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Abstract. Anomaly detection (AD) systems are either manually built
by experts setting thresholds on data or constructed automatically by
learning from the available data through machine learning (ML). The
first requires profound prior knowledge and are non-adaptive to chang-
ing environments but can perform root cause analysis (RCA) to give
an understanding of the detected anomaly. The second has a huge need
for data, is unable to perform RCA and is often only trained once and
deployed in various contexts, leading to a lot of false positives. Fusing
the prior knowledge with ML techniques could resolve the generation
of these alarms and should define the causes. The primary challenges
to create such a detection system are: (1) Augmenting the current ML
techniques with prior knowledge to enhance the detection rate. (2) Incor-
porate knowledge to interpret the cause of a detected anomaly automat-
ically. (3) Reduce of human-involvement by automating the design of
detection patterns.
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1 Introduction

In recent years, there is an increasing interest in Internet-connected devices and
sensors, called the Internet of Things (IoT). These IoT devices continuously
generate data that describe their state and their context or environment. Sensor
monitoring systems have found their way into almost all industries and a variety
of research fields and applications such as transportation [5] and healthcare [19].
Such systems can yield valuable insights into a company’s physical assets and the
interaction between these assets. However, awareness is growing across industries
that strategically placed sensors have small added value without data analysis.
Companies that invest in and successfully derive value from their data hold a
distinct advantage over their competitors [29]. Both Anomaly detection (AD)
and root cause analysis (RCA) are methods to investigate irregularities in the
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data. They are becoming more accessible as more relevant data is generated and
tools for data analysis becoming widely available.

AD is the identification process of events or observations, which do not cor-
respond to an expected pattern or other items inside a dataset [19]. RCA helps
to guide the problem solver understand the real causes of detected anomalies
[17]. The detection process visualised in Fig. 1 represents the usual workflow.
First, historical data from different sources are used in a préprocessing step
to make sure that all the available records are uniform. Based on this cleaned
data, algorithms will learn the regular patterns and will detect the most relevant
characteristics. This pattern can now be used to identify different anomalies in
newly, unseen data. When the learned patterns diverge from this new data, an
action mechanism will be able to alert this anomalous behaviour, or the cause of
this unusual event can be investigated to resolve it. More concrete, suppose for
example a fully automated ventilation system available in modern houses today.
Historical sensor data will be used to determine the average levels of CO2. New
sensor data will be used to determine which room is currently underventilated
and the system acts by adapting the fan speed to resolve the high level of CO2.
Modern techniques monitor the household’s behaviour to react to the possible
causes of the detected anomalies. In our example, self-learning techniques opti-
mise the performance of the fan to get the house fully ventilated when people
arrive after work.

Fig. 1. Overview of the workflow of current anomaly detection systems

However, the AD and RCA tools of today have difficulties to adapt to chang-
ing behaviours. If in our ventilation example, a person works at home, the ven-
tilation system will detect abnormal behaviour and will be unable to react to
this new situation or is even unable to derive the cause if it is not explicitly
programmed or taught. Human-involved tuning is, therefore, frequently needed
to adapt these systems to multiple environments. Sensors can produce new infor-
mation at a fast pace, while enhanced analysis is needed to investigate whether
current observations are anomalous, resulting in many false alerts and unde-
tected events [6].

There is a need for adaptive, but still, accurate AD and RCA system that
can take directly into account the prior knowledge to optimise the detection of
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anomalies and identify their causes. In our example, work schedules and agendas
could be used as prior knowledge to optimise the ventilation process.

In summary, the challenges this research will tackle are: (1) Reducing the
number of falsely generated anomalies by incorporating available prior knowl-
edge (2) Automatic determination of the most plausible cause of the detected
anomalies, to give additional interpretability to human operators. (3) Adaptively
change the detection behaviour to a various number of contexts to reduce the
human-involvement during the design of such detection techniques.

2 State of the Art

Different research domains make use of the available prior knowledge to improve
AD and RCA. This section gives an overview of (1) learning models which uses
the available knowledge as input. (2) techniques which work directly with the
available information. (3) rule-based detection mechanisms.

2.1 Knowledge Incorporation in Data-Driven AD and RCA

Approaches for detecting anomalies in a dataset which do not require any pre-
defined rules, models, or prior knowledge limit the efforts needed for systems
designed by experts [8]. Most of these approaches are based on machine learn-
ing (ML) techniques and can process vast amounts of data. ML models can be
supervised or unsupervised, based on the availability of labelled data. Labelling
a significant amount of data for a domain-specific problem requires much human
involvement. Therefore, most AD problems belong to the category of unsuper-
vised learning due to unpredictable aspects of the data. In critical domains,
where faults have a significant impact, the primary goal of AD is not the speed
of the detection, but the accuracy or the reduction of the false negative and
positive rates [23].

The goal of AD detection technique is, therefore, to model the normal
behaviour. Statistical tests can be devised to determine if this behavioural model
explains the data samples, uncovering both temporal and spatial anomalies when
it does not succeed [20,28]. The detected anomalies are mostly hard to inter-
pret [22]. RCA techniques are therefore based on detection models using tree
structures and logics [2,30]

Knowledge nowadays is usually represented as a mesh of information, linked
up in such a way that it should be interpretable by machines. Such a mesh
of information is more generally known as the semantic web [3]. Many of the
semantic concepts inside various domains are described in so-called ontologies,
providing structured relations and the ability to reason on these concepts. Data
annotated by these ontologies is stored using node-edge triples in a knowledge
graph, relating prior information over multiple domains [14]. ML methods, in
general, are currently not able to take advantage of these graphical knowledge
representations. Therefore, techniques to transform graphs into a vectorial rep-
resentation are becoming more popular, resulting in embedding techniques [11].
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Knowledge graph embeddings usually map entities and relations to a vector space
and predict unknown triples by scoring the candidate triples [21]. Embeddings
are mostly designed to perform a single statistical relational learning task, like
predicting missing edges or predicting properties of nodes [12]. Recently designed
embedding techniques transform the graph triples (subject, object and relation
pairs) directly into vectors which can be reused for various tasks [15]. These
more general embeddings are particularly attractive for cross-domain knowledge
graphs, which can be used in a variety of scenarios and applications. Constructing
embeddings for dynamic knowledge graphs is, however, still problematic. High
variable behaviour, such as in sensor data streams, usually involve recalculations
due to the changed graphical representation.

Embedding techniques used in combination with the traditional ML tech-
niques usually have a low level of interpretability because decisions are based
on the vectors themselves, not on the interpretable initial graphical data. Tech-
niques to resolve this loss in interpretability are usually expensive and do not
scale for large graphs [25]. Song et al. [18] gave a broad overview of how to use
the existing general-purpose knowledge to enhance the ML processes, by enrich-
ing the features or reducing the labelling work using prior knowledge. No efforts
within this research domain are taken to use such an approach for developing
AD systems to our knowledge, probably due to the unsupervised nature of the
original detection problems.

2.2 Knowledge-Based Machine Learning

While embeddings translate the information into a manageable form for which
we already have many methods available, techniques exist to learn directly over
the knowledge graphs without any loss of information due to embedding trans-
formations. One such technique is the Relational Graph Convolutional Network
(RGCN), a method similar to neural networks but operating on graphs, devel-
oped specifically to deal with the highly multi-relational data characteristic of
realistic knowledge graphs [10]. Another research area focuses on the develop-
ment of predicate descriptions, using the available data and the existing prior
knowledge. This Inductive Logic Programming (ILP) techniques are based on
sound principles from both Logic and Statistic. Other combinations of ML tech-
niques and prior knowledge models exist [1,5], but none of them is currently
adapted to work with sensor streams or highly variable data because the evalu-
ation of the prediction also requires the additional prior knowledge.

2.3 Defining Prior Knowledge into Rule-Based Systems

Rule-based detection systems utilising expert information have the advantage of
being explainable and can determine the cause of the problem. They are how-
ever language dependent, do not scale with the increasing amount of data, and
the development is time-consuming because much human involvement is needed
[1,17]. Detection systems use techniques which track unwanted patterns in a data
stream to provide more scalable solutions to the highly variable data of today.
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Complex Event Processing (CEP) can be used to identify these abnormal events
using pattern matching techniques such as rule-based, model-based or paramet-
ric statistical approaches [19]. These approaches, however, lack of expressiveness
and flexibility to cope with complex events in different situations or different
contexts. Therefore, semantic complex event processing (SCEP) proposes the
semantic enrichment of the event streams, in which derived events are added in
addition to the already observed pattern [19]. SCEP has been used in diverse
applications comprising a variety of complex events including security and threat
detection events [7,13], sensor networks [4,26] and eHealth or ambient assisted
living [16,27]. SCEP systems make self-constrained decisions using a rule base,
making them ideal candidates to perform RCA in data streams. Despite the
benefits of SCEP, most patterns are static, and the anomalies must be defined
upfront to work correctly. It requires some human involvement to adapt and
update these patterns inside the multiple processing units [19].

3 Problem Statement

By analysing the state of the art methods, the following open problems can be
identified:

P1 Current AD techniques only use the data itself to determine the occurrence
of the unwanted behaviour.

P2 The frequently used accuracy metric misleads the functioning of the models
due to the high impact of the falsely generated alarms.

P3 AD and RCA techniques are optimised for offline purposes, making them
inappropriate to work with variable data, such as streaming environments.

P4 AD en RCA models are usually trained once and are therefore hard to adapt
to new contexts, sensors or environments.

P5 The design of RCA models for a specific domain requires much human
involvement.

P6 Most AD methods do not make interpretable decisions, reducing the ability
to perform RCA.

From this, the following hypotheses can be deducted:

H1 Incorporating prior knowledge in learning and reasoning algorithms will
outperform the detection rate of original AD ML techniques by at least 1%
in real-life cases.

H2 The F1-score, which relates the number of false negatives and false positives,
will be increased at least by 3% by incorporating the prior knowledge.

H3 Techniques which are adaptable to changing environments will reduce the
human involvement by more than 50%.

H4 Designed techniques must be applicable in streaming contexts, without caus-
ing any data-driven congestions.
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The following research question will be resolved to deliver the hypotheses proves:

Q1 Can prior knowledge, in the form of knowledge graphs or linked datasets,
be incorporated as simple input features in the currently existing AD ML
models to improve the detection of both false positives and false negatives?

Q2 Can current AD outcomes be transformed to enable RCA-based reasoning
for finding the cause with the highest probability of an anomalous observa-
tion or be representative for the decision they make?

Q3 Is it possible to reduce the human involvement by deriving explainable rules
from existing AD models inside a data stream and detect newly derived
types of events without retraining or increasing the computational costs?

4 Research Methodology and Approach

A system which fuses both ML and semantics will be designed to improve the
detection of anomalies together with the ability to determine their causes inside
a stream of data accurately. An overview of such a system is given in Fig. 2. Prior
knowledge will be used to derive rule patterns directly from the data stream and
improve both the AD and RCA to address the research questions defined in
Sect. 3. How this prior knowledge is incorporated in each of these three parts is
discussed in the following sections.

Fig. 2. Overview of the enhanced AD and RCA system

4.1 Improved Feature Selection for Enhanced AD

Embeddings can be used to incorporate prior knowledge into ML models as dis-
cussed in Sect. 2.1. These embeddings can be used as features for anomaly-based
ML systems but will operate in a pipeline of discrete steps. More concretely, the
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detection models will no further improve once the feature vectors are extracted
because the error signal from the performed detection task can no longer be used
to fine-tune the extraction step further. Instead of using the embedded represen-
tation of the knowledge graph directly, a new technique will transform the knowl-
edge graph directly into a matrix formation. Rows will represent subject-object
pairs, while the columns represent the relation types. Analysing this matrix can
require some computational effort because the computations scale linearly with
the number of cells or thus the number of links within the knowledge graph.
There is a high probability that important information is scattered all over the
matrix. The proposed technique will extract information from this matrix by
adaptively selecting a sequence of regions of interest. These regions of interest
represent the cells within the matrix with the most valuable information con-
cerning the anomalous links. A (bandit) reinforcement learning (RL) agent is,
therefore, an excellent candidate to control the choice of the region of interest,
as it can work with partially available information. The agent will select actions
related to the number of regions and the location in the matrix. The feedback
on the correctly detected anomalies will improve the region selection process of
the RL agent. Figure 3 gives an overview of this process. The detection rate can
be improved because the extracted information only focusses on the informative
links within the available prior knowledge.

Knowledge Graph Matrix notation
of interlinks

Select regions
of interest

Learning model

Link available

region

Fig. 3. Overview of the matrix knowledge learning process.

4.2 Interpretable Knowledge for RCA

ML-based detections reveal the relations between the selected features and the
provided outcome. Most of these feature vectors have, however, a low level of
interpretability, reducing the capability of determining the underlying cause of
the detected anomaly. The generated vectors, both from Sect. 4.1 and the previ-
ously mentioned embedding techniques, are called black-box features due to the
reduced interpretation of the generated values. Research is needed to reproduce
valuable information, which was available in the original knowledge graph, from
these embedded vectors. One method based on Generative Adversarial Networks
(GAN) can be used to transform the vectors back into an interpretable graph,
giving back the power to determine the cause of an anomaly. In such a GAN
network, the generator network constructs a graphical representation from a gen-
erated vector and inputs these graph structures to the discriminative network.
The discriminative system is supposed to detect whether the structure generated
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by the generative network resembles a part of the original knowledge graph. Both
networks update their performance until a low number of faults are generated,
and the discriminative system has difficulties in finding differences between fake
subgraphs from the original subgraphs. An overview of such a GAN process is
given in Fig. 4. Further analysis to determine the cause of the detected anomalies
is possible with these embedding interpretations.

Fig. 4. Overview of knowledge graph embedding using a Generative Adversarial
Network.

4.3 Adaptive Detection and Analysis for Streaming Data

Techniques to incorporate prior knowledge directly into data streams resulted
in the design of SCEP systems. Problems arise when many different anomalous
events need to be tracked. Rules are human maintained and can contradict. The
correct functioning of the system can, therefore, not be guaranteed. Rules should
be able to directly derivable from the ML-learning techniques used for the detec-
tion of anomalies in Sect. 4.1. White-box models can be translated easily into
rules and benefit from the ease of interpretability. In contrast, black-box models
do not have this interpretability, but methods exist to convert these models to
a set of rules [24]. To cope with the adaptive character of adding and removing
these generated model-based rules, a RL agent will decide which rules to acti-
vate. The pattern rule extractor in Fig. 2 will still test a subset of rules (actions)
using this approach, while adaptations and further improvements are ensured.
Feedback based on the number of rules or the complexity of the rule tests guar-
antees the efficiency of the RL agent. An overview of the learning agent is given
in Fig. 5. The designed technique will be able to operate in a changing environ-
ment where high variable data, such as in data streams, need to be analysed.
Automatic derivation of simple rules reduces the human involvement and can be
explainable, making RCA possible after the detections took place.
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Fig. 5. RL agent for rule selection.

5 Evaluation Plan

Each phase of Sect. 4 can be evaluated separately. The proposed technique of
Sect. 4.1 will be compared with existing embedding techniques, to show the
advantages. A comparison using the prior knowledge directly and the technique
proposed in Sect. 4.2 will reveal the benefits of fusing semantics with ML for
RCA. At last, evaluation of models using the original rule sets and the tech-
nique proposed in Sect. 4.3 will be made to determine their adaptiveness and
scalability. All this will be done using standardised benchmark RDF datasets
used for classification purposes in [15], but adapted here to detect the minority
classes as anomalies. The functioning of the full system will be tested using two
different proof of concepts:

– Pervasive Healthcare: In the eHealth domain, the available data from intel-
ligent devices and sensors correlate to prior knowledge. Profile information
of the patients can improve the detection of anomalies. The imec SWEET
study1 is such a case were stress analyses with sensor data can be improved
by incorporating additional context. Data will be used during this research
containing both raw sensor data available from wearables and context param-
eters based on the person’s habits.

– Transport and maintenance: In the transport and ventilation sector, many
devices are equipped with different types of sensors, investigating the onboard
electronics and engines [9]. Televic2 is such a partner in the railway domain,
utilising a high number of sensors on trains which produce floats of data
for further analysis. Renson3 controls the airflow of many households, based
on sensor observations per room. Several contextual parameters, such as the
weather, influence the measures. To reduce these unwanted alerts, this prior
knowledge must be fused with the available sensor data.

1 https://www.imec-int.com/en/articles/imec-s-sweet-study-collects-world-s-largest-
dataset-on-stress-detection.

2 https://www.televic-rail.com.
3 https://www.renson.eu.

https://www.imec-int.com/en/articles/imec-s-sweet-study-collects-world-s-largest-dataset-on-stress-detection
https://www.imec-int.com/en/articles/imec-s-sweet-study-collects-world-s-largest-dataset-on-stress-detection
https://www.televic-rail.com
https://www.renson.eu
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6 Conclusions

In this proposed research, techniques will be developed for improved AD and
RCA in a sensor stream environment. While current techniques only focus on
the data themselves, the proposed methods will incorporate prior knowledge to
reduce the number of false positive and negatives. Analysing the cause of an
anomaly will be possible with the design of an interpretable embedding tech-
nique. At last, adaptiveness with less human involvement can be achieved in
data streams by automatic derivation of learning rules from already existing
models. The full system will be evaluated with two use cases for two different
domains. I would like to thank my promotors prof. dr. ir. Filip De Turck and
dr. Femke Ongeae for their support and valuable input in the realisation of this
work. I would also like to thank Televic, Renson and imec for participating in
this research.
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Thoben, K.-D., von Cieminski, G., Kiritsis, D. (eds.) APMS 2017. IAICT, vol. 513,
pp. 407–415. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66923-
6 48

23. Ukil, A., et al.: IoT healthcare analytics: the importance of anomaly detection. In:
Conference on Advanced Information Networking and Applications, pp. 994–997
(2016)

24. Uzun, Y., et al.: Rule extraction from training artificial neural network. Multi.
Eng. Sci. Technol. 3(8), 2458–9403 (2016)

25. Wang, Q., et al.: Knowledge base completion via coupled path ranking. In: ACL,
pp. 1308–1318 (2014)

26. Xiao, F., et al.: New parallel processing strategies in complex event processing
systems with data streams. Distrib. Sens. Netw. 13(8), 1–15 (2017)

27. Xu, Y., et al.: Semantic-based complex event processing in the AAL domain. In:
9th International Semantic Web Conference (ISWC2010) (2010)

28. He, Y., et al.: Mechanism-indepedent outlier detection method for online experi-
mentation. In: IEEE International Conference on Data Science, pp. 640–647 (2017)

29. YE: Big data: Changing the way businesses compete and operate (2014)
30. Zheng, A.X., et al.: Failure diagnosis using decision trees. In: Proceedings of the

First International Conference on Autonomic Computing (2004)

https://doi.org/10.1007/978-3-319-53480-0_37
https://doi.org/10.1007/978-3-319-66923-6_48
https://doi.org/10.1007/978-3-319-66923-6_48

	Adaptive Anomaly Detection and Root Cause Analysis by Fusing Semantics and Machine Learning
	1 Introduction
	2 State of the Art
	2.1 Knowledge Incorporation in Data-Driven AD and RCA
	2.2 Knowledge-Based Machine Learning
	2.3 Defining Prior Knowledge into Rule-Based Systems

	3 Problem Statement
	4 Research Methodology and Approach
	4.1 Improved Feature Selection for Enhanced AD
	4.2 Interpretable Knowledge for RCA
	4.3 Adaptive Detection and Analysis for Streaming Data

	5 Evaluation Plan
	6 Conclusions
	References




