
However, the risk of leaking individuals’ private information with the straight-
forward uploading of data providers’ data (which may contain sensitive informa-
tion such as medical or financial records, addresses and telephone numbers, or
preferences of various kinds that the individuals may not want exposed) to CSPs
is unacceptable. Usually, data providers protect their data’s privacy by using of
encryption, but the resulting encrypted data are known to be of poor utility. As
an alternative, differential privacy (DP) has been considered as a useful tech-
nique not only for protecting the privacy of data but also for boosting the utility
of data. As shown in Fig. 1, there are generally two main frameworks that can
be used for achieving DP, i.e., the framework with interaction for release, and
the framework with no interaction for publication. In this paper, we will focus
on the latter, i.e., differentially private publication.

With current techniques, there does not exist an efficient method that allows
data to be sanitized only once while still preserving the data’s utility for all
possible algorithms and applications. When data providers’ data need to be
shared for uses involving different algorithms, applications, or privacy budgets,
different kinds of noise have to be added for privacy protection. Moreover, all
of these different noisy datasets must be shared or published. Consequently,
the communication overhead will be enormous if the number of different algo-
rithms/applications/privacy budgets is large. Another challenging issue is that
when data providers publish their data, public entities must exist somewhere
that can store all of the different kinds of datasets with different types of noise,
which also inevitably requires considerable storage space.

To overcome these challenges, we propose the notion of outsourcing differen-
tially private data publication in this paper. With the advent of cloud computing,
we know an increasing number of storage and computing tasks are moving from
local resources to CSPs. In our scheme, the sanitized dataset generation pro-
cedure is outsourced to a CSP by the data providers. To protect the privacy
of the data, we can use the effective method, i.e., cryptographic techniques, to
encrypt the data before outsourcing. However, data sanitization requires the
ability to easily modify the data to be sanitized, while encrypted data generally
cannot provide such an ability. Using fully homomorphic encryption technique
to support ciphertext manipulation is however inefficient and requires enormous
amounts of storage space and communication bandwidth. Unlike other schemes,
our differentially private data publication requires only addition operations, and
such operations can be realized by using the additive homomorphic encryption,
which would be much more efficient than the fully homomorphic encryption.
Although this approach enables us to add noise to encrypted data, encryption
still leads to poor utility or heavy consume of storage/computation in many
respects. Therefore, in our scheme, it allows the data evaluator to decrypt the
encrypted noisy data, thereby improving the utility of the data as well as the
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storage cost. In this way, the data providers are not required to be online when
their data are requested, which is one of the critical requirements for a practical
application system.

Data providerData evaluator

Sanitized dataset

. Sending a Query, Q

. Response the Result, O

Differential 
Privacy 

Algorithm. Adding Noise on 
Result, O’

Framework with Interaction (Release)
Framework with No Interaction (Publication)

Fig. 1. Frameworks for achieving differential privacy

1.1 Related Work

Differential privacy has been accepted as the main privacy paradigm in recent
years, because it is based on purely mathematical calculations and provides a
means of quantitative assessment. A large body of work on DP has accumulated
due to its support for privacy preserving learning. There are some works which
used the cryptographic methods to solve the privacy preserving for data utiliza-
tion [32,33] before the first work of DP by Dwork in 2006 [9], and the Laplace
mechanism for adding noise to achieve ε-DP was proposed in the seminal paper.
Subsequently, McSherry designed the exponent mechanism [25] and identified
the sequential and parallel properties of DP [24].

Generally, DP can be achieved via two main frameworks. In the first frame-
work, the data evaluator’s queries are responsed under a predetermined privacy
budget ε; as shown in Fig. 1 with red box. In the framework, we can apply the
Laplace [11], Privlet [35], Linear Query [21], and Batch Query [38] techniques,
among others, to obtain different responses to these queries that satisfy ε-DP.
However, this framework demands interaction between the data provider and the
data evaluator. For this reason, in this paper, we will focus on the second frame-
work, as depicted in Fig. 1 with the blue dashed box. The second framework not
only allows a data provider to immediately publish his data after processing but
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also does not require any interaction. The main focus of research related to this
framework is on how to design efficient and effective noise-adding algorithms to
ensure DP while boosting data utility.

Typical publication methods include histogram publication [15,17,36,37],
partition publication [5,7,26,28], contingency table publication [1,20], and san-
itized dataset publication [8,10,12,14]. A histogram is an intuitive representa-
tion of the distribution of a set of data and can be used as a basis for other
statistical queries or linear queries. However, histogram publication suffers from
problems of redundant noise and inconsistency, meaning that different types of
noise should be added for different uses. Partition publication can reduce the
amount of noise that must be added. The foundation of partition publication is
the careful design of an index structure to support the partitioning of the data.
Using this index, the data provider can assign a privacy budget to each parti-
tion for noise addition before publication. However, determining how to assign
a privacy budget is not a trivial task, and the partition index itself may leak
some sensitive information; this potential risk is the core problem that remains
to be solved for this method of publication. Often, data can be represented in the
form of a contingency table. In fact, instead of publishing the contingency table
itself for analysis, data are often published based on the statistical values of the
combinations of certain variables, as represented by marginal tables. Directly
adding noise to a contingency table introduces too much noise, whereas perturb-
ing the marginal table may cause inconsistency. Qardaji proposed a noise-adding
method in which the contingency table is divided into small pieces, called views
[29]. This method can reduce the amount of noise introduced, but the questions
of how to choose the parameters to be used for division and how to preserve the
consistency between the views and the marginal tables remain challenging. The
purpose of sanitized dataset publication is to ensure the protection of data pri-
vacy after the processing of the original dataset. The question on how to directly
publish a sanitized dataset that satisfies DP while allowing the data evaluator
to make any necessary inquiries is quite challenging. This method of dataset
publication demands considerable calculation and thus is inefficient and difficult
to realize. Kasiviswanathan and Blum proved that sanitized dataset publication
is possible [3,19]; however, it requires an enormous number of records.

Although the DP model provides frameworks for data evaluators to analyze
databases belonging to a single party, the initial frameworks did not consider a
multi-party setting. Multi-party DP was first proposed by Manas in 2010 [27],
based on the aggregation of multi-party datasets to train a classifier. Subse-
quently, many works involving multi-party DP publication have been reported,
including multi-task learning [13], multi-party deep learning [30], classifier train-
ing on private and public datasets [18] and high-dimensional data publication
[31]. These works, however, have not considered outsourced computing to relieve
the computational burden on data providers.

Outsourced computing is a technique for securely outsourcing expensive com-
putations to untrusted servers, which allows resource-constrained data providers
to outsource their computational workloads to cloud servers with unlimited com-
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putational resources. Chaum first proposed the notion of wallets, secure hard-
ware installed on a client’s computer to perform expensive computations, in 1992
[4]. To protect data providers’ privacy, Chevallier presented the first algorithm for
the secure delegation of elliptic-curve pairings [6]. In addition, solutions for per-
forming meaningful computations over encrypted data using fully homomorphic
encryption have emerged, although they are known to be of poor practicality [2].
Meanwhile, cloud computing using attribute-based encryption appeared, which
not only supports ciphertext operation, but also provides fine-grained access con-
trol. Some of works that concentrate on privacy preserving in cloud computing
have been proposed recently [16,22,23]. Nevertheless, in this paper, we choose
additive homomorphic encryption as our basic technique to perform outsourcing
computing, which offers a perfect balance of efficiency and security.

1.2 Contributions

In this paper, we propose a novel outsourced DP scheme for cloud computing.
Our contributions can be summarized as follows.

– We design an efficient outsourced DP approach using additive homomorphic
encryption instead of fully homomorphic encryption. In such a way, data can
be efficiently outsourced to a CSP for secure storage and DP supporting noise
addition.

– In our scheme, the data provider is not required to be involved in subsequent
noise computations and related processing.

– The security of the data against the CSP can be guaranteed under our pro-
posed security model.

1.3 Organization

The rest of this paper is organized as follows. Some preliminary considerations
are discussed in Sect. 2. In Sect. 3, the architecture of our scheme and our threat
model are introduced. Then, we present the new scheme in Sect. 4. The imple-
mentation details and the evaluation of the experimental results are presented
in Sect. 5. Finally, we conclude our work in Sect. 6. Also, the security analysis
and some related concepts using in this paper are put in the appendix.

2 Preliminaries

2.1 Differential Privacy

DP was introduced by Dwork et al. as a technique for individual privacy protec-
tion in data publication. It provides a strong privacy guarantee, ensuring that
the presence or absence of an individual will not significantly affect the final
output of any function (Table 1).
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Table 1. Symbol cross reference table

ε Privacy budget f Algorithm for machine learning

m Plaintext c Ciphertext

P Data provider ‖m‖ Ciphertext of m

η Noise Δf Global sensitivity

b Parameters for distribution skP /pkP Secret/public key of P

Sth Vector of sth

Definition 1. (Differential privacy)
A randomized function A with a well-defined probability density P satisfies ε-DP
if, for any two neighboring datasets D1 and D2 that differ by only one record
and for any O ∈ range(M),

P(A(D1) = O) ≤ eε · P(A(D2) = O) (1)

DP can usually be achieved via one of two standard mechanisms: the Laplace
mechanism and the exponential mechanism. Both of them are based on the
concept of the sensitivity of a function f . For ease of description, we consider
only numeric values in this paper.

Definition 2. (Global sensitivity)
Let f be a function that maps a database to a fixed-size vector of real numbers.
For all neighboring databases Dl and D2, the global sensitivity of f is defined as

Δ(f) = max
D1,D2

‖f(D1) − f(D2)‖1 (2)

where ‖ · ‖1 denotes the L1 norm.

To publish data that satisfy ε-DP when a query function f is applied, the prin-
cipal approach is to perturb the data by adding random noise based on Δf and
the privacy budget ε. For example, for the Laplace mechanism, let Lap(λ) denote
the Laplace probability distribution with mean zero and scale λ. The Laplace
mechanism achieves DP by adding Laplace noise to an original dataset M .

Definition 3. (Laplace mechanism)
Let m be a record in database M (m ∈ M), and let η be a random variable such
that η ∼ Lap(Δf/ε). The Laplace mechanism is defined as follows:

m′ = m + η.(Σm = M) (3)

3 Architecture

In this section, we formalize our system model, and identify the threat model
and security requirements.
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3.1 System Model

In our system model, four types of entities are involved in our basic scheme,
namely, the trusted authority (TA), the data providers, the cloud service provider
(CSP), and the data evaluator. The TA issues credentials for both data providers
and data evaluators. The data providers possess data and would like to share
those data for purposes such as classification or data analysis. The CSP provides
the cloud storage service for the data providers. The data evaluator obtains the
sanitized data from the CSP and performs the corresponding data analysis. Each
data evaluator may acquire different part of dataset for different usage. However,
the same data he got, the same noise the data has.

3.2 Threat Model and Security Requirements

In this work, both the data evaluator and the CSP are assumed to be honest-
but-curious. The data evaluator needs to protect his trained model against the
CSP. Moreover, the data evaluator will follow a specified protocol for building
a correct model without obtaining incorrect results. The relationship between
CSP and data evaluator is non-cooperative, which means they will not collude
with each other (For example, CSP could be Google Inc. and data evaluator is
Apple Inc., which is very common in our daily life). Otherwise, even they are
honest, data evaluator could give CSP his secret key to get the original dataset.
The privacy of the data providers’ data needs to be protected against both the
CSP and the data evaluator.

For the data owner, the security means that its privacy should be protected
against the other entities even if they are curious about the underlying original
data. Of course, the CSP and DP are not allowed to collude with each other in
our security model.

4 Our Proposed Outsourced Differential Privacy Schemes

In this section, we present several basic outsourced differential privacy (ODP)
schemes. During the description, we consider a public key encryption scheme
with additive homomorphic properties, i.e., (Setup,KeyGen,Enc,Dec,Add),
will be applied in our system.

1. Uploading Encrypted 
Dataset ||M||

3. Response Encrypted 
Noise Dataset || M +η ||

Data evaluator

2. Adding Noise

Data provider

CSP

Fig. 2. Single-data-provider scheme
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4.1 A Straightforward Scheme

In a straightforward scheme, the typical process of differentially private data
publication can be summarized as follows:

– Setup. The data evaluator and data provider together establish the privacy
budget ε.

– Generation. The data provider calculates Δf and then uses Δf and ε to
generate a noisy dataset.

– Uploading. The data provider uploads the noisy dataset to the CSP.
– Analysis. The data evaluator obtains the noisy dataset from the CSP and

analyzes this dataset.

Note that, for different data evaluators and/or different privacy budgets, the
above steps should be executed repeatedly, which means more power and band-
width will be consumed.

To overcome the disadvantages of the above scheme, we show how to provide
efficient noise addition with the aid of cloud servers in next sections.

4.2 Our Scheme for Single Data Provider

Initially, we assume that there is a single data provider in the system (Fig. 2).
Then, the single-data-provider scheme, as shown in Algorithm1, is composed of
the following steps:

– Setup. In this step, the TA generates the public parameters and key pairs
involved in the system. Let (pk, sk) be the key pair for the data evaluator,
where pk is the public key and sk is the secret key. Note that, the data
provider should pre-calculate the possible set of function sensitivities, denoted
by ΔF = (Δf1,Δf2, · · · ,Δfm), where fi (i = 1, · · · ,m) are the functions that
the data evaluator might use in his evaluations.

– Data uploading. The data provider first receives the data evaluator’s
public key pk from the TA, encrypts his dataset M = (m1,m2, · · · ,mn)
using the Enc(pk,M) algorithm, and uploads the resulting ciphertexts C =
(‖m1‖, ‖m2‖, · · · , ‖mn‖) to the cloud server. Then, the data provider (and
perhaps the data evaluator) determines the privacy budget ε. Furthermore,
the parameter vector b for noise generation (e.g., for the Laplace mechanism,
since the Laplace noise generation depends on ΔF

ε , b = (b1, b2, · · · , bm) =
(Δf1

ε , Δf2
ε , · · · , Δfm

ε )) is also sent to the cloud server.
– Noise addition. After receiving the data from the data provider, the cloud

server generates a noise component η (for example, in the Laplace noise
mechanism, bi = Δfi

ε is used as the parameters to define the Laplace dis-
tributions from which to randomly draw noise) and encrypts the noise using
Enc(pk, η) = ‖η‖. Then, the cloud server uses the Add(‖M‖, ‖η‖) algorithm
to add the noise to the data provider’s data (for example, in the case of Pail-
lier encryption, the server multiplies the data provider’s encrypted data by
the encrypted noise) and sends the resulting noisy data to the data evaluator.
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– Data analysis. The data evaluator first decrypts the received ciphertexts
using Dec(sk, ‖M + η‖) to obtain all of the noisy data. Based on these data,
the data evaluator can successfully perform classification or apply other algo-
rithms to the data.

Algorithm 1. Single data provider scheme for noise addition
Input: Data provider (D): clean dataset

M = (m1, m2, · · · , mn).
Data evaluator (DE): possible functions to be used
(f1, f2, · · · , fm).

Output: DE: dataset with noise
M + η.

1: D: ΔF = (Δf1, Δf2, · · · , Δfm), calculates the sensitivities of the possible
functions;

2: D: ε ← DE, communicates with DE to establish an appropriate privacy
budget;

3: D: b = ΔF/ε, calculates the parameter vector;
4: D: {‖M‖,b} → CSP , uploads the encrypted dataset and parameter vector;
5: D: i0 ← DE, obtains which functions DE will use;
6: D: i0 → CSP , uploads the number of functions to be used;
7: for each j ∈ [1, · · · , n] do
8: CSP: ηj ∼ Lap(bi0), generates noise;
9: CSP: ‖ηj‖pk = Enc(ηj , pk), encrypts the noise;

10: CSP: ‖mj + ηj‖pk = Add(‖mj‖, ‖ηj‖), calculates the noisy dataset;
11: end for
12: CSP: sends ‖M + η‖ to DE;
13: DE: M + η = Dec(‖M + η‖, sk), decrypts the ciphertexts;
14: return M + η.

4.3 A Multi-Data-Provider Scheme

Next, we present the multi-data-provider scheme (similar with Fig. 2, but more
data providers). For the ease of description, we assume that each party holds
a parallel data set, meaning that there is no overlap between any two parties’
databases. Each party Pi hold a portion of D, denoted by Di, such that

∑
Di =

D. The scheme, as shown in Algorithm 2, consists of four steps.

– Setup. This step is similar to that for a single data provider. The difference
is that there are k parties, denoted by P1, P2, · · · , Pk, and each user Pi should
pre-calculate a set of possible function sensitivities ΔFi.

– Data uploading. Each data provider Pi encrypts the dataset Mi =
(mi1,mi2, · · · ,min) using the Enc(pk,Mi) algorithm. After the encryption,
Pi uploads the ciphertexts Ci = (‖mi1‖, ‖mi2‖, · · · , ‖min‖) to the cloud
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server. Then, the users determine the privacy budget ε. The parameter vectors
bi for noise generation are also sent to the cloud server.

– Noise addition. Using all the noise parameter vectors bi (i = 1, 2, · · · , k),
the cloud server generates the noise ηi for each Pi and encrypts the noise
using Enc(pk, ηi) = ‖ηi‖. Then, the cloud server uses the Add(‖Mi‖, ‖ηi‖)
algorithm to add the noise to the data providers’ data and sends the noisy
data to the data evaluator.

– Data analysis. This step is the same as that for a single data provider.

Algorithm 2. Multiple-data-provider scheme for noise addition
Input: Data providers (D): clean dataset

M = (M1, M2, · · · , Mk).
Data evaluator (DE): possible functions to be used
(f1, f2, · · · , fm).

Output: DE: dataset with noise
M + η.

1: D: ΔF = (ΔF1, ΔF2, · · · , ΔFk);
2: D: ε ← DE;
3: D: b = ΔF/ε;
4: D: {‖M‖,b} → CSP ;
5: CSP: generate appropriate noise η under DE’s require;
6: CSP: sends ‖M + η‖ to DE;
7: DE: M + η = Dec(‖M + η‖, sk);
8: return M + η.

4.4 Discussion: How to Add Noise Wisely and Efficiently

In the above schemes, we have assumed that the noise generation is a simple task
performed by the CSP. Actually, other noise-adding schemes from other entities
are also possible. In the following, we focus on discussing additional methods of
noise generation for the single-data-provider schemes. Note that, similar methods
can also be applied in the multi-data-provider schemes.

Noise Addition by the Data Provider. Noise can be generated by the data
provider; see Fig. 3. In this method, the CSP will have no interaction with the
parameter vector b or the generated noise η. The details of the procedure are
shown in Algorithm3.
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1. Upload 
Encrypted 

Dataset ||M||

Secure channel

2. Settle Privacy Budget, ε

3. Upload 
Encrypted 
Noise ||η||

4. Response 
Encrypted Noise 

Dataset || M +η ||

CSP

Data provider Data evaluator

Fig. 3. Noise addition by the data provider

Algorithm 3. Noise addition by the data provider
Input: Data provider (D): clean dataset

M = (m1, m2, · · · , mn).
Data evaluator (DE): function to be used f .

Output: DE: dataset with noise
M + η.

1: D: Δf = max
M,M′ ‖f(M) − f(M ′)‖1

2: D: ε ← DE;
3: D: b = Δf/ε;
4: D: ‖M‖ → CSP ;
5: D: sends the new generated noise in encrypted form ‖η‖pk to the CSP;
6: CSP: ‖M + η‖pk = Add(‖M‖, ‖η‖);
7: DE: M + η = Dec(‖M + η‖, sk);
8: return M + η.

Noise Addition by a Noise Server. Noise addition by the data provider
can protect some sensitive parameters from the CSP. However, this scheme does
not allow the data provider to go offline. Therefore, we propose a scheme with
noise addition by a noise-generating server; see Fig. 4. We assume that there is
another server, called the noise-generating server, in our system, i.e., the system
now contains five types of entities: the trusted authority (TA), the data provider,
the cloud service provider (CSP), the data evaluator and the noise-generating
service provider (NSP). The main idea of this design is to separate the noise
generation from the rest of the system. The details of the procedure are shown
in Algorithm 4.
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2. Uploading 
Paremeter Vector bn

4. Sending Noise in 
Encrypted Form, ||ηn||

1. Uploading 
Encrypted Dataset 
||M|| and Parameter 

Vector bc

3. Settle Privacy Budget, ε

6. Response 
Encrypted Noise 
Dataset || M +η ||

CSP

5. Adding Noise

NSP

Secure channel
Data provider Data evaluator

Fig. 4. Noise addition by a noise server

Algorithm 4. Noise addition by a noise server
Input: Data provider (D): clean dataset

M = (m1, m2, · · · , mn).
Data evaluator (DE): possible functions to be used
(f1, f2, · · · , fm).

Output: DE: dataset with noise
M + η.

1: D: ΔF = (Δf1, Δf2, · · · , Δfm);
2: D: ε ← DE;
3: D: ε = εn + εc, divides privacy budget into two parts;
4: D: bn = ΔF/εn, bc = ΔF/εc;
5: D: bn → NSP , uploads a parameter vector to the NSP;
6: D: {‖M‖,bc} → CSP ;
7: NSP: sends encrypted noise ‖ηn‖ to the CSP;
8: CSP: ‖mj + ηj‖pk = Add(‖mj‖, ‖ηnj‖, ‖ηcj‖);
9: DE: M + η = Dec(‖M + η‖, sk);

10: return M + η.

4.5 Discussion: How to Treat High-Dimensional Data

The publication of high-dimensional data can support a wide spectrum of eval-
uation tasks. However, the problem of how to ensure the privacy of high-
dimensional data is still challenging. Generally speaking, we can handle high-
dimensional data as described below.

View-Based Dimension Reduction. High-dimensional data can be pre-
sented in the form of a contingency table [29]. For most types of data eval-
uations, a k-way marginal contingency table (generally, k ≤ 3) can be used.
However, directly adding noise to the complete contingency table (all of the
data) to achieve data sanitization will lead to excessive noise. Therefore, deter-
mining how to add noise to obtain a high-utility k-way marginal table is the key
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to high-dimensional data publication. We use the following basic procedure to
reduce the dimensionality of high-dimensional data before publication.

– Build a contingency table. In this step, the data provider builds a contin-
gency table based on his high-dimensional dataset.

– Generate views. The data provider runs an algorithm to select the best
parameters with which to generate views. (For example, suppose that we
have an l-column, d-dimensional table, where d = 8 and l = 100; then, the
data provider runs the algorithm to generate d2 + l sub-contingency tables,
which are referred to as views.) The data provider can treat these views in the
same way as his original data, following the scheme proposed above (setup,
data uploading, noise generation, noise addition). A bloom filter should also
be used to assign the attributes to the encrypted views.

– Reconstruct. The noisy k-way marginal table is reconstructed based on the
encrypted views, and the bloom filter is used to check whether the views can
be successfully used to reconstruct the k-way marginal table.

4.6 Discussion: How to Make the Scheme More Practical

In the schemes presented above, each data provider uses the data evaluator’s
public key to encrypt his own data, which means that the data provider cannot
delete his local copy of his dataset to save storage space, because using the data
evaluator’s public key for encryption causes the data provider to lose the ability
to decrypt the dataset stored by the CSP. Inspired by Wang’s method [34], we
propose our ODP scheme with proxy re-encryption technique; the details of the
procedure are shown in Algorithm5.

Algorithm 5 . Using proxy re-encryption during uploading in multi-data-
provider scheme
Input: Data providers (D): clean dataset

M = (M1, M2, · · · , Mk).
Data evaluator (DE): possible functions to be used
(f1, f2, · · · , fm).

Output: DE: dataset with noise
M + η.

1: D: ΔF = (ΔF1, ΔF2, · · · , ΔFk);
2: D: ε ← DE;
3: D: b = ΔF/ε;
4: D: {‖M‖,b} → CSP ;
5: CSP: (rkeyPi → pkpe) ←TA;
6: CSP: ‖Mi + ηi‖pkPe

= ReEnc(rkeyPi → pkpe , ‖Mi + ηi‖pkPi
);

7: DE: M + η = Dec(‖M + η‖, skPe), decrypts the ciphertexts;
8: return M + η.
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5 Evaluation

In this section, we evaluate the performance of our scheme in terms of functional-
ity, computational overhead and communication overhead. All experiments were
conducted on a PC with a 1.90 GHz AMD A4-3300M APU with Radeon(TM)
HD Graphics and 6 GB of RAM. Also, using different kinds of noise addition
method only differs nothing but in execution time during noise generation. For
simplicity, we choose Laplace mechanism in this evaluation to prove our scheme’s
feasibility.

5.1 Functionality

We used datasets acquired from the UCI machine learning repository, which
can be downloaded from UCI1, to evaluate our scheme’s functionality. To eval-
uate the classifier performance, we reserved 1

10 of each dataset to serve as a
test dataset, and we chose ε = 0.1 for applying the Laplace mechanism to our
datasets. Figure 5 shows the accuracies of training KNN and Naive Bayes classi-
fiers for Letter Recognition, EEG Eye State, CPU, and Glass. From the figure,
we can see that training a classifier on the sanitized dataset instead of the original
dataset exerts little influence on the classifier performance.

5.2 Computational Overhead

We use the Paillier scheme as our homomorphic encryption algorithm. To per-
form homomorphic addition on ciphertexts, we should treat each attribute as a
plaintext input and calculate its related ciphertext. Thus, the total number of
encryption operations is counts = records * attributes.
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Fig. 5. Functionality

1 http://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/
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Fig. 7. Communication overhead

As seen in Fig. 6, it takes approximately 30 s to perform 1000 encryp-
tion/decryption operations but only 48 ms to perform 1000 addition operations
on ciphertexts. In our scheme, data providers can pre-upload their data to the
CSP, and the encryption can be executed in the data providers’ spare time.
Because the cost of ciphertext addition is low, our scheme is acceptable and
feasible.

5.3 Communication Overhead

There are two phases that incur main communication costs, including data
uploading and data analysis.

In the data uploading phase (see Fig. 7), the size of the message sent in our
scheme is ndc+ k

1000 kb, whereas the message size in the straightforward scheme
is kndp kb, where n, d, c, k, and p denote the size of the dataset, the number of
attributes, the size of each ciphertext record, the number of types of noise to be
added and the size of each plaintext record, respectively. As more different kinds
of noise are added, the communication cost grows linearly in the straightforward
scheme. Meanwhile, in our scheme, the size of the dataset increases to 88 kb after
encryption when the original dataset size is 43 kb, indicating that encryption
leads to a ×2 increase. Once there is more than one type of noise to be added,
our scheme ensures a lower communication cost. In the data analysis phase,
the total size of the message sent by the CSP is kndc, compared with kndp
in the straightforward scheme. Generally speaking, therefore, the size of the
message sent to the data evaluator in our scheme is approximately twice as
large as that in the straightforward scheme. However, as shown in Fig. 8, the
storage cost of our scheme is cheaper for both each data provider and the CSP.
Storage cost for a data provider (see Fig. 8(a)): In our scheme, because
the original dataset is uploaded, the data provider is required to store only the
secret key for Paillier encryption (approximately 32 kb), which can be used to
regain his data. By contrast, in the straightforward scheme, because of the lack
of encryption (storage in plaintext poses privacy concerns), the data provider
cannot reduce his storage cost for the original dataset. Storage cost for the
CSP (see Fig. 8(b)): In our scheme, the CSP can store only one copy of the
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Fig. 8. Storage costs

original dataset in encrypted form and regenerate a noisy dataset every time a
data evaluator requests it. However, to preserve confidentiality, the CSP cannot
possess the unencrypted original dataset with which to generate noisy datasets
using the straightforward scheme; therefore, in this scheme, the CSP must store
every noisy dataset, which will lead to a linear increase in storage cost with the
number of types of noise to be added.

6 Conclusions

In this paper, we addressed the issues of inefficiency due to adding different
types of noise to a dataset for differentially private publication. Specifically, to
solve the challenge, we proposed an efficient and secure outsourced differential
privacy scheme suitable for all DP algorithms with noise addition operations,
including Laplace algorithm, in which the data providers incur reduced commu-
nication costs and are not required to be online when the access to their data
is requested. We also showed how to use an independant noise server to deal
with the differential privacy. The differential privacy for high-dimension data
was also discussed. Finally, the experiment showed that the efficiency of our new
scheme compared with the basic solutions. In future work, we will consider dif-
ferent kinds of noise-adding methods that can be executed over encrypted data.
In addition, we are also interested in researching special encryption algorithms
that permit smart and efficient noise addition.
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Appendix A: Cryptographic Tools

Additive Homomorphic Encryption. We say that an encryption scheme is
additive homomorphic if it conforms to the following definition.

Definition 4. (Additive homomorphic encryption)
Let m1 and m2 be two plaintexts, let A be an encryption algorithm that outputs
the corresponding ciphertexts ‖m1‖ and ‖m2‖, and let B be an operation per-
formed on the two ciphertexts. For any two ciphertexts, additive homomorphic
encryption has the following property:

B(‖m1‖, ‖m2‖) = B(A(m1),A(m2)) = ‖m1 + m2‖ (4)

In this paper, we discuss an encryption scheme that operates under a public key
encryption system and consists of the following algorithms:

– Setup(1l): A trusted authority (TA) uses a security parameter l to generate
the public parameters (pp) and the main secret key (msk).

– KeyGen(msk, pp, uid): The TA uses a user’s identity uid as input to generate
a pair of keys (pk, sk) for that user.

– Enc(pk,m): The user uses his public key pk to encrypt a plaintext record m,
generating the ciphertext ‖m‖ as output.

– Dec(sk, ‖m‖): The user uses his secret key sk to decrypt a ciphertext record
‖m‖ into the corresponding plaintext m.

– Add(‖m1‖,‖m2‖): Two ciphertexts ‖m1‖ and ‖m2‖ are inputs, and the result
‖m1 + m2‖ is output.

Due to the simplicity of the Paillier encryption scheme, we choose the Paillier
scheme as our additive homomorphic encryption algorithm.

Proxy Re-encryption. Proxy re-encryption is based on the concept that
an honest-but-curious proxy uses a re-encryption key to translate a ciphertext
encrypted with the data owner’s public key into another ciphertext that can be
decrypted using another user’s private key. The general structure of the proxy
re-encryption process can be summarized as follows:

– Setup(1l): The TA uses a security parameter l to generate the public param-
eters (pp) and the main secret key (msk).

– KeyGen(msk, pp, Ide): Using a data evaluator’s identity Ide, msk and pp as
input, the TA generates the data evaluator’s keys (pkIde , skIde).

– PrivKeyGen(pp, uid): The TA generates a pair of keys (pkuid, skuid) for a
user (a data owner) using that user’s identity uid and pp.

– ReKeyGen(skuid, pkIde): The TA outputs the re-encryption key rkeyuid →
pkIde using the data owner’s secret key skuid and the data evaluator’s public
key pkIde .

– Enc(pkuid,m): The data owner uses his public key pkuid to encrypt a plain-
text input m, generating the ciphertext ‖m‖ as output.
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– ReEnc(rkeyuid → pkIde , ‖m‖): A cloud server calculates and outputs the
re-encrypted ciphertext ‖m‖R, using as input the ciphertext ‖m‖ and the
re-encryption key rkeyuid → pkIde .

– Dec(skuid, ‖m‖): The data owner uses his secret key skuid to decrypt the
ciphertext ‖m‖ into the plaintext m.

– Dec(skIde , ‖m‖R): The data evaluator uses his secret key skIde to decrypt
the re-encrypted ciphertext ‖m‖R to obtain the plaintext m.

Appendix B: Security Analysis

Clearly, our goals are to protect the data providers’ data from any adversary
(ADV). In this section, we only present the security proof about data transmis-
sion process and noise addition process. Note that, for the data storage process
and decryption process, since they depend on the encryption algorithm applied,
we will not discuss the security for the two processes here.

According to Fig. 2, the data flows are directed from the data provider to
the CSP and from the CSP to the data evaluator. Generally speaking, an ADV
may eavesdrop on the communication flow from the data provider to the CSP.
However, even if the ADV obtains a message in this way he cannot learn anything
from this message without the data evaluator’s secret key sk. The data’s security
depends on the encryption algorithm used (e.g., Paillier). Therefore, we can
assert that the ADV cannot access private data even if the communication flow
is intercepted. Moreover, even in multi-data-provider schemes, the ADV can
collude with some data providers, the ADV cannot reveal the private data of
uncompromised data providers. Compromised data providers do not possess the
data evaluator’s secret key skDE using in common scheme nor different data
providers’ secret key skDP using in proxy encryption scheme, with which to
decrypt other providers’ messages.

We can treat the noise generated by the data provider, CSP or a noise server
as the data provider’s private data in transmission process. Thus, the ADV
also cannot reveal private data during the noise transmission. Due to the noise
addition method, even if the data provider, NSP or CSP discloses the part of
the noise that it generates, the data evaluator cannot recover the original data
because of the noise addition is performed by CSP and the order after adding
will be permutated. It is reasonable to assume that (1) in common schemes, the
CSP will not collude with the ADV. (2) in scheme with a NSP, the NSP and
CSP will not both disclose their data at the same time and the NSP and CSP
will not collude.
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