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Abstract. We consider a scenario where n sensor nodes observe streams
of data. The nodes are connected to a central server whose task it is
to compute some function over all data items observed by the nodes.
Extending the capabilities of the distributed monitoring model from [8],
we allow, in addition to sending messages from the sensor nodes to the
server, also broadcasts from the server to the sensor nodes (see for exam-
ple [9]).

In this paper, we address the problem of answering Top-k queries
(report the k largest data items currently observed) and approximate
k-Select queries (report an element with rank close to k). We present
a communication-efficient dynamic data structure that supports these
queries under updates of the data items arriving at the sensor nodes.

1 Introduction

Consider a sensor network which is a system comprising of a huge amount of
nodes. Each node continuously observes its environment and measures informa-
tion (e.g., temperature, pollution or similar parameters). We are interested in
aggregations describing the current observations at a central server. To keep
the server’s information up to date, the server and the nodes can communicate
with each other. In sensor networks, however, the amount of such communica-
tion is particularly crucial, as communication has the largest impact to energy
consumption, which is limited due to battery capacities [11]. Therefore, algo-
rithms aim at minimizing the (total) communication required for computing the
respective aggregation function at the server.

We consider the following idea to potentially lower the communication used.
Computations of the same aggregate should reuse parts of previous computa-
tions. We realize this by introducing a data structure which, at every point in
time, keeps track of an approximation of a data item with rank k. These approxi-
mations can be exploited by the protocols for a Top-k or k-Select computation to
significantly decrease the communication and interestingly also the time bounds,
making this approach a very powerful tool.

This work was partially supported by the German Research Foundation (DFG)
within the Priority Program “Algorithms for Big Data” (SPP 1736).

c© Springer Nature Switzerland AG 2018
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1.1 The Distributed Monitoring Model with Broadcast Channel
(DMBC-Model)

We consider the distributed monitoring model introduced by Cormode, Muthu-
krishnan, and Yi in [8], in which there are n distributed nodes, each uniquely
identified by an ID from the set {1, . . . , n}, connected to a single server. Each
node observes a stream of data items over time, i.e., at any discrete time step
t node i observes a data item dt

i. We assume that the data items have a total
order and denote by rank(d) the position of data item d in the sorted ordering.
The server is asked to, given a query at time t, compute an output f(t) which
depends on the data items dt

i with i = 1, . . . , n observed across all distributed
streams.

To be able to compute the output, the nodes and the server have to commu-
nicate with each other. The distributed monitoring model introduced by Cor-
mode, Muthukrishnan, and Yi in [8] allows exchanging single cast messages. The
extension we use is the Distributed Monitoring Model with a Broadcast Chan-
nel (DMBC-Model) (proposed in [7] and exploited in [3,4,9,10]) which allows, in
addition, to broadcast messages from the server to all nodes. Both types of com-
munication are instantaneous and have unit cost per message. That is, sending a
single message to one specific node incurs cost of one and so does one broadcast
message. Each message has a size of O (B + log n) bits, where B denotes the
number of bits needed to encode a data item. A message will usually, besides a
constant number of control bits, consist of a data item, and a node ID.

Between any two time steps we allow a communication protocol to take place,
which may use a polylogarithmic number of rounds. The optimization goal is
the minimization of the communication complexity, given by the total number
of exchanged messages, required to answer the posed requests or setup/update
the data structure.

1.2 Related Work

Cormode, Muthukrishnan, and Yi introduce the Continuous Monitoring Model
[8] with an emphasis on systems consisting of n nodes generating or observing
distributed data streams and a designated coordinator. In this model the coordi-
nator is asked to continuously compute a function, i.e., to compute a new output
with respect to all observations made up to that point. The objective is to aim at
minimizing the total communication between the nodes and the coordinator. We
enhance the continuous monitoring model (as proposed by Cormode, Muthukr-
ishnan, and Yi in [7]) by a broadcast channel. Note that we are not strictly
continuous in the sense that we introduce a dynamic data structure which only
computes a function if there is a query for it. However, there is still a continuous
aspect: In every time step, our data structure maintains elements close to all
possible ranks in order to quickly answer queries (cf. [5,6,15,16]).

An interesting area of problems within this model are threshold functions:
The coordinator has to decide whether the function value (based on all obser-
vations) has reached a given threshold τ . For well-structured functions (e.g.,
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count-distinct or the sum-problem) asymptotically optimal bounds are known
[7,8,13]. Functions which do not provide such structures (e.g., the entropy [1]),
turn out to require much more communication volume.

A related problem is a variant of the distributed Top-k monitoring problem
considered by Babcock and Olston [2]: There is a set of objects {O1, . . . , On}
given, in which each object has a numeric value. The stream of data items
updates these numeric values (of the given objects). Babcock and Olston have
shown by an empirical evaluation that the amount of communication is by an
order of magnitude lower than that of a naive approach.

Furthermore, the Top-k computation is also considered in [9]. The proposed
protocol needs a number of O(k · log N) messages and O(k · log N) rounds, where
N > n denotes an upper bound on the number of nodes. In this paper we improve
both the number of messages and communication rounds to k + log n + 2 and
O(k + log N) respectively. The techniques used in this paper are fundamentally
based on [4] applying the idea of an inorder treewalk in a distributed searchtree
and analyzing using a mixed distribution.

A model related to our (sub-)problem of finding the k-th largest values,
and exploiting a broadcast channel, is investigated by the shout-echo model in
[12,14]. A communication round is defined as a broadcast by a single node, which
is replied by all remaining nodes. The objective is to minimize the number of
communication rounds, which differs from ours.

1.3 Contribution of the Paper

We present a distributed data structure for the DMBC-Model with the following
properties: In each step t, each client i receives a data item dt

i as above. For ease
of description let st

1, . . . , s
t
n be the sorted version of the data items dt

1, . . . , d
t
n

received at time step t. Our data structure supports the following operations:

TOP-k: Output {st
1, . . . , s

t
k}

STRONG SELECT: Output d ∈ {st
(1−ε)k, . . . , st

(1+ε)k}
WEAK SELECT: Output d with st

k·logc1 n ≤ d ≤ st
k·logc2 n,with c1, c2 > 1

Our data structure gives the following performance guarantees:

– The expected amortized total communication cost for an update (amortized
over all updates of the data items received by clients) is O(1/polylog n), the
number of rounds is O(log n).

– WEAK SELECT does not need any communication. The output is correct with
probability at least 1 − 1/polylog n.

– The expected total communication cost for a STRONG SELECT operation is
bounded by O(1/ε2 log 1/δ + log2 log n), the expected number of rounds is
O(log log n

k ). The output is correct with probability at least 1 − δ.
– The expected total communication cost for TOP-k is O(k + log log n), the

expected number of rounds is O(log log n). The output is always correct.
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2 Outline of the Data Structure

Our data structure maintains an information Sketch(t) about the data items
received at time t in the server, at every time t.

As above, let st
1, . . . , s

t
n be the sorted version of the data items dt

1, . . . , d
t
n

received at time step t. Fix sufficiently large constants c1, c2, c > 1. We call
Sketch(t) correct if it consists of a set of data items {d1, . . . , dlog n} such that,
for each k = 1, . . . , n, there exists a dj such that st

k·logc1 n ≤ dj ≤ st
k·logc2 n holds.

INIT denotes the process of computing Sketch(t), where the input dt
1, . . . , d

t
n of

step t is given to the n sensor nodes.

Observation 1. Consider a time step t at which the Init operation is called.
A correct Sketch(t) is also a correct Sketch(t′), for a t′ > t, if at most logc(n)
values of the clients are updated during the time interval (t, t′].

This observation holds, because in the worst case the rank of a fixed data
item, facing logc n updates, can change by at most logc n. Since we allow the data
item to be upper bounded by st

k·logc2 n simply observe that this still holds after
logc n updates, for sufficiently large choices of constants. On the other hand,
to prevent that the data item dj gets not smaller than st

k, the data structure
computes a data item dj > st

k·logc1 n. Note that the constants c1 and c2 depend on
c. However, if the constants are (beforehand) chosen large enough, this ensures
that after logc n updates Sketch(t) is also a Sketch(t′).

Lemma 1. INIT is executed correctly with probability at least 1 − 1/polylog n.
It needs expected total communication of O(log n) and O(log n) rounds.

We present the INIT algorithm and the necessary technical basis to prove this
lemma in Sect. 3. We prove that the algorithm computes a Sketch(t) correctly
in Theorem 1 and present the performance guarantees in Theorem 2.

The next operation UPD denotes the process of updating Sketch(t), in
response to the updates of data items received in step t.

Lemma 2. UPD can be done using expected amortized (w.r.t. number of updates
of data items in the nodes) total communication of O(1/polylog n), the amortized
number of rounds is constant (assuming each update is processed at a different
time step). For every step t, the computed Sketch(t) is correct with probability at
least 1 − 1/polylog n.

The UPD algorithm is presented in Sect. 4. In this section, we shortly argue
its correctness in Lemma 7 and show communication bounds in Lemma8.

By definition of a correct Sketch(t), the following observation holds.

Observation 2. Given a correct Sketch(t), WEAK SELECT can be executed
without any communication. It is correct with probability 1 − 1/polylog n.

We present this observation shortly in Sect. 5.
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Lemma 3. Given a correct Sketch(t), STRONG SELECT can be correctly com-
puted with probability 1− δ. It needs O(1/ε2 log 1/δ + log2 log n) communication
and O(log log n) communication rounds.

This result is considered in Sect. 6. The algorithm is based on three phases
which are analyzed independently. The main result of this section is presented
in Theorem 3.

Lemma 4. Given a correct Sketch(t), TOP-k can be computed using expected
total communication of O(k + log log n) and O(k + log log n) communication
rounds. The output is always correct.

The TOP-k algorithm is presented in Sect. 7. On the total communication is
argued in Lemma 13 and the number of rounds in Lemma14.

The lemmata above imply the performance guarantees formulated in the
previous section.

3 Initialization of the Data Structure

We start the presentation of our results with the goal to prove the first lemma. We
propose the algorithm INIT which computes the Sketch(t) at a time step t. Since
(a variation of) this algorithm is reused in later sections, we describe a procedure
CFS (ConstantFactorSelect) with different parameters (see Algorithm1).

CFS. The high-level idea of CFS is as follows: Initially each node is defined to
be active. The protocol samples a node uniformly at random and broadcasts its
value. All nodes with a larger data item deactivate themselves. This process is
repeated until the remaining nodes are sampled with probability 1.

However, since the server does not know which nodes remain active, a sample
cannot be chosen directly. Instead, we let the nodes proceed a random process
such that the server can probe each node with a certain outcome based on the
random process. We consider this random process in more detail: Each node i
chooses a height hi from a geometric distribution, i.e., the number of coin flips
with success probability p until one coin flip was successful. (Observe that based
on the definition of p the expected maximal height maxihi varies. This fact can
be used to trade-off between the expected number of messages and the number
of rounds the algorithm uses.)

Intuitively speaking, we build a distributed (not binary) searchtree where
the heights are chosen randomly and the algorithm follows the path to the sen-
sor node observing the minimum value. The log n nodes on this path yield an
approximation of the data items with respect to their ranks. We will exploit this
fact and show that a data item at a specific level can be used to approximate a
given rank successfully.
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Algorithm 1. INIT()
CFS(φ, hmax, k) [ConstantFactorSelect]

1. Each node i defines a random variable hi, i.i.d. drawn from
a geometric distribution with p = (1 − φ), and
redefines hi := min{hi, hmax}.

2. Server defines dmin := ∞, keeps a set S := ∅, and initializes cnt := 0.
3. if k = 1 then hmin := 1.
4. else hmin := �log1/φ(7k)� + 1. (let α := log1/φ(7k) − �log1/φ(7k)�)
5. for h := hmax to hmin do
6. Server probes all nodes i with di < dmin and hi = h.
7. Let r1 < r2 < . . . < rj be the responses, ordered by their values.
8. The tuple (r1, h) is added to S.
9. if h > hmin > 1 then Server redefines dmin := r1 else dmin := r(1/φ)α .

10. output dmin

INIT()

1. call CFS (φ := 1
2
, hmax = log n, k = 1).

Initialize. We only need a simple variant of the CFS protocol as follows: The
INIT operation defines p := 1/2, the success probability of each coin flip. That
is, each sensor node has a height of 2 in expectation. Thus, observe that the
expected maximum of n nodes is hmax = log n. For each height h the server
keeps the smallest response of the sensor nodes in the data structure.

3.1 Initialize Computes Sketch(t)

Recall that the data structure is asked to answer each request for a data item of
rank k by a data item d. We group a set of requests with different ranks which
we answer with the same data item d. To this end, we divide the ranks 1, . . . , n
into classes C1, . . . , Cm, where m is chosen sufficiently large such that each data
item belongs to a class. The exact number of classes is based on a constant which
is defined by the analysis, however, note that m = O(log n) holds.

We define a representative for each class which is the response for a request
of any rank in the next-smaller class. Furthermore, the height of a class rep-
resents the expected maximum height found within this class, such that our
representative will have a height value within the noted bounds. In the following
we use the constant κ > 1 chosen sufficiently large which represents the con-
stants in the bounds on the precision and the success probability. Furthermore,
let H := log log n to ease the notation. The idea of classes is captured in the
following definition:

Definition 1 (Classes). A Class Ct
� consists of all data items dt

j fulfilling
rank(dt

j) ∈ [log6�κ(n), log6(�+1)κ(n)). We define hmin(C�) := (6�κ + 1κ)H and
hmax(C�) := (6�κ + 7κ)H . The height of the class Ct

� is given by h(Ct
�) :=

(hmin(Ct
�), hmax(Ct

�)].
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By abuse of notation we introduce dt
i ∈ Ct

� which shortens rank(dt
i) ∈ Ct

� .
Furthermore let class(d) be the class where the data item d belongs to, i.e., for
a given d, class(d) gives the class Ct

� such that d ∈ Ct
� holds.

Definition 2 (Inner Classes). We denote by an inner class It
�,τ (where τ ∈

{0, 1, 2} holds) the set of data items dt
i with a rank between log6�κ+2κ(n) and

log6�κ+4κ(n). The height of It
�,τ is h(It

�,τ ) = ((6�κ + (2τ + 1)κ)H , (6�κ + (2τ +
3)κ)H ].

We omit the time step t in our notation whenever it is clear from the context.

Definition 3 (Well-Shaped). The data items in an inner class I�,τ are well-
shaped if for each data item di ∈ I�,τ it holds hi ≤ (6�κ + (2τ + 3)κ)H .

We start by analyzing the outcome of the INIT operation. That is, we show
that a class is well-shaped with sufficiently large probability in Lemma5 and
argue that the data structure has one representative in Theorem1, afterwards.

Lemma 5. After an execution of INIT, the inner class I�,τ is well-shaped with
probability at least 1 − log−κ(n).

Proof. Recall that for a fixed data item di and sensor node i the probability for
hi > h is φh. Fix an inner class I�,τ and consider the data items di ∈ I�,τ . We
upper bound the probability that there is a data item with a height of at least
h with h := (6�κ + (2τ + 3)κ)H by applying the union bound as follows:

Pr[∃di ∈ C�,τ | hi > h] ≤
(
log6�κ+(2τ+2)κ(n) − log�8κ+2τκ(n)

)
· φh

≤ log6�κ+(2τ+2)κ(n) · log−(6�κ+(2τ+3)κ)(n)

≤ log−κ(n)

��
Lemma 6. Consider the inner class I�,1. There is a data item di ∈ I�,1 with
hi > (6�κ + 3κ)H with high probability.

Proof. Here we simply upper bound the probability that each data item in the
inner class has a height of at most h as follows:

Pr[∀di ∈ I�,1 | hi ≤ (6�κ + 3κ)H ] ≤
(
1 − 2−(6�κ+3κ)H

)|I�,1|

≤
(
1 − log−(6�κ+3κ) n

)log6�κ+4κ n − log6�κ+2κ n

≤
(

1
e

) 1
2 logκ n

≤ n− 1
2 log(e) logκ−1(n) ≤ n−c,

for some constant c. ��
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We can now prove the first part of Lemma1, i.e., that INIT computes a correct
Sketch(t). Technically, we show a result which is more restricted than the stated
precision of Lemma 1, as follows:

Theorem 1. After execution of INIT there exists, for each rank k, a data item
in Sketch(t) with rank between k · log2κ(n) and k · log10κ(n) with probability at
least 1 − log−κ+2(n).

Proof. First consider a fixed inner class I�,τ for a fixed � ∈ N and τ ∈ {0, 1, 2}.
Based on Lemma 5 we can show that the distribution of the random heights is
well-shaped with probability at least 1 − log−κ(n). Now, with high probability
there is a data item with such a height for sufficiently large κ and n due to
Lemma 6. These observations together show that there is a data item d identified
and stored in DS with probability at least 1 − log−κ+1(n).

Furthermore, note that the number of inner classes is upper bounded by
log n. The argument stated above applied to each class leads to the result that
for each inner class there exists a data item in the data structure, and each inner
class is well-shaped with probability at least 1 − logκ−2(n) (by simply applying
the union bound). ��

3.2 Communication Bounds

In the following we show the second part of Lemma1, i.e., that the number
of messages used by INIT is upper bounded by O(log n) and the same bound
holds for the number of rounds. We start by analyzing the bound on the total
communication.

We show an upper bound on the communication used by the CFS proto-
col analyzing the expected value of a mixed distribution: Intuitively speaking,
consider the path from the root to the maximum in a non-binary searchtree.
For each node i on the path consider the number of siblings j with a smaller
data item, i.e., dj < di. To bound the expected number of such siblings j, we
first consider on a fixed height h the number of tries Gh until the first node
j′ has drawn a height hj′ > h (for each height h this results in the geometric
sequence, Definition 4). Based on Gh, we consider the number of nodes that have
drawn precisely the height hj′ = h (for each height h, the geocoin-experiment
Definition 5).

Note that this analysis turns out to be very simple since independence can
be exploited in a restricted way and leads to a proper analysis with respect to
small constants.

Definition 4. We call a sequence G = (G1, . . . , Gm) of m random experiments
a geometric sequence if each Gh is chosen from a geometric distribution with
pgeo

h := φh. We denote its size(G) :=
∑

h Gh and say it covers all nodes if
size(G) ≥ n.

For the analysis, we choose a fixed length of m := log1/φ(n) and modify G to
G′ = (G1, . . . , Gm−1, n) such that G′ covers all nodes with probability 1.
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Based on a given geometric sequence, we define a sequence describing the
number of messages sent by the nodes on a given height. We take the number
of nodes Gj as a basis for a Bernoulli experiment where the success probability
is the probability that a node sends a message on height hj . This is Pr[h = hj |
h ≤ hj ] = φh−1(1−φ)

1−φh .

Definition 5. We denote a geocoin-experiment by a sequence C =
(C1, . . . , Cm) of random variables Ch which are drawn from the binomial distribu-
tion Binom

(
n = Gh, pbin

h = φh−1(1−φ)
1−φh

)
, i.e., Ch out of Gh successful coin tosses

and each coin toss is successful with probability pbin
h .

We are now prepared to prove the second part of Lemma1, i.e., a bound on
the total communication for CFS and thus for INIT.

Theorem 2. Let hmax ≥ log1/φ(n) hold. The CFS protocol uses an expected
number of 1−φ

φ log1/φ(n) + 1
φ messages in total.

Proof. The number of messages sent is upper bounded by a geocoin-experiment
C. Let H := log1/φ(n). For h < H we use that the geometric distribution is
memory-less and hence

E[Ch] = (1 − pgeo
h ) · (pbin

h + E[Ch]) = (1 − φh) ·
(

φh−1(1 − φ)
1 − φh

+ E[Ci]
)

.

This can simply be rewritten as E[Ch] = 1−φ
φ .

For h ≥ H = log1/φ(n) we bound the number of messages by the total num-
ber of nodes with height at least H . These can be described as the expectation
of a Bernoulli experiment with n nodes and success probability φH −1 and hence
we can bound E[C≥H ] ≤ φH −1 · n = 1

φ .
In total, we get

∑
h

E[Ch] =

(
H −1∑
h=1

E[Ci]

)
+ E[C≥H ] ≤ 1 − φ

φ
log1/φ(n) +

1
φ

,

concluding the proof. ��
We conclude the proof for the first lemma by this simple observation on

the number of rounds. By the definition of the protocol it is easy to see that
the server simply sends a broadcast message for each height h and receives a
message by those nodes which fulfill a specific rule. Since the server can process
each received message in the same round, hmax is obviously a strict upper bound
for the number of rounds.

Observation 3. The INIT operation uses at most hmax = log n rounds.
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Algorithm 2. UPD(i, d) [Executed by node i]

1. Update dt
i by dt+1

i := d.
2. Flip a coin with probability pcnt = c

logκ(n)
· log n.

3. if the coin flip was successful then
4. send a message to the server; increase cnt.
5. if cnt = c · log n holds then [Executed by Server]
6. restart the protocol, i.e., call INIT()

4 Update

To keep the data structure up to date we apply the following simple straight-
forward strategy: As long as there are fewer than logc n updates processed since
the last call of INIT, the precision of the approximated ranks can also only differ
by an additional O(logc n) (for a predefined constant c > 1). We apply a simple
standard counting technique to verify that the current number of processed UPD
operations is O(logc n) in expectation. If more UPD operations are identified, the
current data items in the data structure are discarded and the Sketch(t) is built
from scratch.

Consider the protocol for the UPD operation as presented in Algorithm 2. It
applies a randomized counting technique to identify that there are more than
Θ(logκ n) updates since the last INIT operation. It is easy to verify by applying
standard Chernoff bounds that the protocol identifies cnt ≤ 2 c log n with high
probability. Thus, and applying a Chernoff bound again, it follows that the
number of UPD operations that took place since the last INIT operation is upper
bounded by 2 log2c n with high probability. With this, we can show the first part
of Lemma 2.

Lemma 7. After the last call of INIT, there are at most Θ(logκ n) UPD opera-
tions processed with high probability.

The UPD operation sends a message with probability pcnt, so it is easy to
verify that the expected number of messages sent is upper bounded by pcnt.

Now consider a sufficiently large instance (i.e., sufficiently many UPD oper-
ations). Assume that for a time step t at which INIT is called, t′ denotes the
next time step at which INIT is called to rebuild the data structure. Observe
that O(log n) messages where sent during [t, t′] by UPD and INIT operations
in total. Since Ω(logc/2 n) UPD operations where called with high probability,
the amortized bound for one single UPD operation follows.

For the number of communication rounds, consider the same interval [t, t′] as
described above. Since one execution of UPD uses a constant number of rounds
(excluding the call of INIT) and the INIT operation is called a constant number
of times, each UPD operation only uses an amortized constant number of rounds.
These observations conclude the argumentation for the second part of Lemma2:
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Algorithm 3. WEAK SELECT(k)

1. Determine � such that k ∈ C� holds.
2. output representative r ∈ I�+1.

Lemma 8. The UPD operation uses O(1/polylog n) messages in expectation
and amortized O(1) number of rounds.

5 Weak Select

For the sake of a complete presentation we shortly describe how the Sketch(t)
is used to answer a weak approximate k-Select request.

The WEAK SELECT operation simply identifies the class � in which the data
item d with rank k is expected (see Algorithm 3). Then, the representative r in
the class on level � + 1 is chosen.

Note that by the correctness of INIT and its analysis on the precision the
correctness of the protocol follows. It is also easy to see that the protocol is
executed by the server and thus does not need any further communication to the
sensor nodes. Since no further argumentation is needed, we restate the following
observation for completeness:

Observation 4. Given a correct Sketch(t), WEAK SELECT can be executed
without any communication. It is correct with probability 1 − 1/polylog n.

6 Strong Approximate k-Select

In this section we present an algorithm which gives an (ε, δ)-approximation for
the k-Select problem, i.e., a data item d is identified with a rank between (1−ε)k
and (1 + ε)k with probability at least 1 − δ. In other words, we propose an
algorithm and analyze its performance guarantee as claimed in Lemma3.

Algorithm Description. We apply a standard sampling technique to select
a data item as required. However, the data item given by the WEAK SELECT
operation is too weak to directly be followed by a sampling technique (cf. Phase 3
in Algorithm 4). Thus, we add the following two phases:

(1) A data item d′ is identified, such that a polylogarithmic error bound holds
with high probability. It might be that a large number of sensor nodes (i.e.,
ω(k · polylog n)) ‘survive’ till the last phase and apply the costly sampling
technique. With this step the event only occurs with probability at most
1/n.

(2) The second phase applies c log 1
δ′ calls of CFS to identify data items that have

a rank between k and 42 k with constant probability each. This number of
calls is to amplify the (success) probability that the final data item d∗ has a
rank between k and 42 k to at least 1 − δ′.
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Algorithm 4. STRONG SELECT(φ, k, ε, δ)

1. call WEAK SELECT(k) and
denote by (d′, h′) the returned data item and its height.

[Phase 1]
2. Determine �′ such that k · logc n ∈ C�′ holds.
3. repeat until a data item d′′ is found (i.e., d′′ �= nil)
4. Each node i with di ≤ d′ executes:
5. Call CFS(φ, h, k · logc n) and let (r, hr) be the data item and height.
6. if hr ∈ h(C�′) then d′′ := r.

[Phase 2]
7. for j = 1, . . . , c log 1/δ′ do in parallel
8. Each node i with di ≤ d′′ executes:
9. call CFS(φ, hr, k) on the active nodes and let (d∗

j , h′
j) the output.

10. d∗ := Median(d∗
1, . . . , d

∗
c log 1/δ′)

[Phase 3]
11. Each node i with di < d∗ executes:
12. Toss a coin with p := min

(
1, c

k
· Sε,δ

)
.

13. On success send di to the server.
14. The server sorts these values and outputs dk̃, the p · k-th smallest item.

Note that the internal probability δ′ will be defined as 1/polylog n which is
a result of the analysis. Important is that the calls of CFS do not change the
information of Sketch(t) stored in the data structure. Here, they are only used
‘read-only’ and are not overwritten.

Analysis Outline. We split our analysis and consider each phase separately.
First, we show that Phase 1 determines a data item d′ with a rank which is
by a polylogarithmic factor larger than k with high probability. This needs
O(log log n) messages and O(log log n) rounds in expectation.

Afterwards, we consider Phase 2 which determines a data item d′′ with a
rank only a constant factor larger than k with probability at least 1 − δ′, where
δ′ can be chosen arbitrarily small.

Finally, Phase 3 applies a sampling technique to determine the final data
item d which yields the property as required by Lemma3.

We use the notation as given in the protocol and use d′ to denote the data
item given by the WEAK SELECT operation, d′′ the data item determined by
Phase 1, and d∗ the data item given by Phase 2. We do not need any further
analysis for the property of data item d′ since we analyzed its precision (and the
given success probability bounds) in the past sections.
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Analysis of Phase 1. We consider Phase 1 of the STRONG SELECT operation
and analyze the precision of the rank of item d′′, the expected number of messages
and the number of communication rounds.

Lemma 9. For a given constant c, there exist constants c1, c2, such that Phase 1
as given in Algorithm4 outputs a data item d′′ with a rank between 7k · logc1(n)
and 7k · logc2(n) with probability at least 1 − n−c.

Proof. We use a simple argument to argue on the probability to obtain a data
item within a multiplicative polylogarithmic precision bound:

Consider the event that the rank is strictly smaller than 7k · logc1 n. Thus,
one node i of the 7k logc1 n − 1 nodes has drawn a height hi ≥ log(7k logc n).
We show (by applying Chernoff bounds) that this probability is upper bounded
by n−c′

, where c′ depends on c and c1. For the remaining case (i.e., the rank is
strictly larger than 7k · logc2 n) the same argument is applied.

Let X denote the rank of the data item d′′ which is identified by
STRONG SELECT. Now let X1 be drawn from Binom(n = 7k logc1 n, p =
(1/2)log(7k logc n)), and let X2 ∼ Binom(n = 7k logc2 n, p = (1/2)log(7k logc n)).
Observe that it holds γ1 = E[X1] = logc1−c n and γ2 = E[X2] = logc2−c n.
Thus, Pr[X < 7k logc1 n] ≤ Pr[X1 > (1 + (1/2) logc−c1 n) · logc1−c n] ≤
exp(− 1

12 (logc−c1 n)) ≤ n− c−c1−1
12 .

We obtain by the same argument similar results for the probability of the
event that the rank is larger than the claimed bound. ��
Lemma 10. Phase 1 uses an amount of O(log log n) messages in expectation.

Proof. We apply the law of total expectation and first consider the event that
WEAK SELECT is successful. Afterwards, the number of messages for a failed
call is considered.

First, consider the case that the WEAK SELECT operation is successfully
within the precision bounds. Then, O(log log n) messages on expectation are
used in this phase. On the other hand, consider the number of messages used if
the number of nodes that take part in this phase is n. Then, the protocol needs
O(log n) messages. However, the probability that WEAK SELECT is not within
these bounds is 1/polylog n which concludes the proof. ��

To upper bound the time needed for Phase 1, simply determine the range of
h and observe that this range is bounded by O(log log n). Since one data item is
found with probability at least 1 − 1/polylog n, in expectation after the second
repetition a data item is found.

Observation 5. Phase 1 of Algorithm4 uses O(log log n) number of rounds.

Analysis of Phase 2. Now consider one execution of the lines 7 to 10 as given
in Algorithm 4 (and restated in Algorithm5).

Lemma 11. One execution of lines 8 and 9 of Phase 2 in Algorithm4 outputs
a data item d with rank(d) ∈ [k, 42k], with probability at least 0.6.
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Algorithm 5. STRONG SELECT [Phase 2 restated]

7. for j = 1, . . . , c log 1/δ′ do in parallel
8. Each node i with di ≤ d′′ executes:
9. call CFS(φ, hr, k) on the active nodes and let (d∗

j , h′
j) the output.

10. d∗ := Median(d∗
1, . . . , d

∗
c log 1/δ′)

Proof. The algorithm outputs the (1/φ)α smallest data item d∗
j the server gets as

a response on height h = hmin. To analyze its rank, simply consider the random
number X of nodes i that observed smaller data items di < d. The claim follows
by simple calculations: (i) Pr[X < k] ≤ 1

5 and (ii) Pr[42k > X] ≤ 1
5 .

The event that X is (strictly) smaller than k holds if there are at least (1/φ)α

out of k nodes with a random height at least hmin. Let X1 be drawn by a binomial
distribution Binom(n = k, p = φhmin−1). It holds E[X1] = k ·φhmin−1 = 1

7 · ( 1
φ )α.

Then, Pr[X < k] ≤ Pr[X1 ≥ ( 1
φ )α] = Pr[X1 ≥ (1+6) 1

7φα ] ≤ exp(− 1
3

1
7φα 62) ≤ 1

5 .
On the other hand, the event that X is (strictly) larger than 42k holds if there

are fewer than (1/φ)α out of 42k nodes with a random height of at least hmin. Let
X2 be drawn by a binomial distribution Binom(n = 42k, p = φhmin−1). It holds
E[X2] = (42k)φhmin−1 = (42k)(7k)−1φ−α = 6

φα . Then, Pr[X > 42k] ≤ Pr[X2 <
1

φα ] = Pr[X2 < (1 − (1 − 1
6 )) 6

φα ] ≤ exp(− 1
2 ( 6

φα (1 − 1
6 )2) ≤ exp(− 25

12 ) ≤ 1
5 . ��

Note that we apply a standard boosting technique, i.e., we use O(log 1
δ′ )

independent instances, and consider the median of the outputs of all instances
to be the overall output (cf. Algorithm5). Thus, an output in the interval [k, 42 k]
is determined with probability at least 1 − δ′.

Observation 6. Phase 2 of Algorithm4 outputs a data item d∗ with
rank(d∗) ∈ [k, 42k] with probability at least 1 − δ′.

Lemma 12. Assume δ′ ≥ n−c for a constant c > 1. The second phase of Algo-
rithm4 uses O(log 1

δ′ · log log n
k ) messages in expectation.

Proof. Consider one instance of Phase 2 and applying arguments from Theo-
rem 2, the algorithm uses O(log log n

k ) messages in expectation for each iteration
of Steps 8 and 9. This number of messages is multiplied by O(log 1

δ′ ), since we
apply this number of executions in parallel.

It remains to show that the parallel execution does not need further messages
to separate each execution from the others: In more detail, each instance of Steps
8 and 9 has to be executed with an additional identifier. Since δ′ ≤ n−c holds, the
identifier has a range of integer numbers between 1 and O(log n) and thus needs
additional O(log log) bits. Since a machine word has a size of O(B + log n) the
identifier can be added to the message (or sent as a separate message such that
the number of messages has a constant overhead). This concludes the proof. ��
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Algorithm 6. STRONG SELECT [Phase 3 restated]

11. Each node i with di < d∗ executes:
12. Toss a coin with p := min

(
1, c

k
· Sε,δ

)
.

13. On success send di to the server.
14. The server sorts these items and outputs dk̃, the p · k-th smallest item.

Since we run the O(log 1
δ′ ) instances in parallel, and the server is able to pro-

cess all incoming messages within the same communication round, the number
of communication rounds does not increase by the parallel executions.

Observation 7. Phase 2 of Algorithm4 uses O(log log n) rounds.

6.1 Analysis of Phase 3

We are now prepared to propose the last phase of the algorithm which fulfills
the required precision as stated in Lemma 3.

We consider the final phase of the algorithm, i.e., we apply a standard sam-
pling technique (cf. Algorithm6): The server broadcasts the value d∗ which (as a
result of the analysis of Phase 2) has a rank between k and 42 k with probability
at least 1 − 1/polylog n. Each node i compares its data item dt

i with d∗ and
only takes part in the sampling process if and only if dt

i ≤ d∗ holds. Then, with
probability p = c

k
1
ε2 log 1

δ node i sends its data item to the server. In turn, the
server sorts each data item and outputs the p · k-th smallest item, which has a
rank of k in expectation.

For the sake of readability we introduce the notation Sε,δ := 1
ε2 log 1

δ and
are now prepared to show Lemma 3:

Theorem 3. Define δ′ := 1/polylog n. The STRONG SELECT operation (as
presented in Algorithm4) selects a data item dk̃ with a rank in [(1−ε) k, (1+ε) k]
with probability at least 1 − δ using O(Sε,δ + log2 log n) messages in expectation
and O(log1/φ log n) communication rounds.

Proof. From Lemma 12 we get that Phase 2 of the protocol uses an amount
of at most O(log log n

k log 1
δ′ ) messages in expectation and runs for O(log log n)

communication rounds. The remaining steps of Algorithm 4 need only one addi-
tional communication round and thus the stated bound on the communication
rounds follows. We omit the proof for the correctness of the algorithm, i.e., with
demanded probability the k-th smallest data item is approximated, since it is
based on a simple argument using Chernoff bounds.

It remains to show the upper bound on the number of messages used. For-
mally, we apply the law of total expectation and consider the event that Phase
2 of Algorithm 4 determined a data item d∗ with rank k ≤ rank(d∗) ≤ 42k and
the event rank(d∗) > 42k.

Observe that the sampling process in steps 2 and 3 yields O( rank(d∗)
k Sε,δ)

messages in expectation. Consider the event that Phase 2 determined a data
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item d∗ with rank k ≤ rank(d) ≤ 42k. Then, Phase 3 uses O(Sε,δ) messages
in expectation. Now consider the event that Phase 2 determined a data item d∗

with d > 42 k. It uses O
(

logc n
k Sε,δ

)
messages in expectation. Since the prob-

ability for this event is upper bounded by δ′, the conditional expected number
of messages is O

(
logc(n)

k Sε,δ · δ′
)
. Defining δ′ := log−c n the bound follows as

claimed. ��

6.2 One-Shot Approximate k-Select

For the sake of self-containment we propose a bound which considers all nodes
to take part in the protocol.

Corollary 1. Let c be a sufficiently large constant. Furthermore, let N = n,
φ := 1

2 , hmax := log n, and δ′ := 1
logc(n) . The protocol uses an amount of at most

O(Sε,δ + log n) messages in expectation and O(log(n
k )) expected rounds.

This represents the case (with respect to the choice of φ) that a small num-
ber of messages and a large number of communication rounds are used. This
observation is complemented by a lower bound of Ω(log n) in [4].

7 Top-k

In this section we present an algorithm which identifies all k smallest data items
currently observed by the sensor nodes, i.e., at a fixed time step t.

Note that by applying the MaximumProtocol (from [9]) k times and using
the Sketch(t) from our data structure, the problem can be solved using O(k ·
log log n) messages in expectation and O(k · log log n) rounds. By applying the
STRONG SELECT operation from the previous section (denote the output by
dK) and selecting all of the nodes i with a data item di ≤ dK , a bound of O(k +
log2 log n) expected messages and O(log log n) rounds in expectation follows.
These bounds are subject to be improved to O(k + log log n) expected messages
and O(k + log log n) expected rounds. Without our Sketch(t) the algorithm
needs k + log n + 2 expected messages and O(k + log n) expected rounds, which
might be of independent interest. We show a more general result which allows
to trade-off between number of messages and number of rounds. This translates
to k + 1−φ

φ log1/φ n + 1
φ expected total communication and O(φ · k + log1/φ n)

expected rounds for an arbitrarily chosen 1/n ≤ φ ≤ 1/2.

Protocol Description. Revisiting the past section, where we added additional
phases to improve precision, we take this idea and add as many phases in between
as possible. In detail, we apply the idea of identifying the k largest values in a
distributed (non-binary) search tree: The algorithm starts by drawing a random
variable hi from a geometric distribution, i.e., Pr[hi = h] = φh−1(1−φ). Observe
that a smaller choice of the failure probability φ results in smaller random heights
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Algorithm 7. TOP-k(φ)
Initialization()

1. call WEAK SELECT and let (d, h)
denote the obtained data item and
its height.

2. Only nodes i with di ≤ d are
considered.

3. Each node i draws a
random variable hi, i.i.d. from
a geometric distribution with
p := 1 − φ

4. Server defines
� := −∞, u := ∞,
S := ∅

5. call Top-k-Rec(�, u, h)
6. Raise an error if |S| < k

Top-k-Rec(�, u, h)

1. if h = 0 then
2. if |S| = k then return S,
3. else end recursion
4. Server probes sensor nodes i with

� < di < u and hi ≥ h
Let r1 < . . . < rj be the responses

5. call Top-k-Rec(�, r1, h − 1)
6. S ← S ∪ r1
7. for i = 1 to j − 1 do
8. call Top-k-Rec(ri, ri+1, h − 1)
9. S ← S ∪ ri+1

10. call Top-k-Rec(rj , u, h − 1)

hi, but a larger expected number of ‘siblings’. To perform an inorder treewalk
the server identifies the siblings of a node with respect to the current path of
the protocol by broadcasting values �, u and h to identify all nodes i with values
� < di < u and a height of hi ≥ h. The protocol is shown in Algorithm 7.

Analysis. To prove that the TOP-k operation uses O(k +log log n) messages in
expectation simply observe that the probability to send a message for a sensor
node within the Top-k is 1. Consider the remaining nodes, i.e., consider the set
V ′ of nodes that are not in the Top-k. To bound the number of messages, we
simply upper bound the number of messages used to find the maximum within
V ′. Since WEAK SELECT gives a data item such that k · logc2 n nodes remain,
and by the arguments in Theorem1, it holds:

Lemma 13. The TOP-k operation uses O(k+log log n) messages in expectation.

We consider the number of rounds, which concludes the proof for Lemma4.

Lemma 14. The TOP-k operation uses at most O(k + log log n) exp. rounds.

Proof. We structure the proof in two steps: First, we analyze the number of
rounds used to determine the minimum (i.e., the data item with rank 1), and
second, the number of communication rounds used to determine the Top-k.

Observe that the algorithm uses a linear amount of steps (linear in h), until
it reaches hmin = 1, after which the minimum is found. Afterwards, in each
step the algorithm recursively probes for nodes successively smaller than the
currently largest values, that are added to the output set S. Note that by the
analysis in Theorem2, the number of nodes that send a message in expectation
in each round is (1 − φ)/φ (for h < log1/φ(n)). Thus, in each communication
round there are Ω( 1

φ ) nodes in expectation that send a message, such that after
an expected number of O(φ · k) rounds the Top-k protocol terminates. ��
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Similar to the previous section, we can state a result for a one-shot compu-
tation of Top-k. This result might be of independent interest.

Corollary 2. For φ := 1
2 and h := log n, the Top-k protocol uses an amount of

k + log n + 2 messages in expectation and O(k + log n) rounds.

8 Future Research Perspectives

We see further applications of the Sketch in our data structure. Among others,
one (direct) application is to output an (axis aligned) bounding box for the given
data points. An interesting problem to consider is as follows: Each sensor node
observes its position in the plane and our task is to output the (sensor nodes
that form the) convex hull. The sensor nodes are mobile, i.e., they can move
between two time steps by a bounded speed. Let nh denote the number of nodes
on the convex hull and observe that Ω(nh) messages are needed to determine
the output. With the algorithms in this paper the convex hull can be computed
using O(nh · log n) messages. We ask whether we may apply (some variant of)
our Sketch such that O(nh · log log n) messages are sufficient to determine the
points on the convex hull.

Revisiting the analysis of our data structure we observe that we reduce the
communication especially if the adversary changes only a few data items at a
time. Additionally, we analyze a worst-case adversary who changes data items
with a small rank, i.e., with a polylogarithmic rank. It might be of interest to
consider restrictions of the adversary to prove stronger bounds: The node which
observes a new data item is chosen uniformly at random, or the new data item
observed is ‘close’ to the old value.
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