
Modeling and Querying Versioned Source
Code in RDF

Jacob Bellamy-McIntyre(B)

University of Auckland, Auckland, New Zealand
jbel071@aucklanduni.ac.nz

Abstract. Source code management is an active and fundamental area
of research where one of the key challenges is allowing developers to
maintain an understanding of software projects when it is being actively
developed in a distributed setting. Despite a number of well established
practices and tools to help keep track of modifications to a project, there
is a lack of a standard representation and query mechanism to inte-
grate different repositories and serve fine-grained retrieval tasks. In this
paper we propose modeling source code in resource description frame-
work (RDF) triples as it is the main standard for sharing semantic infor-
mation over the web. To support temporal queries over different source
code versions we present a temporal extension of SPARQL that uses an
in memory index of changes generated from a standard transaction log.
We have built a prototype system to demonstrate that the approach is
feasible, and present some preliminary results on query execution.

Keywords: Temporal databases · RDF · SPARQL · Static analysis

1 Introduction and Motivation

One of the key challenges in software engineering is supporting developers so
they can understand and maintain software projects under active development.
This problem is known as program comprehension and is especially challenging
for developers new to a project. When reading source code it is natural for
questions such as “which lines affect the value of this variable?”, or “does this
method call modify any data structure in addition to returning a value?”. While
different developer tools exist that aid in answering these kinds of questions,
more expressive information needs cannot be resolved in a standardised way.
This issue is aggravated when dealing with distributed source code that exists
with multiple versions as they may apply to different systems and use different
formats.

The Resource Description Framework (RDF) could be a suitable foundation
for building a standardised source code model that allows for queries over these
different formats using the SPARQL query language. As an increasing number
of projects are hosted on public software repositories it makes sense to share
information about those projects across the semantic web following linked data
principles, and doing so gives access to a wide range of existing semantic web
tools.
c© Springer Nature Switzerland AG 2018
A. Gangemi et al. (Eds.): ESWC 2018 Satellite Events, LNCS 11155, pp. 251–261, 2018.
https://doi.org/10.1007/978-3-319-98192-5_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98192-5_44&domain=pdf


252 J. Bellamy-McIntyre

In this work we specifically wish to give support for temporal source code
queries, where one can run their queries over the history of a project from its
version control repository, and determine when different changes occurred to
different source code artifacts. Being able to see the history of changes made
to say, a class, can aid in program comprehension as it allows one to see the
iterative process that went into building that class. Alternatively, one can use
these queries to search for the introduction of bug patterns to a project in an
automated fashion.

Our contributions are as follows: we propose a general RDF schema for source
code based on abstract semantic graphs, we have developed a triplestore that
maintains an index of all changes made to the store, we present the query lan-
guage LSPARQL that allows for temporal queries using that index and which
can be applied to typical triplestore transaction logs, and we have developed a
prototype of our system focusing on Java source code to show that our approach
can be practical. Our paper is structured as follows: Sect. 2 covers the state of
the art on querying source code and temporal RDF, Sect. 3 discusses more in
depth the problem we are trying to address, Sect. 4 describes our approach in
terms of our implementation, Sect. 5 gives some preliminary results in terms of
query execution speed on our prototype, Sect. 6 details how we wish to further
evaluate our approach in the future, and lastly Sect. 7 summaries and concludes
the work of this paper.

2 State of the Art

2.1 Querying Source Code

There have been numerous systems that have been developed to allow one to
perform queries over source code artifacts. Early examples include OMEGA
[1] and CIA [2] which used the relational model to represent the relationships
between different source code artifacts, and allowed queries via SQL. Over the
years several alternatives have been developed, such as the system ASTLog [3]
which used an abstract syntax tree representation of source code with queries
based around tree traversals, and CodeQuest [4] which was based on Datalog.
Rather than use an underlying database to store a source code model, the JQuery
eclipse plugin [5] instead answers queries directly against the eclipse API. More
recently, the Wiggle system [6] implemented source code queries with Neo4J
which uses the property graph model and the Cypher query language.

There have also been some implementations of modeling source code in RDF,
for instance CodeOntology [7] and Evolizer [8]. In the case of CodeOntology there
is no support for modeling multiple versions or supporting temporal queries over
them. For Evolizer, while the authors do briefly describe how multiple versions
of a project may be stored, there is no discussion on how one may form temporal
queries or how they maintain the identity of individual artifacts across changes.
The work of Ghezzi et al. [9] and Iqbal and Decker [10] allow higher level queries
on software evolution by modeling the meta data of open source projects. EvoOnt
[11] modeled entire source code repositories in RDF for the purpose of performing



Modeling and Querying Versioned Source Code in RDF 253

repository mining tasks such as detecting the introduction of code smells, but
their model remains relatively coarse-grained and does not support queries on
the statement level.

2.2 Temporal RDF

There has been some work on modeling time in RDF to be queried by SPARQL.
The work of Guiterrez et al. [12] introduced Temporal RDF where every RDF
triple additionally receives a temporal label describing the point in time or inter-
val in which it is valid. They described how temporal labeling could be repre-
sented in standard RDF by performing reification on every triple.

While one could represent temporal triples in this way using any standard
RDF triple store unfortunately it requires six additional triples for each triple
that requires a temporal label describing an interval.

Besides being less space efficient than they could be, it also makes SPARQL
queries cumbersome to write as they also need to refer to those six additional
temporal triples per underlying triple in each query. The problem is compounded
when we want the matched triples to be valid over some common overlapping
interval. This is because it would require comparing the valid intervals of each
matched triple with all the other matched intervals. The cumbersomeness of the
queries can be somewhat overcome by using a more concise language that trans-
lates temporal queries into regular SPARQL, as in [13], though efficiently answer-
ing these queries likely requires a specialised temporal index like tGrin [14].

There are a few alternatives to reification that have been explored, such
as singleton properties where a unique predicate is used to denote a specific
context to a relationship [15], and the work of Welty and Fikes [16] which instead
represented fluents by giving a unique identifier to individuals depending on
context. A separate approach again is to extend the basic RDF triple to also
include an annotation which can describe its valid interval, such as is done with
stRDF [17], aRDF [18] and AnQL [19]. The fundamental issue of this kind of
solution is that these extended RDF triples are no longer standard RDF and
so are not supported by standard tools, and are much less suited for sharing
across the semantic web. Tappolet et al. [20] suggested using a separate named
graph containing all the triples that hold for a specific interval and to use an
index which specifies which named graphs apply for any particular time instant.
This approach however is less applicable when few triples are valid for the same
intervals.

Temporal queries also arise in the context of data archiving and versioning.
The X-RDF-3x system [21] maintains an in memory index for triples that also
includes when each triple was added or deleted, which they use for single version
‘time travel’ queries. R&WBase [22] similarly supports single version queries,
but also takes into account standard version control operations like branching
and merging to determine whether a triple holds for a particular version. The
BEAR test suite [23] evaluates different archiving strategies over different stores
using temporal queries written in AnQL.



254 J. Bellamy-McIntyre

3 Problem Statement and Contributions

The goal of our research was to create a system that can parse source code
from a repository into RDF which would allow us to use source code queries
with SPARQL. The challenge was designing our system in such a way that
we could run queries to find changes made to specific source code artifacts in
the repository, and to allow queries over any historic state without needing to
materialize past versions. This presents three key problems:

1. Source code projects can span hundreds of thousands of lines. If we directly
represent the abstract syntax tree of each class in RDF, this can easily become
tens of millions of artifacts.

2. We require a means of supporting efficient temporal queries. Temporal reifi-
cation would require a large number of additional triples. Extending triple
patterns into quadruples with timestamps means that our triples would not
be consumable by standard RDF triplestores.

3. When presented with two separate versions of the same source code, we
require a way to associate artifacts in one version to the other. If we do
not, then practically we cannot track changes to artifacts.

The major contributions of the PhD are a new schema for modeling source
code in RDF and an extension to the SPARQL query language that allows for
temporal queries over a triplestores transaction log. We have additionally created
a proof of concept prototype system for Java source code.

4 Research Methodology and Approach

4.1 Overview

Our system has three major components. The first major component is our
parser, which takes abstract syntax trees generated by a public library and uses
those to construct an abstract semantic graph represented in RDF triples. The
second is the underlying triplestore which we have developed ourselves called
PDStore which uses a hash based indexing scheme. A key feature of PDStore is
that by default it indexes all changes that are made in the transaction log so that
queries can be run against any historic state. The query language LSPARQL is
the last major component, and it allows one to specify temporal queries which
are run against the changes described in the transaction log.

We parse all the classes of that project into abstract syntax trees, which our
parser then uses to generate an abstract semantic graph represented as a set of
RDF triples. Once all the classes have been parsed, we commit all the RDF triples
in a single transaction which adds them to the log and assigns each the timestamp
of the commit. We then sequentially repeat this process for each subsequent
version we wish to run queries over. When generating a new abstract semantic
graph after the first, we have to compare with the previous version to identify
triples that need to be removed as they no longer exist in the current version.



Modeling and Querying Versioned Source Code in RDF 255

Artifacts which are unchanged naturally gain no new triples. Once all versions
have been parsed they can be queried using LSPARQL. While currently our
implementation focuses on Java, this process can be straight forwardly repeated
for other declarative programming languages.

4.2 Abstract Semantic Graph Representation

An abstract syntax tree is a common representation of source code that is based
on the parse tree used by compilers that prunes away much of the low level
parsing such as punctuation. An abstract semantic graph (ASG) is a further
abstraction that treats the program as one expression, and each vertice is a
subexpression. Abstract semantic graphs differ from abstract syntax trees in
that there can be additional edges to different vertices (for instance denoting
invocation) and may contain back edges such as with recursion. Furthermore,
duplicate subexpressions that occur in different portions of the program can
reuse the same vertices. In our prototype system we currently parse all Java
artifacts down to the statement level. Figure 1 shows an example of an ASG we
create, with simplified identifiers.

We assume the abstract syntax tree for the source code is available as they
are a standard feature of source code parsing libraries. Given an abstract syntax
tree, generating an abstract semantic graph is not particularly difficult. It just
requires performing name resolution to associate the usage of some identifier with
its definition. Common subexpressions could be identified by using a hashing
scheme like what is done with merkle trees. What is much more difficult is
determining the changes made to specific artifacts across subsequent graphs.

Analogous to the notion of a superkey in the relational model, different arti-
facts can have different properties which we can use to define a unique identity
for that artifact, and if two artifacts across two different versions have these same

type hasName

con
tain

s
contains

co
nt
ai
ns

co
nt
ai
ns

ha
sN
am

e

useret
urn

Ty
pe

typ
e use

hasName

hasParam
eter

typ
e

retu
rnTy

pe

type

def

returnType

type
hasNa

me

type

hasName
type

PersonClassType

Person\getName
Person\setName

Person\name

Person\getName\return
0xb8ca3a798c04L

String "name"

"setName"
"getName"

void

AssignmentType

"Person"

MethodType
MethodType

Person\setName\name

Fig. 1. ASG of a simple class



256 J. Bellamy-McIntyre

properties then they are the same artifact. The most obvious of these are iden-
tifiers, such as class names, method names, and variable names. If two classes
in separate versions have the same fully qualified name including the package,
we can be fairly certain that they are the same artifact regardless of whichever
changes have been made. Likewise we can do the same with methods if we include
the method signature and containing class, and for variable declarations if we
include the scope of the variable. These same names can straightforwardly be
used in defining the IRIs used in RDF to identify them. For example, the bar()
method in the foo class could be recorded as “projectURI:foo/bar()”. The defi-
ciency of doing this is that if an artifact is renamed it assumes a new identity. If
the rename is of the class, then this will also change the identity of all containing
methods and variables.

For artifacts that cannot be uniquely identified by a name we see two viable
options. The first is to use a combination of type and position. For example
“the first while loop in the bar() method in the Foo class”. The second would
be to define its identity by all of its properties and sub properties, such as “the
while loop with this condition and these statements”. The former approach is a
straight forward way of tracking the identity of artifacts without identifiers for
which we can still create meaningful IRIs, but its identity can be usurped by the
insertion of another artifact of the same type before it and its identity will not
persist through a rename of a parent artifact or if the artifact is moved. The latter
approach essentially would give us hash based identifiers that are immutable and
so the only change of them that we can query is which artifacts contain them.
They are perfectly suited for representing common subexpressions though, and
can be recycled for representing reused code fragments across a project. While
there is some flexibility as to which identity scheme to use, the decision we made
with respect to this implementation which we used for our evaluation was to use
type and positional identification for block constructs like for loops and while
loops as well as variable assignments, and use hash based identifiers for other
statements and expressions. In our prototype, we have used string based IRIs
for representing the mutable artifacts, and hash-based integer identifiers for the
immutable expressions.

4.3 PDStore

PDStore is an RDF triplestore that uses a hash based index for all triples added
and deleted from the store. The standard (s, p, o) triple is instead represented
with a quintuple (t, c, s, p, o) where t is a timestamp and c is a change type that
is either an add change + or a removal change −. The modification of a triple
is represented by the deletion of the original triple, and the addition of a new
triple. This representation corresponds to the minimum amount of information
one would expect from a standard triplestore’s transaction log. Internally String
literal values such as URI identifiers are represented with 128 bit integers, with
the strings mapped to them using a dictionary.

Indexing is performed using a pair of hash based indexes called the Instan-
ceInstance index, and the RoleInstance index. The InstanceInstance index is a



Modeling and Querying Versioned Source Code in RDF 257

Table 1. Index query efficiency

Change patterns Iterator retrieval Get next

All queries with variable timestamp O(1) O(1)

(t,+, s, p, o), (t,+, s, ?p, o), (t,+, ?s, p, o), (t,+, s, p, ?o) O(log n) O(1)

(t,+, ?s, ?p, ?o), (t,+, s, ?p, ?o), (t,+, ?s, ?p, o) O(n) O(n)

(t, e, s, ?p, o), (t, e, ?s, p, o), (t, e, s, p, ?o) O(log n) O(n)

(t, e, s, p, o), (t, e, ?s, ?p, ?o), (t, e, ?s, ?p, o), (t, e, s, ?p, ?o) O(n) O(n)

hashmap that takes as a key both a subject and object pair, and has as its value
a list of all triples added and deleted that used both that subject and object
in temporal order. As such, it is used directly to answer (?t, ?c, s, ?p, o) queries.
The RoleInstance index takes the predicate as a key, and has a second hashmap
as its value. The second hashmap takes either a subject or object as a key, and
once again returns a list of all corresponding triples that were added or deleted
in temporal order. As such, it answers directly both (?t, ?c, ?s, p, o) queries and
(?t, ?c, s, p, ?o) queries1. Table 1 describes the runtime complexity of the different
query patterns over our log. Of note are queries where the change type is denoted
by e which is used for queries on a single snapshot. For all patterns the runtime
complexity for +, −, and +− (wildcard) change types is unchanged, so we only
list those for +. As in our prototype system there is a small finite number of
roles, we assume the time it takes to iterate over all roles to take O(1) time.

The O(n) complexity can arise for those patterns having to visit multiple
buckets in the hashmap. It might be that the earliest change in a bucket occurs
after the specified timestamp and so would need to be skipped. In the worst
case, the number of buckets which would have to be checked and then skipped
is proportional to n. For a case like (t, e, s, ?p, o) only a single bucket needs to be
visited, but it is possible that a triple might be added and removed repeatedly
but only a single one of those changes is related to the specified timestamp.
Practically however, the expected complexity O(log n) in normal use cases.

4.4 LSPARQL

As mentioned in the previous subsection, PDStore uses a quintuple representa-
tion of triples of the form (t, c, s, p, o), where t is a timestamp, and c is a change
type. For LSPARQL queries, the valid change types are +, to denote an added
triple, − to denote a deleted triple, e which means ‘exists’ and which is used for
queries on a specific snapshot. Regular SPARQL queries which do not specify
a timestamp and change type run the query on the most recent state, and are
equivalent to a query that uses the most recent timestamp with a change type
of e and thus give the same results as it would on a conventional triplestore

1 When a predicate/object pair is added to the roleInstance index the predicate pro-
vides a slightly different key than if the object was given as a subject.



258 J. Bellamy-McIntyre

that just had the latest snapshot. Currently LSPARQL is limited to conjunctive
queries with FILTER.

The temporal variable ?t is assigned a single timestamp denoting a point
in time in the case of patterns with change types +, −, and +−, and a pair
of timestamps denoting a valid interval in the case of e patterns. Computing
the valid interval for a given change takes O(1) time, as we store a reference
from an added change to one that removes it, and vice versa. Performing a
temporal join with two single timepoints requires them to be the same time
point. When performing a temporal join on two intervals however, we get the
intersection of those intervals. For instance, given the triple (Bob, likes,Alice)
valid in the interval (1, 4), and (Alice, likes,Bob) valid in the interval (2, 5), the
query (?t, e, ?x, likes, ?y), (?t, e, ?y, likes, ?x) then the corresponding mapping
µ would give µ(?t) = (2, 4). Sometimes a temporal join must be performed
between a single time point and an interval, as would be the case in a query like
(?t,+, ?x, likes, ?y), (?t, e, ?y, likes, ?x). In which case the mapping µ for this
query would give µ(?x) = Alice, µ(?y) = Bob, and µ(?t) = 2.

We support the standard SPARQL filters, and additionally have incorporated
filters for the different temporal relations described in Alan’s Interval Algebra,
such as meets, overlaps, and during.

Table 2. Query evaluation

Query # Time (seconds) Query description

1 0.16 All recursive methods in the latest version

2 0.9 All classes in the current version which previously
removed a method

3 0.11 All classes which implemented an interface that had
some methods that were later removed

4 3.97 All methods whose return type changed at some point

5 0.02 All variables that had at some point been both
incremented and decremented

6 0.09 SwitchTypes that later added a new SwitchCase

7 2.02 All pairs of assignments that modified the same variable
at different points in time

8 0.007 All classes that existed when the ‘HashQuery’ class was
added

5 Current Results

To demonstrate that our approach is viable, we have opted to parse the Chronicle
Map project, a Java based key-value store publicly available on Github2. The
latest version of the project consists of 381 Java files over 57603 lines of code.
2 https://github.com/OpenHFT/Chronicle-Map.

https://github.com/OpenHFT/Chronicle-Map


Modeling and Querying Versioned Source Code in RDF 259

While the project itself is only modestly large, the abstract semantic graph
model we are using is fairly fine grained, and we are also wishing to account for
every historical version which was developed over 2330 commits. In total our in
memory indexes account for around nine million separate triples.

We present our proof of concept by showing that our query system can answer
some ad hoc temporal queries in a reasonable amount of time. The machine
running our implementation has an intel I7-2600 cpu and 12 gigabytes of RAM.
For each temporal query we test the time taken to execute the query, and then
iterate over all of the results. The recorded time for each query is the average over
ten separate runs. The total in memory usage was 3.7 gigabytes. The results we
can see in Table 2 demonstrates our proof of concept, as all queries were answered
within a few seconds.

6 Evaluation Plan

Our current evaluation is very limited as it is simply a proof of concept. A
proper evaluation would consist of evaluating several different metrics. Firstly, a
performance evaluation should compare our query evaluation with other imple-
mentations. For other source code query systems we should compare the speed
of query execution using a single version, using a much larger set of queries, and
with projects of varying size. To evaluate our temporal queries, we can poten-
tially compare it to different repository mining tools to see if we can generate
a comparable amount of information about the repository in a faster amount
of time, or we could compare against temporal databases using more general
temporal datasets.

Secondly, we need to consider expressibility. We need to consider other tem-
poral SPARQL implementations, and determine whether LSPARQL can formu-
late equivalent queries by way of a formal comparison of our semantics. For our
source code model, we should try to establish which patterns of changes we can
easily capture and those we cannot.

The last main metric we would want to evaluate our system is usability. We
would like to do a study where we provide some software developers a sample
project repository, and we ask them to perform some tasks such as bug and
feature location, as well as determine when and by whom those features or bugs
were implemented. We would then introduce them to our query language, teach
them how to write our queries, and ask them to perform the same tasks using
our query language. We would record the time to do these tasks with both
approaches, and give a questionaire asking whether they found using our queries
easier or harder, and whether they could practically see themselves ever wanting
to use it.

7 Conclusion

In this paper we have presented our proposal for using RDF for modeling ver-
sioned source code. In Sect. 4.1 we described how we can accomplish this using



260 J. Bellamy-McIntyre

an abstract semantic graph representation. Incorporating temporal information
into RDF triplestores is an open research problem, and in Sect. 4.3 we described
a simple hash based temporal index based on entries in a standard transaction
log. Then, in Sect. 4.4 we proposed the language LSPARQL, a natural temporal
extension of SPARQL that can use such a temporal index to answer temporal
queries over transaction time. In Sect. 5 we described a prototype system we
have developed that parses Java source code into RDF and which we query with
LSPARQL, and have provided some preliminary results. In Sect. 6 we describe
how in the near future we wish to improve the evaluation.

References

1. Linton, M.A.: Implementing relational views of programs. In: ACM SIGSOFT
Software Engineering Notes, vol. 9, pp. 132–140. ACM (1984)

2. Chen, Y.F., Nishimoto, M.Y., Ramamoorthy, C.: The C information abstraction
system. IEEE Trans. Software Eng. 3, 325–334 (1990)

3. Crew, R.F., et al.: ASTLOG: a language for examining abstract syntax trees. DSL
97, 18–18 (1997)

4. Hajiyev, E., Verbaere, M., de Moor, O.: codeQuest : scalable source code queries
with datalog. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 2–27.
Springer, Heidelberg (2006). https://doi.org/10.1007/11785477 2

5. Janzen, D., De Volder, K.: Navigating and querying code without getting lost.
In: Proceedings of the 2nd International Conference on Aspect-Oriented Software
Development, pp. 178–187. ACM (2003)

6. Urma, R.G., Mycroft, A.: Source-code queries with graph databases-with applica-
tion to programming language usage and evolution. Sci. Comput. Program. 97,
127–134 (2015)

7. Atzeni, M., Atzori, M.: CodeOntology: RDF-ization of source code. In: d’Amato,
C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 20–28. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68204-4 2

8. Würsch, M., Ghezzi, G., Reif, G., Gall, H.C.: Supporting developers with natural
language queries. In: 2010 ACM/IEEE 32nd International Conference on Software
Engineering, vol. 1, pp. 165–174. IEEE (2010)

9. Ghezzi, G., Würsch, M., Giger, E., Gall, H.C.: An architectural blueprint for a
pluggable version control system for software (evolution) analysis. In: Proceedings
of the Second International Workshop on Developing Tools as Plug-Ins, pp. 13–18.
IEEE Press (2012)

10. Iqbal, A., Decker, S.: Integrating open source software repositories on the web
through linked data. In: 2015 IEEE International Conference on Information Reuse
and Integration (IRI), pp. 114–121. IEEE (2015)

11. Tappolet, J., Kiefer, C., Bernstein, A.: Semantic web enabled software analysis.
Web Semant. Sci. Serv. Agents World Wide Web 8(2–3), 225–240 (2010)

12. Gutierrez, C., Hurtado, C.A., Vaisman, A.: Introducing time into RDF. IEEE
Trans. Knowl. Data Eng. 19(2) (2007)

13. Perry, M., Jain, P., Sheth, A.P.: SPARQL-ST: extending sparql to support spa-
tiotemporal queries. In: Ashish, N., Sheth, A. (eds.) Geospatial Semantics and the
Semantic Web. Semantic Web and Beyond (Computing for Human Experience),
vol. 12, pp. 61–86. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-
9446-2 3

https://doi.org/10.1007/11785477_2
https://doi.org/10.1007/978-3-319-68204-4_2
https://doi.org/10.1007/978-1-4419-9446-2_3
https://doi.org/10.1007/978-1-4419-9446-2_3


Modeling and Querying Versioned Source Code in RDF 261

14. Pugliese, A., Udrea, O., Subrahmanian, V.: Scaling RDf with time. In: Proceedings
of the 17th International Conference on World Wide Web, pp. 605–614. ACM
(2008)

15. Nguyen, V., Bodenreider, O., Sheth, A.: Don’t like RDF reification? Making state-
ments about statements using singleton property. In: Proceedings of the 23rd Inter-
national Conference on World Wide Web, pp. 759–770. ACM (2014)

16. Welty, C., Fikes, R., Makarios, S.: A reusable ontology for fluents in OWL. FOIS
150, 226–236 (2006)

17. Koubarakis, M., Kyzirakos, K.: Modeling and querying metadata in the seman-
tic sensor web: the model stRDF and the query language stSPARQL. In: Aroyo,
L., et al. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 425–439. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13486-9 29

18. Udrea, O., Recupero, D.R., Subrahmanian, V.: Annotated RDF. ACM Trans. Com-
put. Logic (TOCL) 11(2), 10 (2010)

19. Lopes, N., Polleres, A., Straccia, U., Zimmermann, A.: AnQL: SPARQLing up
annotated RDFS. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol.
6496, pp. 518–533. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17746-0 33

20. Tappolet, J., Bernstein, A.: Applied temporal RDF: efficient temporal querying of
RDF data with SPARQL. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol.
5554, pp. 308–322. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02121-3 25

21. Neumann, T., Weikum, G.: x-RDF-3X: fast querying, high update rates, and con-
sistency for RDF databases. Proc. VLDB Endowment 3(1–2), 256–263 (2010)

22. Vander Sande, M., Colpaert, P., Verborgh, R., Coppens, S., Mannens, E., Van de
Walle, R.: R&Wbase: git for triples. In: LDOW (2013)

23. Fernández, J.D., Umbrich, J., Polleres, A., Knuth, M.: Evaluating query and stor-
age strategies for RDF archives. In: Proceedings of the 12th International Confer-
ence on Semantic Systems, pp. 41–48. ACM (2016)

https://doi.org/10.1007/978-3-642-13486-9_29
https://doi.org/10.1007/978-3-642-17746-0_33
https://doi.org/10.1007/978-3-642-17746-0_33
https://doi.org/10.1007/978-3-642-02121-3_25
https://doi.org/10.1007/978-3-642-02121-3_25

	Modeling and Querying Versioned Source Code in RDF
	1 Introduction and Motivation
	2 State of the Art
	2.1 Querying Source Code
	2.2 Temporal RDF

	3 Problem Statement and Contributions
	4 Research Methodology and Approach
	4.1 Overview
	4.2 Abstract Semantic Graph Representation
	4.3 PDStore
	4.4 LSPARQL

	5 Current Results
	6 Evaluation Plan
	7 Conclusion
	References




