
Regularity of k-Abelian Equivalence
Classes of Fixed Cardinality

Juhani Karhumäki and Markus A. Whiteland(B)

Department of Mathematics and Statistics, University of Turku,
20014 Turku, Finland

{karhumak,mawhit}@utu.fi

Abstract. Two words u and v are said to be k-Abelian equivalent if,
for each word x of length at most k, the number of occurrences of x as a
factor of u is the same as for v. In this note we continue the analysis of
k-Abelian equivalence classes. In particular, we show that, for any fixed
integer r ≥ 1, the language of words representing equivalence classes of
cardinality r is regular.

Keywords: k-Abelian equivalence · Regular languages

1 Introduction

The k-Abelian equivalence, originally introduced in [9], is an equivalence relation
in between equality and Abelian equivalence of words. It identifies words u and
v which contain all words of length at most k equally many times as factors.
For k = 1 it coincides with the Abelian equivalence. Obviously, if two words u
and v are k-Abelian equivalent, in symbols u ∼k v, they are of equal length and,
moreover, if they are so for each k ≥ 1, then they are equal as words.

The k-Abelian equivalence defines in a natural way a complexity measure for
languages, as well as for infinite words. Such a research was initiated in [12], and
later continued, e.g., in [4]. Other topics of the k-Abelian equivalence such as
k-Abelian repetitions, k-Abelian palindromicity and k-Abelian singletons were
studied in [8,10,11,14], respectively.

A characterization of the k-Abelian equivalence in terms of rewriting was
obtained in [11]. This was based on the so-called k-switching lemma. This turned
out to be quite an interesting approach. It allowed, see [2,3], to show that the
union of singleton classes is a regular language. Similarly, the set of all lexico-
graphically least (or, equivalently, greatest) representatives constitutes a regular
set. All these proofs are constructive, that is, given k ∈ N, the above regular
sets can be algorithmically found, in principle. In practice, this is not true since
the size of the automaton grows at least exponentially in k. It follows that the
sequence of the number of singletons of length n is a rational, or in fact, an
N-rational sequence. Similarly, the sequence of numbers of minimal elements in
equivalence classes of words of length n is N-rational, in other words, the num-
ber of equivalence classes of words of length n defines an N-rational sequence.
c© Springer Nature Switzerland AG 2018
H.-J. Böckenhauer et al. (Eds.): Hromkovič Festschrift, LNCS 11011, pp. 49–62, 2018.
https://doi.org/10.1007/978-3-319-98355-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98355-4_4&domain=pdf

50 J. Karhumäki and M. A. Whiteland

This latter sequence can be viewed as the complexity function of the k-Abelian
equivalence. For a few small values of k and alphabet size m, the sequences
are computed in [2], and are included in the On-Line Encyclopedia of Integer
Sequences [17] as the sequences A289657 and A289658.

From the above it was concluded in [2] that also the union of two-element
equivalence classes constitutes a regular set. This is based on the closure prop-
erties of regular sets and the above-mentioned three regular sets: the singletons,
the set of minimal, and maximal elements in the equivalence classes. We recall
this proof in Sect. 3. Interestingly, this approach does not extend to larger equiv-
alence classes. The reasons for that are elaborated at the beginning of Sect. 3.

In [2], the main usage of the tool of the regular languages was to show that the
number of equivalence classes of length n is asymptotic to a certain polynomial.
However, by using the ideas presented in [2], we are able to prove our main
theorem. For each r ≥ 1, the union of the k-Abelian equivalence classes of
cardinality r is a regular set. This is the main context of this note.

This note is arranged as follows. In Sect. 2 we lay down the basic terminology
of combinatorics on words, automata theory, and graph theory needed in the
remainder of the text. We also recall relevant results from the literature. In
Sect. 3 we prove our main result. We also discuss an approach suggested in [2]
and show that it fails. We then conclude with straightforward implications of
the main result and further discussion in Sect. 4.

2 Preliminaries and Notation

We set some basic terminology and notions from the literature of combinatorics
on words, for more on this topic we refer the reader to [13]. A finite set Σ of
symbols is called an alphabet. The set of finite sequences, or words, over Σ is
denoted by Σ∗ and the set of non-empty words is denoted by Σ+. The empty
word is denoted by ε. We let |w| denote the length of a word (as a sequence)
w ∈ Σ∗. By convention, we set |ε| = 0. The set of words of length n over the
alphabet Σ is denoted by Σn.

We index the letters of a given word starting from 1. For a word w =
a1a2 · · · an ∈ Σ∗ and indices 1 � i � j � n, we call the word ai · · · aj , denoted
by w[i, j], a factor of w. For i > j we set w[i, j] = ε. Similarly, for i < j we let
w[i, j) denote the factor ai · · · aj−1, and we set w[i, j) = ε when i � j. We let
w[i..] (resp., w[..i]) denote the factor w[i, n] (resp., w[1, i]) for brevity. For any i,
the factor w[..i] (resp., w[i..]) is called a prefix (resp., suffix) of w. We say that
a word x ∈ Σ∗ occurs at position i in w if the word w[i..] has x as a prefix. For
u ∈ Σ+ we let |w|u denote the number of occurrences of u as a factor of w. The
set of factors of a word w is denoted by F (w), and we set Fn(w) = F (w) ∩ Σn.
We call u a complete return to x in w if u ∈ F (w) such that |u|x = 2 and x
occurs as both a prefix and a suffix of u. The set of complete first returns to x
in u is denoted by �w(x).

We also need a few basic properties of regular languages. Regular expressions
over an alphabet Σ are the finite expressions constructed recursively as follows.

https://oeis.org/A289657
https://oeis.org/A289658

Regularity of k-Abelian Equivalence Classes of Fixed Cardinality 51

The symbol ∅, and each a ∈ Σ ∪{ε} are expressions. If E and E′ are expressions
then so are E · E′, E + E′, and E∗. Each expression E defines a language,
denoted by L(E) as follows: Each a ∈ Σ ∪ {ε} defines the singleton language
L(a) = {a} and ∅ defines the empty language. For expressions E and E′, the
expressions E ·E′, E+E′ and E∗ define the languages L(E)·L(E′), L(E)∪L(E′),
and

⋃
n≥0 L(E)n, respectively.

A deterministic finite automaton (DFA) A over Σ is a tuple (Q, q0, δ, F),
where Q is a finite set of states, q0 is the initial state, δ is a partial function
δ : Q × Σ → Q called the transition function, and F ⊆ Q is the set of final
states. Given a word w = a1 · · · an, the automaton operates on w using δ starting
from q0 by the rule δ(q, au) = δ(δ(q, a), u) for all u ∈ Σ+. If δ(q0, w) ∈ F
we say that A accepts w. We let L(A) denote the language recognized by A;
L(A) = {w ∈ Σ∗ | A accepts w}.

The languages defined by regular expressions (or recognized by finite
automata) are exactly the regular languages, in fact, these two models are equiv-
alent. Another equivalent model for regular languages considered here are nonde-
terministic finite automata (NFA), in which case the transition function may be
multi-valued. We refer to [7] for this knowledge, and on more of equivalent mod-
els and closure properties of regular languages (closure under complementation,
taking a morphic pre-image, etc.). In addition to classical language-theoretic
notions, we use the theory of languages with multiplicities. This counts how
many times a word occurs in a language. This leads to the theory of N-rational
sets. Using the terminology of [5,16], a multiset over Σ∗ is called N-rational if
it is obtained from finite multisets by applying finitely many times the rational
operations product, union, and taking quasi-inverses, i.e., iteration restricted to
ε-free languages. Equivalently, an N-rational set equals the set of multiplicities
of distinct ways an NFA accepts each word. Further, a unary N-rational set is
referred to as an N-rational sequence. We refer to [5,16] for more on this topic.
For a language L ⊆ Σ∗, the generating function GL(x) of L is defined as the
formal power series GL(x) =

∑
n≥0 #(L ∩ Σn)xn. The basic result we need is

(see [5,16]):

Proposition 1. Let L be a regular language. The sequence (#(L ∩ Σn))n≥0, is
an N-rational sequence. Consequently, the generating function GL is a rational
function.

When speaking of the generating function for a language L ⊆ Σ∗, we mean the
generating function for the function �L defined by �L(n) = #(L ∩ Σn).

We now turn to the main notion of this paper, k-Abelian equivalence. We
recall some results from the literature needed in the remainder of the paper.

Definition 1. The words u, v ∈ Σ∗ are k-Abelian equivalent, u ∼k v in sym-
bols, if |u|x = |v|x for all x ∈ Σ+ with |x| � k.

The relation ∼k is clearly an equivalence relation; we let [u]k denote the k-
Abelian equivalence class represented by u.

In [11], k-Abelian equivalence is characterized in terms of rewriting, namely
by k-switching. For this we define the following. Let k � 1 and let u ∈ Σ∗.

52 J. Karhumäki and M. A. Whiteland

Fig. 1. Illustration of a k-switching. Here v = Sk,u(i, j, l, m); the white rectangles
symbolize x ∈ Σk−1 and the black rectangles symbolize y ∈ Σk−1.

Suppose that there exist x, y ∈ Σk−1, not necessarily distinct, and indices i, j, l
and m, with 1 ≤ i < j � l < m ≤ n, such that x has positions i and l in u, and
y has positions j and m in u. In other words, we have

u = u[1, i) · u[i, j) · u[j, l) · u[l,m) · u[m..],

where the words u[i..] and u[l..] both begin with x, and the words u[j..] and
u[m..] both begin with y. Furthermore, u[i, j), u[l,m) �= ε, but we allow l = j,
in which case y = x and u[j, l) = ε. We define a k-switching on u, denoted by
Su,k(i, j, l,m), as

Su,k(i, j, l,m) = u[1, i) · u[l,m) · u[j, l) · u[i, j) · u[m..]. (1)

An illustration of a k-switching can be found in Fig. 1.
Let us define a relation Rk of Σ∗ by uRkv if and only if v is obtained from u by

a k-switching. Now Rk is clearly symmetric, so that the reflexive and transitive
closure R∗

k of Rk is an equivalence relation on Σ∗. This gives quite a different
characterization of the relation ∼k in terms of rewriting, see [11] for more details:

Proposition 2. For u, v ∈ Σ∗, we have u ∼k v if and only if uR∗
kv.

In order to recall the following result, we need some notation. Let � denote a
total order on Σ and the corresponding lexicographic order on Σ∗. We define the
language operation �-Mink by �-Mink(L) = {u ∈ L | w ∈ L ∩ [u]k ⇒ u �� w}.
We shall often omit � from the prefix to avoid cluttering the text, as this does
not usually concern us. Whenever � is omitted, the reader should consider some
fixed (but arbitrary) total order �.

The characterization in Proposition 2 allows to conclude, see [2]:

Proposition 3. The language �-Mink(Σ∗) is regular for any lexicographic
order �. In other words, the language of lexicographically least representatives
with respect to � of the k-Abelian equivalence classes over Σ is regular.

Example 1. In [2], minimal DFAs are constructed for the languages Mink(Σ∗) for
small values of k and small alphabet Σ. The motivation for this is to compute
explicit formulae for the number of k-Abelian equivalence classes for a given
length. We recall the number of states in the constructed automata. In the

Regularity of k-Abelian Equivalence Classes of Fixed Cardinality 53

case of a binary alphabet, we have minimal DFAs with 10, 49, and 936 states
(including the cases for k = 2, 3, and 4, respectively). For the ternary alphabet
and k = 2, the minimal DFA has 66 states. The automata grow quite fast with
respect to k, so in practice such automata seem to be intractable to compute.

Another result, more in the spirit of classical formal language theory, is shown
in [2] (for a detailed proof, see [3]):

Proposition 4. Regular languages are closed under the language operation Rk

defined by Rk(L) = {v ∈ Σ∗ | ∃u ∈ L : uRkv}.
Note that we overload the symbol Rk; we use Rk either as a relation or as a

many-valued function, and it will always be clear from context.
We need some terminology and notation of directed graphs with loops and

multiple labeled edges. For a graph G = (V,E), we let V (G) denote the set
of vertices, and E(G) ⊆ V × V the set of edges of G. For an edge e ∈ E(G)
from x to y, we call the vertex x the tail of e, denoted by tail(e), and y the
head of e, denoted by head(e). The number of edges from x to y is denoted
by mG(x, y). A sequence W = (ei)t

i=1 of edges satisfying head(ei) = tail(ei+1)
for each i ∈ [1, t − 1] is called a walk (in G). We set tail(W) = tail(e1) and
head(W) = head(et). Further, we let |W | denote the length t of W . We call W
a path if tail(ei) �= tail(ej) when i �= j, and head(et) �= tail(ei) for all i ∈ [1, t].
In other words, a path P does not visit any vertex twice. If the walk (ei)t−1

i=1 is a
path and e0 is an edge such that tail(e0) = head(et−1) and head(e0) = tail(e1),
then we call the walk (ei)t−1

i=0 a cycle. We index the edges of a cycle starting from
0 for notational reasons. We consider also loops as cycles. Finally, W is called
an Eulerian walk if W traverses each edge of G exactly once.

The concatenation W ·W ′ of walks W and W ′ satisfying head(W) = tail(W ′)
is defined in a natural way. For an empty walk W , we define W ·W ′ = W ′ ·W =
W ′. Note here that a cycle C can be concatenated with itself arbitrarily many
times. We say that a walk W is a repetition of a cycle if we may write W = Cr

(C concatenated r times) for some r ≥ 1.
In this note we make use of de Bruijn graphs (see [1] and references therein)

defined as follows. For any k � 1 and alphabet Σ, the de Bruijn graph dBΣ(k)
of order k over Σ is defined as a directed graph for which the set of vertices
equals Σk. For each word z ∈ Σk+1 we have an edge (z[..k], z[2..])) ∈ dB(k).
In other words, we have (x, y) ∈ E(dBΣ(k)) if and only if there exists a letter
a ∈ Σ such that the word xa ∈ Σk+1 ends with y. In this case (x, y) is denoted
by (x, a), a being the label label((x, y)) of the edge. We shall often omit Σ from
the subscript, as it is usually clear from the context. For a walk W = (ei)t

i=1 in
dB(k), we set labelW = label(e1) · · · label(et).

We note that any word u = a1 · · · an, where n ≥ k and ai ∈ Σ for each
i ∈ [1, n], defines the walk Wu = (ei)n−k

i=1 in dB(k). (Here ei = (u[i, i + k), ai+k),
i ∈ [1, n−k].) Conversely, any walk Wu = ((xi, ai))t

i=1 in dB(k) defines the word
tail(W0) · label(W) = x1 · a1a2 · · · at ∈ Σk+t. Thus a (long enough) word u ∈ Σ∗

should be considered as a walk in dB(k) and vice versa.

54 J. Karhumäki and M. A. Whiteland

The authors of [12] observed a connection between k-Abelian equivalence and
Eulerian paths in multigraph versions of de Bruijn graphs and we overview it
here. Let f ∈ NΣk

be an arbitrary vector. We define Gf = (V,E) as follows.
We set V as the set of words x ∈ Σk−1 such that x is a prefix or a suffix of a
word z ∈ Σk for which f [z] > 0. For each z ∈ Σk with f [z] > 0, we have the
edge (z[..k − 1], z[2..]) with multiplicity f [z]. Now Gf is a subgraph of dB(k − 1)
equipped with weights on edges. Note that, if f [z] = |w|z for all z ∈ Σ∗ for some
w ∈ Σ∗ (this being the case we set f = fw), the graph Gf is the Rauzy graph of
w of order k − 1 (see [15]) equipped with weights on edges.

In the following, for u, v ∈ Σk−1, we let Σ(u, v) = uΣ∗ ∩ Σ∗v and
Σ(u, v, n) = Σ(u, v) ∩ Σn.

Lemma 1 (Karhumäki et al. [12, Lemma 2.12]). For a vector f ∈ NΣk

and
words u, v ∈ Σk−1, the following are equivalent:

1. There exists a word w ∈ Σ(u, v) such that f = fw;
2. Gf has an Eulerian path starting from u and ending at v;
3. The underlying graph of Gf is connected, and d−(s) = d+(s) for every vertex

s, except that if u �= v, then d−(u) = d+(u) − 1 and d−(v) = d+(v) + 1.

The following corollary is immediate, as noted in [11].

Corollary 1. For a word w ∈ Σ(u, v) and k ≥ 1, we have that w′ ∼k w if and
only if the walk Ww′ is an Eulerian path from u to v in Gw.

Example 2. Let u ∈ Σ∗ and x ∈ Fk−1(u) such that |u|x ≥ 3. We may then write
Wu = W1W2W3W4 for some walks Wi with head(Wi) = x = tail(Wi+1) for each
i = 1, . . . , 3. Then, by the above corollary, we have u ∼k v, where v is defined
by the walk Wv = W1W3W2W4. Indeed, Wv is well-defined due to the choice of
the extremal vertices of the walks Wi and the same edges are traversed equally
many times as in Wu.

Continuing this line of thought, a formula for computing the size of a k-
Abelian equivalence class represented by a given word is obtained in [11]. In the
following, a rooted spanning tree with root v of a graph G is a spanning tree of
G for which all edges are directed towards the root vertex v.

Proposition 5. Let k ≥ 1 and w ∈ Σ(u, v) for some u, v ∈ Σk−1. Then

#[w]k = κv

∏

x∈V (Gw)

(|w|x − 1)!
∏

a∈Σ |w|xa!
, (2)

where κv is the number of rooted spanning trees with root v in Gw.

Regularity of k-Abelian Equivalence Classes of Fixed Cardinality 55

3 The Regularity of Classes of Constant Cardinality

Our main goal is to analyze the language Lr,k,Σ of words w over Σ satisfying
#[w]k = r, or more formally, Lr,k,Σ = {w ∈ Σ∗ | #[w]k = r}. We shall often
omit Σ from the subscript when there is no danger of confusion.

The language L1,k consists of words representing singleton classes. They are
thus uniquely defined by the frequencies of the factors of length k together with
the suffix of length k − 1. The number of such words of length n is considered
extensively in [11]. In [2], L1,k is shown to be regular. Indeed, the complement
of L1,k,Σ is defined by the regular expression

Σ∗

⎛

⎜
⎜
⎝ +

x,y∈Σk−1

a,b∈Σ, a �=b

((
(xbΣ∗ ∩ Σ∗y)Σ∗ ∩ Σ∗x

)
aΣ∗ ∩ Σ∗y

)

⎞

⎟
⎟
⎠ Σ∗. (3)

We remark that a crude upper bound on the number of states in the min-
imal DFA recognizing L1,k can be obtained from the above regular expression
using well-known conversions between various models of regular languages (see,
[6,7]). Indeed, e.g., Glushkov’s algorithm outputs an equivalent NFA of n + 1
states, given a regular expression of n occurrences of alphabet symbols. The
determinization of an n-state NFA can, in the worst case, give a DFA with 2n

states. Observe that the minimal DFA of a language and its complement have
the same number of states.

The first few exact values for Σ = {a, b} are as follows. The minimal DFAs
recognizing L1,k for Σ = {a, b} contain 15, 87, and 1011 states for k = 2, 3,
and 4, respectively. These values include the garbage state. The automata for
k = 2 and 3 are presented in [2] (garbage state omitted), and we propose the
value for k = 4 without proof. For a ternary Σ, we have 84 states for k = 2. We
recall the minimal DFA of L1,2,{a,b} in Fig. 2. For more on this automaton and
for automata for other values of k and alphabets, we refer the reader to [2].

Not only the languages L1,k are regular, but so are the languages L2,k as
shown in [2]. The proof goes as follows. Recall that �-Mink(Σ∗) is regular for
any lexicographic order �. Let �R be the reversal of �, that is, b �R a if and
only if a � b. After a brief consideration, it becomes clear that

Σ∗ \ R2
k(Σ∗ \ (�-Mink(Σ∗) ∪ �R-Mink(Σ∗))) = L1,k,Σ ∪ L2,k,Σ

is regular since all the language operations, including Rk, preserve regularity. It
follows that L2,k,Σ = Σ∗ \ (

R2
k(Σ∗ \ (�-Mink(Σ∗) ∪ �R-Mink(Σ∗)))

) \ L1,k,Σ is
regular since L1,k,Σ is regular.

The main result of this paper is the generalization of the above to all r ∈ N:

Theorem 1. For any k, r ≥ 1 and alphabet Σ, the language Lr,k is regular.

The approach of removing (in a regular way) one element of each class at
a time does not seem to extend to the languages Lr,k, r ≥ 3. The approach of

56 J. Karhumäki and M. A. Whiteland

Fig. 2. The minimal DFA recognizing L1,2,{a,b}. The garbage state is not illustrated.
All other states are accepting.

proving the above theorem as suggested in [2, end of Sect. 6], fails as we will
shortly show. The method described is of similar flavour as in the proof of the
regularity of L2,k,Σ , namely, by setting Ki+1 = Ki \ Mink(Ki), K0 = Σ∗, we
obtain that Σ∗\Rr

k(Kr) = ∪i≤rLr,k for each r ∈ N. If Mink preserved regularity,
the above theorem would follow since a finite sequence of regularity-preserving
operations would be used.

The following example shows that, unfortunately, this approach does not
work, as Mink does not preserve regularity.

Example 3. Let k ≥ 1 and L = (abk)∗ ∪ abk−1b∗(abk−1)∗. It is straightforward
to check, e.g., using Corollary 1, that

Mink(L) = (abk)∗ ∪ {abk−1br(abk−1)s | r �= s + 1}.

It follows that L \ Mink(L) = {(abk−1)br+1(abk−1)r | r ≥ 1}. The language
h−1(L \Mink(L)), where a �→ abk−1, b �→ b, equals {abbrar | r ≥ 1} which is not
regular. Since all other operations preserve regularity, we conclude that Mink

does not preserve regularity.

As a conclusion, to prove Theorem 1 we need a new approach. We do this
via a characterization of the lexicographically least representatives of k-Abelian
equivalence classes given in [2].

3.1 The Proof of Theorem1

Before turning to the formal proof, we sketch the main ingredients. Our first
observation (Lemma 3) states that there exists a constant Bk,r (depending on k

Regularity of k-Abelian Equivalence Classes of Fixed Cardinality 57

and r) such that, for any factor x having at least two distinct returns in u, the
total number of occurrences of x in u ∈ Lr,k is bounded by Bk,r. We then turn
to the language of minimal representatives and show that Mink(Lr,k) is regular
(Theorem 2). For the proof, we make an observation concerning factors x occur-
ring more than Bk,r times in u ∈ Mink(Lr,k) (Lemma 4). The main implication is
that corresponding to u and a factor x occurring more than Bk,r times, we may
construct a regular language Lx = zy∗z′ such that u ∈ Lx ⊆ Mink(Lr,k). In the
proof of Theorem 2, this observation is applied to all such factors x to obtain,
for each u ∈ Mink(Lr,k), a regular expression Lu = z0y

∗
1z1 · · · y∗

t zt ⊆ Mink(Lr,k).
This implies that Mink(Lr,k) is a (possibly infinite) union of regular expressions.
To conclude the proof we show that there are actually only finitely many distinct
regular expressions in the union with the help of Lemma 5. Finally, Theorem1
follows from Theorem 2 by applying the regularity-preserving language operation
Rk on Mink(Lr,k) finitely many times.

We express the above lemmas via de Bruijn graphs and walks within. To
this end we first recall some terminology from [2]. We say that a cycle C =
(dj)s−1

j=0 occurs along the walk W if W can be written as the concatenation
W = W1 · (dr+j (mod s))s−1

j=0 · W2 for some r ∈ [0, s − 1] and some (possibly
empty) walks W1, W2. We say that W enters C via the vertex tail(dr) if W1

is either empty or dr−1 (mod s) is not the last edge of W1. In this case we say
that W enters C at position |W1| + 1. We say that W leaves C via the vertex
head(dr+s−1 (mod s)) if W2 is empty or dr is not the first edge of W2. In this case
we say that W leaves C at position |W1C|.
Example 4. Consider the de Bruijn graph dB{a,b}(2). The walk Wu = (ei)10i=1,
defined by the word u = aaaabaabaaba, has two distinct cycles occurring along
it, namely the loop C1 = (aa, a) and the cycle C2 = ((aa, b), (ab, a), (ba, a)). The
walk Wu enters C1 at position 1 and leaves C1 at position 3 (both via the vertex
aa), and does not enter C1 later on. Further, Wu enters the cycle C2 at position
2 (via the vertex aa) and W leaves the cycle at position 10 (via the vertex ba).
We may write W = C2

1 · C2
2 · ((aa, b), (ab, a)).

On the other hand, the walk Wuaa in dB(2) defined by the word uaa is not
cycle-deterministic, as we may write Wuaa = Wu ·((ba, a), (aa, a)) = C2

1 · C3
2 · C1,

whence Wuaa enters the cycle C1 at positions 1 and 12. The cycle C2 is now left
at position 11.

We recall a lemma we need in future considerations.

Lemma 2 (Cassaigne et al. [2, Lemma 5.17]). Let Wu be a walk in dB(k−1)
defined by u ∈ Mink(Σ∗). Let C = (dj)s−1

j=0 be a cycle occurring along Wu.
Suppose further that we may write Wu = W0 · Cr · W1 for some walks W1, W2,
r ≥ 2. Then, for any t � 0, the word ut corresponding to the walk W0 · Ct · W1

is in Mink(Σ∗).

We first need a couple of observations about the properties of lexicographi-
cally least representatives of equivalence classes.

58 J. Karhumäki and M. A. Whiteland

Lemma 3. Let k, r ≥ 1. There exists an integer Bk,r such that, for each u ∈
Lr,k, if #�u(x) ≥ 2 for some x ∈ Fk−1(u), then |u|x ≤ Bk,r.

Proof. Let u ∈ Lr,k and assume #�u(x) ≥ 2 for some x ∈ Fk−1(u). Let us write
Wu in terms of complete first returns of x in u;

Wu = W0W1 · · · W|u|x−1W|u|x ,

where tail(Wi) = head(Wi) = x for all i = 1, . . . , |u|x − 1. Observe now that
each walk Wi, i = 1, . . . , |u|x − 1, corresponds to the complete first return to
x in u. Furthermore, W0 and W|u|x do not contain the vertex x anywhere else
other than what is implied above. Now, for any permutation σ of [1, |u|x), we have
that u ∼k vσ, where vσ is defined by the walk Wσ = W0Wσ(1) · · · Wσ(|u|x−1)W|u|x
(compare to Example 2). The number of distinct words obtained by this method
is

(|u|x−1
m1,...,mk

)
= (|u|x−1)!

m1!···mk!
, where k = #�x(u) and (mi)i = (|u|y)y∈	u(x). This

is the number of distinct permutations of words y ∈ �u(x) with multiplicities
|u|y, y ∈ �(x). (To see that two words obtained from distinct permutations are
distinct, consider their prefixes and recall the definition of a complete first return
word.) We now have, by assumption, k ≥ 2 whence

(|u|x−1
m1,...,mk

) ≥ |u|x − 1. This
implies r = #[u]k ≥ |u|x − 1, or in other words, |u|x ≤ r + 1. ��
Remark 1. For r ≥ 2, we have Bk,r ≥ 2. Indeed, we have u = ak+r−2bak−1 ∈ Lr,k

and #�u(ak−1) = 2.
In the case of r = 1, similar ideas were considered in [11]. Indeed, there it is

shown that, for any u ∈ L1,k,Σ , we have #�u(x) ≤ 1 for all x ∈ Σk−1. In fact a
characterization of words in L1,k,Σ is obtained in terms of a slight generalization
of our notion of return words.

Lemma 4. Let u ∈ Mink(Lr,k) and assume |u|x > Bk,r. Then we may write
Wu = W · C|u|x−1 · W ′ for some cycle C with tail(C) = x.

Proof. Assume that |u|x > Bk,r for some x ∈ Σk−1. Since |u|x > Bk,r, we have
�u(x) = 1 by the above lemma. We may write Wu in terms of y, the unique
complete first return to x in u; Wu = W · W

|u|x−1
y · W ′, where head(W) =

tail(Wy) = head(Wy) = tail(W ′) = x. We claim that Wy is a cycle. Assume the
converse; there then exists a vertex z in Wy such that there are two distinct edges
both with tail z along Wu. It now follows that #�u(z) ≥ 2 and |u|z > Bk,r, a
contradiction. ��

We now prove another lemma which already hints towards regular properties
of our language.

Lemma 5. Let r ≥ 2. Let then us, for each s ≥ 0, denote the word defined by the
walk W (s) = W · Cs · W ′ (in dB(k−1)) for some cycle C. Then us ∈ Mink(Lr,k)
for some s ≥ Bk,r if and only if us ∈ Mink(Lr,k) for all s ∈ N.

Proof. The other implication is immediate, so assume us ∈ Mink(Lr,k) for some
s ≥ Bk,r. The fact that us ∈ Mink(Σ∗) for all s ∈ N follows by Lemma 2, so it

Regularity of k-Abelian Equivalence Classes of Fixed Cardinality 59

is enough to show that us ∈ Lr,k for all s ∈ N (recall that for r ≥ 2, we have
Bk,r ≥ 2 by Remark 1). Without loss of generality, we may assume that W (s)
enters C = (ei)l−1

i=0 (|C| = l ≥ 1) at position |W | + 1 and that s is maximal, i.e.,
W (s) leaves C before position |W | + (s + 1)|C| and, further, that W (s) leaves
C via vertex y = tail(eo), 0 ≤ o ≤ l − 1.

Observe now that |us|x ≥ s for all x ∈ V (C). It follows by the above lemma
that for each vertex x ∈ V (C) we have #�us

(x) = 1 (if there were another
complete first return to x in u for some x ∈ V (C), we would have |us|x > Bk,r,
a contradiction). Consequently, by the maximality of s, |us|tail(ei) = s + 1 for all
i ∈ [0, o], and |us|tail(ei) = s for all i = (o, l). Further, each (except possibly the
last) occurrence of x is followed by the same letter ax in us. Moreover, the only
vertex y ∈ V (C) followed by a letter b �= ay in u is the vertex y = tail(eo) via
which W (s) leaves C (the only exception is that W ′ is a subpath of C).

Consider the graph Gs = Gus
in light of Proposition 5. Let κs denote

κhead(W (s)) for each s ≥ 0. By the above observations we conclude that any
rooted spanning tree with root head(W (s)) of Gs contains one of the (multiple
copies of the) edge ei for each i = [0, l) \ {o}, and the edge (y, b) /∈ E(C) (unless
head(W (s)) = y whence no edge from y exists in such a tree). Let us compute
κs in terms of κ0 and s. Adding s copies to an edge ei, 0 ≤ i < o, to G0 increases
the number of trees (s + 1)-fold, as each tree must contain exactly one copy of
this edge and there are s + 1 to choose from. For the remainder of the vertices
z ∈ V (C)\y, any tree in Gs must contain some copy of the path (ej)l−1

j=o+1 which
connects to a copy of a tree defined by G0. Given s copies of each edge along
this path, there are altogether sl−o−1 choices for the path. We conclude that
κs = κ0 ·(s+1)osl−o−1. This may be expressed as κs = κ0 ·∏x∈V (C)\y(s+ |u0|x).

Further, we observe that, in the product
∏

x∈Fk−1(us)
(|us|x−1)!∏
a∈Σ |us||xa|!

, the only val-
ues that vary according to s are certain values corresponding to the vertices of
C. In particular, |us|x = |us|xax

= s + |us|x0 ∈ {s, s + 1} for each x ∈ V (C) \ y,
|us|y = s + 1, and |us|yay

= s. Recall that |us|yb = 0 or 1 depending on whether
head(W (s)) = y or not. Plugging these values in (2), we find that the following
ratio equals 1 for any s ≥ 1:

#[us]k
#[u0]k

=
∏

x∈V (C)\y

(s + |u0|x) ·
∏

x∈V (C)\y

1
(s + |u0|x)

= 1.

Thus, for any choice of s, the obtained word us has #[us] = r. The claim
follows. ��

We are now in the position to prove the key result, from which our main
result follows.

Theorem 2. The language Mink(Lr,k) is regular.

Proof. We claim that Mink(Lr,k) is a finite union of languages defined by regular
expressions of the form z0y

∗
1z1 · · · y∗

t zt.

60 J. Karhumäki and M. A. Whiteland

Consider now a word u ∈ Mink(Lr,k) and write

Wu = W0C
s1
1 W1 · · · Cst

t Wt

for some paths Wi, i = 0, . . . , t, and some repetitions Csi
i of cycles Ci, i = 1, . . . , t,

such that Wu enters cycle Ci at position |W0|+
∑i−1

j=1 |Csj

j Wj |+1 for all 1 ≤ i ≤ t
and leaves Ci before entering Ci+1. Now u may be written as

u = tail(W0) · label(W0C
s1
1 W1 · · · Cst

t Wt) = z0y
s1
1 z1 · · · yst

t zt,

where z0 = tail(W0) · label(W0), yi = label(Ci), and zi = label(Wi) for 1 ≤ i ≤ t.
The above lemma asserts that, if si ≥ Bk,r, then

L(z0ys1
1 z1 · · · y∗

i zi · · · yst
t zt) ⊆ Lr,k. (4)

By repeating the above, we may replace all exponents sj satisfying sj ≥ Bk,r

with ∗ in (4).
Let L be the union of all the languages obtained as above from words u ∈

Mink(Lr,k) satisfying |u|x ≤ Bk,r +1 for all x ∈ Σk−1. These words are bounded
in length, so that the union is finite. Clearly L ⊆ Mink(Lr,k) by the above
observation. We claim that Mink(Lr,k) ⊆ L.

Indeed, let u ∈ Mink(Lr,k). If |u|x > Bk,r + 1, Lemma 4 ensures that we
have Wu = W0W

|u|x−1
y W1 for y being the unique complete first return to x

in u. Further Wy is a cycle. If Wu does not enter Wy at position |W0| + 1,
we may extend the cycle to the left and right to obtain W ′

0W
t
y′W ′

1, where t ∈
{|u|x − 1, |u|x}. By the above lemma we may reduce the number of repetitions
of W ′

y to obtain a word u′ for which |u′|x ≤ Bk,r + 1 and u is in the language
defined by u′ as in (4). If |u′|x′ > Bk,r + 1 for some x′ ∈ Σk−1, we may repeat
the above for u′ to obtain a word u′′ having |u′′|x′ ≤ Bk,r + 1 and such that u
and u′ are in the language defined by u′′ as in (4). This can be continued until
we obtain a word v such that |v|x ≤ Bk,r +1 for all x ∈ Σk−1 and u is contained
in the language defined by v as in (4). We thus have u ∈ L, which concludes the
proof. ��
Proof (of Theorem 1). The language Mink(Lr,k) is regular. Since the operation
Rk preserves regularity by Proposition 4, by applying finitely many iterations of
Rk, we have that Lr,k = Rr

k(Mink(Lr,k)) is regular. ��

4 Conclusions

In this note, we continued to analyze the structure of the k-Abelian equivalence
classes, in particular in the framework of regularity. In [2] we concluded, as a
consequence of the k-switching lemma of [11], that the set of singleton classes is
a regular language. Therein, this was extended to the union of all two-element
classes as well. This was based, on one hand, on the regularity of the union
of lexicographically least representatives of the equivalence classes and, on the
other hand, on strong closure properties of the family of regular languages.

Regularity of k-Abelian Equivalence Classes of Fixed Cardinality 61

The approach does not extend, at least immediately, and indeed fails for the
first attempt, to the union of larger (fixed-size) classes. To show that also these
classes are regular, we developed new techniques. This is the content of this note.

All these regular languages are algorithmically constructable. However, in
practice, this can be done only in very restricted cases. Indeed, the analysis of
the size of the automata of the mentioned regular languages remains for future
research.

Once the regularity of the above languages is established, the well-known
techniques in rational power series allow to determine the corresponding enu-
meration functions. This was discussed in [2]. In the current work, Theorem2
implies the following result:

Corollary 2. For each k ≥ 1, the sequence of numbers of k-Abelian equivalence
classes with cardinality r of length n is a rational sequence.

In this spirit, the first few sequences of minimal elements were shown in the
On-Line Encyclopedia of Integer Sequences [17]. In more detail, the sequences

Pk,m(n) = #{[w]k | |w| = n}

were determined for k = 2, 3 in the binary alphabet. Similarly, a first few
sequences considered in this note, that is, of the sequences

Sr,k,m(n) = #{[w]k | |w| = n,#[w]k = r}

might be worth including in the encyclopedia.

Acknowledgements. We would like to thank Julien Cassaigne and Svetlana Puzyn-
ina for fruitful and insightful discussions on the topic.

References

1. de Bruijn, N.G.: Acknowledgement of priority to C. Flye Sainte-Marie on the count-
ing of circular arrangements of 2n zeros and ones that show each n-letter word
exactly once. Technical report. (EUT report. WSK, Department of Mathemat-
ics and Computing Science), vol. 75-WSK-06, Technische Hogeschool Eindhoven,
Netherlands (1975)

2. Cassaigne, J., Karhumäki, J., Puzynina, S., Whiteland, M.A.: k-abelian equivalence
and rationality. Fundamenta Informaticae 154(1–4), 65–94 (2017)

3. Cassaigne, J., Karhumäki, J., Puzynina, S., Whiteland, M.A.: k -abelian equivalence
and rationality. In: Brlek, S., Reutenauer, C. (eds.) DLT 2016. LNCS, vol. 9840,
pp. 77–88. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53132-
7 7

4. Cassaigne, J., Karhumäki, J., Saarela, A.: On growth and fluctuation of k-abelian
complexity. Eur. J. Comb. 65(Suppl C), 92–105 (2017)

5. Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press Inc.,
New York (1974)

https://doi.org/10.1007/978-3-662-53132-7_7
https://doi.org/10.1007/978-3-662-53132-7_7

62 J. Karhumäki and M. A. Whiteland

6. Gruber, H., Holzer, M.: From finite automata to regular expressions and back - a
summary on descriptional complexity. Int. J. Found. Comput. Sci. 26(08), 1009–
1040 (2015)

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation, 1st edn. Addison-Wesley Publishing Co., Inc., Boston (1979)

8. Huova, M., Saarela, A.: Strongly k -abelian repetitions. In: Karhumäki, J., Lepistö,
A., Zamboni, L. (eds.) WORDS 2013. LNCS, vol. 8079, pp. 161–168. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40579-2 18

9. Karhumäki, J.: Generalized Parikh mappings and homomorphisms. Inf. Control
47(3), 155–165 (1980)

10. Karhumäki, J., Puzynina, S.: On k -abelian palindromic rich and poor words. In:
Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 191–202. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-09698-8 17

11. Karhumäki, J., Puzynina, S., Rao, M., Whiteland, M.A.: On cardinalities of k-
abelian equivalence classes. Theoret. Comput. Sci. 658(Part A), 190–204 (2017).
Formal Languages and Automata: Models, Methods and Application in honour of
the 70th Birthday of Antonio Restivo

12. Karhumäki, J., Saarela, A., Zamboni, L.Q.: On a generalization of abelian equiva-
lence and complexity of infinite words. J. Comb. Theory, Ser. A 120(8), 2189–2206
(2013)

13. Lothaire, M.: Combinatorics on Words, Encyclopedia of Mathematics and Its
Applications. Advanced Book Program, World Science Division, vol. 17. Addison-
Wesley, Boston (1983)

14. Rao, M., Rosenfeld, M.: Avoidability of long k-abelian repetitions. Math. Comput.
85(302), 3051–3060 (2016)

15. Rauzy, G.: Suites á termes dans un alphabet fini. Seminaire de Théorie des Nombres
de Bordeaux 12, 1–16 (1982–1983)

16. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Texts and Monographs in Computer Science. Springer, New York (1978). https://
doi.org/10.1007/978-1-4612-6264-0

17. Sloane, N.J.A.: The on-line encyclopedia of integer sequences. Published electron-
ically at https://oeis.org. Accessed 1 Feb 2018

https://doi.org/10.1007/978-3-642-40579-2_18
https://doi.org/10.1007/978-3-319-09698-8_17
https://doi.org/10.1007/978-1-4612-6264-0
https://doi.org/10.1007/978-1-4612-6264-0
https://oeis.org

	Regularity of k-Abelian Equivalence Classes of Fixed Cardinality
	1 Introduction
	2 Preliminaries and Notation
	3 The Regularity of Classes of Constant Cardinality
	3.1 The Proof of Theorem1

	4 Conclusions
	References

