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Abstract This work explores the realization of model predictive control (MPC)
design to an important problem of vortex shedding phenomena in fluid flow. The
setting of vortex shedding phenomena is represented by a Ginzburg-Landau (GL)
equation model and leads to the mathematical representation given by complex infi-
nite dimensional parabolic PDEs. The underlying GL model is considered within
the boundary control setting and the modal representation is considered to obtain
discrete infinite dimensional system representation which is used in the model pre-
dictive control design. The model predictive control design accounts for optimal
stabilization of the unstable GL equation model, and for the naturally present input
constraints and/or state constraints. The feasibility of the optimization based model
predictive controller is ensured through a large enough prediction horizon. The sub-
sequent feasibility is ensured in a disturbance free model setting. The applicability
of an easily realizable discrete controller design is demonstrated using simulation
with known parameters from the literature.
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1 Introduction

The realization of flow manipulation is an important technological achievement for
engineering applications. A variety of applications ranging from drag reduction, lift
enhancement, noise suppression and turbulence augmentation are prime examples
of efficient flow control realization with direct benefits to operational costs and sav-
ings [1]. One, among large number of modelling and control realization extensively
explored in practice and theory, is vortex shedding flow phenomena which describes
the flow past submerged obstacles for a Reynolds numbers slightly larger than the
critical value. Experiments show that feedback, from a suitable sensor can be used to
suppress the shedding, at least in a region close to the sensor location at a Reynolds
numbers close to the onset of vortex shedding. Examples of these experiments include
oscillating a cylinder normal to mean flow [2, 3] or stabilizing the wake by suction
and blowing on the surface of the body in wind tunnel [3–5]. Numerical simulation
to demonstrate vortex shedding control based on a feedback by fluid injection and
fluid suction applied at a cylinder wall is described in [6]. Optimal drag reduction in
an open-loop setting based on a discretized Navier-Stokes equations [7, 8], or on the
basis of reduced order representation using proper orthogonal decomposition (POD)
[9, 10] were also explored.

Optimal control of partial differential equation (PDE) models is a mature area
of research [11, 12]. For flow control, optimal control realizations have received
much attention [7, 8] where optimal control and adjoint-based suboptimal optimal
control is applied to the vortex-shedding suppression via blowing and suction at
cylinder wall. The success of these optimal control realization was conditional on
the cost function being defined as the difference among the given velocity field and the
velocity field of steady laminar flow, and on the optimization time interval duration
being larger than the vortex-shedding period. From these studies became clear that
the key element of optimal and suboptimal control realizations is the determination
of cost function to beminimized. The optimal control of suppressing vortex shedding
in the wake of a circular cylinder has been recently revisited in adjoint-based optimal
control framework [13]. There, a detailed exploration of the effectiveness of simply
increasing the optimization horizon length or the influence of different cost functions
with variousReynolds numberswas employed. In addition, the necessity to have a full
flow state information available for the optimal control law calculation is a limiting
factor in applying flow optimal control in practice. One recent remedy to address the
state reconstruction for vortex shedding flowmodels was provided by the application
of backstepping methodology [14–17].

The powerful backstepping transformation based controller and observer design
can be easily constructed for the Ginzburg-Landau (GL) equation. In this case the
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GL equation is derived for Reynolds numbers close to the critical Reynolds number
describing the onset of vortex shedding. Although the backstepping controller and/or
observer designs are applicable to large class of PDEs including fluid flow problems,
they do not address optimality nor the presence of actuator or possible state imposed
constraints in the control problem. In particular, input constraints cannot be accounted
for in backstepping designs which are of great interest for fluid flow control.

Exploring implementable, optimal (or suboptimal) design methodologies which
can be computationally realizable in the real time andwith the degree of robustness in
design and implementation are of interest.Recent studies in the realmoffluidflow, see
[18, 19] considered the application of the model predictive control (MPC) design in
the fluid flow setting.More recently flow separation and vortex shedding suppression
by applying numerical methods on a two-dimensional space grid that utilizes a large
scale numerical computational scheme to account for the cost function evaluation
with the predictive horizon equal to the period of vortex shedding has been considered
[20]. However, none of predictive control strategies mentioned account for the input
constraints or other constraints [21, 22]. For optimization based design of fluid flows,
the success of model predictive control stems from the successful application in the
context of distributed parameter systems (DPS) setting—in particular dissipative
parabolic PDEs. Discrete optimization based stabilizing controller realizations for
linear PDEs in [23, 24] explicitly account for instability in the model and optimality.
In addition, they account for input and/or state constraints which are typically found
in fluid flow applications.

In this work, MPC design has been explored in the setting of Ginzburg-Landau
(GL) equation describing the onset of vortex shedding in fluid flow. A complex
parabolic partial differential equation (PDEs) setting that is amenable to modal
model predictive control design is used. The designmethodologies explore boundary
applied actuation in infinite dimensional DPS setting [25], discrete model represen-
tation which accounts for quadratic cost function and simultaneous inclusion of input
and state/output constraints using convex optimization. The model predictive control
accounts for stabilization of the unstable mode by imposing the equality constraint
on the evolution of the unstable mode associated with the vortex instability. The input
constraints and state constraints are active over the optimization horizon which being
feasible calculates the control input. This control input is applied in closed-loop and
the process is repeated every discrete time instance with the prediction horizon win-
dow moving forward in time. It is important to note that since that disturbance free
setting is feasible this guarantees feasibility in the dissipative distributed parameter
systems setting. In particular, the finite time horizon over which the optimization is
performed is one of design variables which impacts the optimization feasibility of
the MPC realization. For a large enough time horizon the optimization problem is
feasible (at least for unconstrained linear MPC), however too large a time horizon is
impractical in realtime since solving the larger convex optimization problem takes
too long.

This paper is organized in sections which are described next. In the mathemati-
cal modelling and system representation section, the Ginzburg-Landau equation is
presented and transformed from the original geometric setting to a complex-value
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parabolic PDE with boundary actuation. The required boundary conversion to in-
domain exact state transformation is applied to yield the model representation which
is amenable to theMPC design. The constraints and model predictive control section
provides design of a predictive constrained stabilizing controller which accounts for
input and state constraints in an explicit manner. Finally, in the GL numerical simula-
tion with constrainedMPC section, representative simulations of GL equation model
under MPC control law in the feedback loop provide numerical demonstration of the
method.

2 Mathematical Model and System Representation

A model of vortex shedding phenomenon for the flow past a 2-D circular cylinder is
given by the Ginzburg-Landau (GL) equation which was derived for Reynolds num-
bers close to the critical Reynolds number for the onset of vortex shedding, see Fig. 1.
This model has been shown to remain accurate for larger Reynolds numbers [17] and
is a nonlinear complex partial differential equation (PDE). Since the nonlinearities
in GL equation have a damping effect on large states, a linear stabilizing controller
is also stabilizing for large initial conditions [27]. The linear GL equation is:

∂A(ξ̃, t)

∂t
= a1

∂2A(ξ̃, t)

∂ξ̃2
+ a2(ξ̃)

∂A(ξ̃, t)

∂ξ̃
+ a3(ξ̃)A(ξ̃, t) (1)

A(0, t) = ũ(t)

A(ξd , t) = 0

where ξ̃ ∈ [0, ξd ] ⊂ R is space, t ∈ R
+ is time and A(ξ̃, t) is a complex-valued

function. Truncating the spatial domain is due to the fact that the upstream flow is
approximately uniform and the downstream subsystem can be approximated to any
level of accuracy by selecting a sufficiently large ξd [28]. Model parameters are real
positive constant a1 and complex-value space dependent functions a2(ξ̃) and a3(ξ̃)
(see [27] for more modelling details). This complex-value PDE can be unstable in
general and ũ(t) is the stabilizing boundary control to be designed.

Here A(ξ̃, t) represents a complex-valued function of (ξ̃, t)which is related to the
transverse fluctuating velocity along the flow centerline [16]. The possible unstable

Fig. 1 Schematics of vortex shedding in the 2D flow past cylinder [26]
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zero solution of nonlinear GL equation corresponds to the unstable equilibrium state
with symmetric vortices above and below the centerline. The actuation ũ(t) is the
transverse velocity applied at downstream end of cylinder ξ̃ = 0, which could be
physically realized by rotation of the cylinder.

The convective term in linear GL equation can be eliminated by applying
the following invertible state transformation x̃(ξ̃, t) = A(ξ̃, t)g(ξ̃), where g(ξ̃) =
exp

(
1
2a1

∫ ξ̃

0 a2(η)dη
)
. The space is transformed to [0, 1] with the use of ξ =

(ξd − ξ̃)/ξd coordinate transformation, resulting in the following PDE:

∂ x̃(ξ, t)

∂t
= a

∂2 x̃(ξ, t)

∂ξ2
+ b(ξ)x̃(ξ, t)

x̃(0, t) = 0 (2)

x̃(1, t) = ũ(t)

x̃(ξ, 0) = x̃0

where a = a1/ξ2d and b(ξ̃) = − 1
2a

′
2(ξ̃) − 1

4a1
a22(ξ̃) + a3(ξ̃), and a′

2-denotes deriva-
tive with respect to space.

We consider the complex Hilbert spaceH = L2(0, 1) with the inner product and
norm given by:

〈w1, w2〉 =
∫ 1

0
w1(ξ)w2(ξ)dξ

‖w1‖ = 〈w1, w1〉 1
2

where the over bar represents complex conjugation andw1, w2 are any two complex
functions in L2(0, 1). To formulate (2) as an abstract boundary control problem, the
state function x(t) on the state-space H is defined as x(t) = x̃(ξ, t) for t > 0 and
ξ ∈ (0, 1). The system (2) can now be written as:

dx(t)

dt
= Ãx(t) (3)

Bx(t) = ũ(t) (4)

x(0) = x0 (5)

where Ã is the spatial differential operator:

Ã := a
d2

dξ2
+ b(ξ) (6)

with domain D(Ã) = {ψ ∈ H : ψ,ψ′ abs. cont.,ψ(0) = 0}, while the boundary
operator is defined as Bx(t) := [x(ξ, t)]ξ=1 = u(t) with domain D(B) ∈ H.
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The above equation has non-homogenous boundary conditions and the operator
eigenvalue problem cannot be solved in this form. To transform this equation into an
equivalent distributed (in-domain) control problem, it is assumed that there exists a
new operator as:

Ax(t) = Ãx(t), f or all ψ ∈ D(A) (7)

where domain of operator D(A) = D(Ã) ∩ ker(B) and that there exists a function
B(ξ) such that for all ũ(t) and Bũ(t) ∈ D(Ã). This results in

BBũ(t) = ũ(t)

It is common [25, 29] to use the state transformation p(t) = x(t) − Bũ(t) to
represent the dynamical system with distributed control. By applying an addi-
tional condition ÃB = 0 to calculate the function B(ξ) a decoupling of boundary
applied input and model states is provided. Solution of the following two value
boundary value problem given as ÃB = 0 with the associated boundary conditions
D(B) ⊂ D(Ã) ⊂ D(B̃), is needed. This is written as:

a
d2B(ξ)

dξ2
+ b(ξ)B(ξ) = 0

B(0) = 0

B(1) = 1

Next applying the state transformation p(t) = x(t) − Bũ(t) to expression (3–5), the
system representation is:

dp(t)

dt
= Ap(t) − B ˙̃u(t)

p(0) = p0

(8)

where the initial condition is p0 = x0 − Bũ(0) and over-dot represents the time
derivative. It can be easily shown that

A∗(·) = a
d2(·)
dξ2

+ b̄(·)

with D(A∗) = D(A) being the adjoint operator of A.
The analytical calculation of the spectrumof these operators is not straightforward,

because the coefficient b(ξ) is a function of space. However, there exists an analytical
solution for a constant b with eigenvalues and eigenfunctions given by:
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λn = b − an2π2

φn = C1 sin(nπξ)

with n = 1, 2, . . .. The eigenvalue problem of A∗ has the solution

λ∗
n = b̄ − an2π2

φ∗
n = C2 sin(nπξ)

In these equations C1 and C2 are arbitrary complex constant numbers that must
satisfy C1C2 = 2. The orthonormality property

〈
φn,φ

∗
m

〉 = δmn is maintained, e.g.,
(C1,C2) = (

√
2,

√
2) or (2 + i, 0.8 + 0.4i). Note, that for a complex constant b,

eigenvalues of A are not on the real axis and do not appear in complex conjugate
pairs unlike for a real constant b. However, each eigenvalue λn is the conjugate
complex of the corresponding adjoint eigenvalue λ∗

n . For the case of a real constant
b operator A becomes self-adjoint and λn = λ∗

n , as expected.
When the coefficient b(ξ) is a function of space, analytical calculation of the

spectrum ofA andA∗ is not possible. Thus in what follows, numerical methods are
used to find a solution to these eigenvalue problems.

Consider the ordered (with respect to real parts) eigenvalues λn of the oper-
ator A. The complex space H can be decomposed into modal subspaces Hs =
span(φ1,φ2, . . . ,φm) and the complementH f = span(φe

m+1,φ
e
m+2, . . .),H = Hs ⊕

H f with�(λm+1) < 0. Defining the orthogonal projection operators Ps and Pf such
that ps = Ps p and p f = Pf p, the state of the system (8) can be decomposed into

p(t) = ps(t) + p f (t) = Ps p(t) + Pf p(t)

Applying orthogonal projection operators Ps and Pf to (8), results in

dps
dt

=As ps − Bs
˙̃u

dp f

dt
=A f p f − B f

˙̃u
ps(0) =Ps p0
p f (0) =Pf p0

whereAs = PsA,A f = PfA, Bs = Ps B and B f = Pf B.Using this decomposition,
the dynamics of the system (8) is given by two parts. The first part is the slow and
possibly unstable subsystem with As = diag(λ1,λ2, · · · ,λm

l ), a diagonal matrix of
slow eigenvalues. The second part is the exponentially stable fast subsystem with
A f which is an unbounded exponentially stable (since �(λm+1) < 0) differential
operator.
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Introducing a new variable u(t) = ˙̃u(t), the system equations are augmented and
rewritten as:

⎡
⎣

˙̃u(t)
ṗs(t)
ṗ f (t)

⎤
⎦ =

⎡
⎣
0 0 0
0 As 0
0 0 A f

⎤
⎦

⎡
⎣

ũ(t)
ps(t)
p f (t)

⎤
⎦ +

⎡
⎣

1
−Bs

−B f

⎤
⎦ u(t) (9)

with ũ(0) = 0. Note that when the condition ÃB = 0 is applied, the state operator in
(9) is diagonal with zero off-diagonal elements which implies decoupling of dynamic
modes (ps-slow and p f -fast).

3 Constraints and Model Predictive Control

The ability to explicitly handle input and state constraints makes MPC widely used
in the control community. In this section constraints are applied to the system repre-
sented in (9) following [23, 24]. As previously mentioned the physical interpretation
of the complex function A(ξ̃, t) is the real part represents the transverse fluid velocity.
The following input and state constraints on the GL equation are considered:

Umin ≤ � (ũ(t)) ≤ Umax (10)

Amin ≤ �
(∫ ξd

0
A(ξ̃, t)r(ξ)d ξ̃

)
≤ Amax (11)

The first constraint limits the actuation in terms of the velocity at the downstream
end of cylinder (related to the rotation of the cylinder). The second constraint is a
limit on the velocity along the centerline. The values Umin, Umax, Amin and Amax

are real numbers representing the lower and upper bounds of the manipulated input
and state constraints. The real valued function r(ξ) is a state constraint distribution
function and describes how the state constraint is applied in the spatial domain.

To formulate the problem in MPC framework, the dynamical system (9) is dis-
cretized. Although, the continuous-time system representation can be discretized
exactly for finite dimensional systems, for the infinite dimensional system (9) the
system dynamics are approximated by considering the slow and a limited number
of fast modes. Applying the Galerkin method and using same notation for the state,
system (9) is discretized as:

⎡
⎣
ũk+1

pk+1
s

pk+1
f

⎤
⎦ =

⎡
⎣
1 0 0
0 Ad

s 0
0 0 Ad

f

⎤
⎦

⎡
⎣
ũk

pks
pkf

⎤
⎦ +

⎡
⎣

h
−Bd

s
−Bd

f

⎤
⎦ uk

⎡
⎣
ũ1

p1s
p1f

⎤
⎦ =

⎡
⎣

0
ps(0)
p f (0)

⎤
⎦ (12)
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for a sample interval of h and the sample time is k = 1, 2, . . .. All the matrices
appearing in this equation are in the associated complex spaces.

However, for the MPC formulation, specifically the optimization objective func-
tion, systems with states belonging to real spaces are needed. Therefore, real and
imaginary parts of Eq. (12) are separated to get:

[�(πk+1)

�(πk+1)

]
=

[�(Ad) −�(Ad)

�(Ad) �(Ad)

] [�(πk)

�(πk)

]
+

[�(Bd) −�(Bd)

�(Bd) �(Bd)

] [�(uk)
�(uk)

]

(13)[�(π1)

�(π1)

]
=

[�(π(0))
�(π(0))

]
(14)

where

πk =
⎡
⎣
ũk

pks
pkf

⎤
⎦ , π(0) =

⎡
⎣

0
ps(0)
p f (0)

⎤
⎦

and Ad and Bd are the state and input matrices in (12), respectively. Input constraints
(10) can be readily written in the form of constraints on �(π). Using (13) and
projecting p on the eigenfunctions basis {φn}, it is straightforward to reduce the state
constraints (11) to

Amin ≤ � (
Cπk

) ≤ Amax

where the first element of C is
∫ 1
0 (B(ξ)r(ξ)/g(ξ)) dξ and the remaining ones are∫ 1

0 (φn(ξ)r(ξ)/g(ξ)) dξ, n = 1, 2, · · · . Finally, the MPC controller design as mini-
mization of the quadratic cost objective function is formulated.

In general, the discrete form of the MPC controller design allows the quadratic
form of the cost function which accounts for the input and state evolution penalties to
be defined. The standard discrete MPC controller design takes the form of quadratic
optimization functional subjected to a linear model (12), input and state/output con-
straints:

min
u

∞∑
j=0

[ū j p j
s p j

f ]Q
⎡
⎣
ū j

p j
s

p j
f

⎤
⎦ + u j Ru j (15)

s.t. Eqs.(12), (11), (10) (16)

where Q and R are penalties on state and input control evolution. This quadratic
programming problem is an infinite dimensional and the problem needs to be trans-
formed into a finite dimensional optimization problem. This is accomplished by con-
sideration of the prediction horizon N . The optimization is realized by considering
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the finite horizon N with the condition that all unstable modes of the system are
stabilized by calculated control input solution of the optimization problem. The
cost of the infinite horizon contribution is associated with the evolution of the
stable modes and therefore can be expressed as finite cost (or cost to go). The above
expression now takes the following form:

min
u

N−1∑
j=0

[ū j p j
s p j

f ]Q
⎡
⎣
ū j

p j
s

p j
f

⎤
⎦ + u j Ru j + [ūN pN

s pN
f ]Q̄

⎡
⎣
ūN

pN
s

pN
f

⎤
⎦ (17)

s.t. Eqs.(12), (11), (10) (18)

where Q̄ is the cost associated with the evolution of the stable dynamics of the linear
GLmodel over the infinite horizon. Now due to the specific form of boundary control
realized MPC design, the above cost at time instance k can be expressed in the form
of real and imaginary parts of (12). So now the cost associated with the boundary
actuation is penalized with the Qu , the state evolution is penalized with the Qs while
the penalties associated with the terminal state in the model predictive control are
given by matrix Q̃. This results in:

min
ũ

∑N−1
j=0

(
Qu

∣∣ũk+ j
∣∣2 + Qs

[
�(pk+ j

s )′ �(pk+ j
s )′

] [
�(pk+ j

s )

�(pk+ j
s )

])
+

[�(ũk+N ) �(ũk+N ) �(pk+N
s )′ �(pk+N

s )′
]
Q̃

⎡
⎢⎢⎣

�(ũk+N )

�(ũk+N )

�(pk+N
s )

�(pk+N
s )

⎤
⎥⎥⎦ (19)

subject to dynamics of the system (13) and the constraints:

Umin ≤ � (
ũ j

) ≤ Umax (20)

Amin ≤ [�(C) −�(C)
] [�(π j )

�(π j )

]
≤ Amax (21)

for j = 1 ≤ j1, j1 + 1, . . . , j2 ≤ N . The weights associated with control input are
Qu > 0, the slowmodes are Qs > 0, Q̃ which is a positive definite matrix associated
with the terminal penalty, and N is the horizon length. The above optimization
problem by discrete MPC design methodology takes the following form of a finite
dimensional convex optimization problem:
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min
ũ

[�(ũ0) �(ũ0) · · · �(ũN−1) �(ũN−1)
]
H̄

⎡
⎢⎢⎢⎢⎣

�(ũ0)
�(ũ0)
· · ·

�(ũN−1)

�(ũN )

⎤
⎥⎥⎥⎥⎦

+ [�(ũ0) �(ũ0) · · · �(ũN−1) �(ũN−1)
]
Ḡπ(0)

Ā

⎡
⎢⎢⎢⎢⎣

�(ũ0)
�(ũ0)
· · ·

�(ũN−1)

�(ũN−1)

⎤
⎥⎥⎥⎥⎦

≤ B̄

with H̄ , Ḡ, Ā and B̄ beingfinite dimensionalmatrices. In this problem, the objective is
to minimize the vector

[�(ũ0) �(ũ0) �(ũ2) �(ũ2) · · · �(ũN−1) �(ũN−1)
]′
of finite

length N by solving quadratic optimization problem. If optimization is feasible, then
the first control input �(ũ0) and �(ũ0) is applied to the system and the horizon is
advanced one step forward in time then this is repeated moving forward in time. This
procedure is repeated for each time step and it can be shown that initial feasibility
implies subsequent feasibility in the case of disturbance free systems. Moreover, it
was shown that the control law obtained in this way optimally stabilizes the system
providing that the minimization problem is successively feasible [23, 24].

4 GL Numerical Simulation with Constrained MPC

Different values for the parameters of GL equation are reported in the literature due
to the different applications of the equation and dimensionality of the problem under
consideration. Milovanovic and Aamo considered the same problem presented here,
but only reported the real part of b(ξ) [30]. The backsteppingmethod [16]was applied
to this problem using explicit forms of the parameters given by Roussopoulos [3].
Since different parameters are used in the literature, here the form given in [3] is
used and fitted to b(ξ) and the values given by Milovanovic and Aamo [30], which
are given in Table 1 are used.

Table 1 GL equation parameters

Parameter Value

a1 0.01667

a2(ξ̃) (0.1697 + 0.04939i)ξ̃2 − (0.1748 + 0.06535i)ξ̃ − 0.09061 + 0.001485i

a3(ξ̃) (0.1563 − 0.001352i)ξ̃4 + (−1590 + 0.6278i)ξ̃3+
(0.3958 − 1.8577i)ξ̃2 + (−1.6852 + 1.6759i)ξ̃ + 1.2645 − 0.2489i
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The eigenvalue problem of operator A is given by

a
d2φ(ξ)

dξ2
+ b(ξ)φ(ξ) = λφ(ξ)

φ(0) = φ(1) = 0

(22)

Since b(ξ) is space dependent, no analytic expressions for eigenvalues and eigen-
vectors is possible in general. However, standard numerical methods can be used to
solve this problem. A finite element method results in eigenvalues and eigenvectors
shown in Figs. 2 and 3. Note that the first eigenvalue λ1 = 0.0963 + 0.0993i has a
relatively small positive real part which makes it unstable. This instability is very
sensitive to the parameters. Also note that when system (8) is extended to (9) a zero
eigenvalue is added to the set.

The function B(ξ) satisfying all the requirements is given by the solution to the
following ordinary differential equation:

a d2B(ξ)
dξ2

+ b(ξ)B(ξ) = 0 (23)

B(0) = 0 (24)

B(1) = 1 (25)

The solution to this equation is found numerically and is shown in Fig. 4.
ForMPC control of the GL equation, the sampling interval is chosen to be h = 0.1

which ensures capturing the fastest dynamics in the discretization and Qu = Qs = 1.
Theoptimization horizon is chosen to be N = 15 and limits on actuation are−Umin =
Umax = 0.2. It is assumed that r(ξ) is a smooth function being nonzero in a finite
spatial interval of the form [ξr − μ, ξr + μ], where μ is a small positive real number,
and zero elsewhere. Hence, the constraint (11) is applied at a single point ξr = 0.6667
with limits −Amin = Amax = 0.5. In the following, by a constrained result, we mean
that both input and state constraints are applied to the control problem in the form
of (10) and (11), respectively. The solution to the optimization problem is applied

Fig. 2 First ten eigenvalues
of A and A∗ (circles and
crosses represent complex
eigenvalue (+) with its
conjugates (◦)
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Fig. 3 Real (solid) and
imaginary (dashed) parts of
the first three eigenfunctions
of A and A∗
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Fig. 4 The function B(ξ)
obtained as solution to
expression (23) �(B)

�(B)

ξ
0 0.2 0.4 0.6 0.8 1

−2

0

2

4

to a finite difference discretization of the original PDE and the system is solved
numerically for each of the constrained case and the unconstrained case.

The real and imaginary parts of the system input for the unconstrained and con-
strained problem are shown in Fig. 5. Both control laws are stabilizing the unstable
system and the constraints on the real part are satisfied. Also, Fig. 6 shows the system
response in terms of �(A) at the constrained point which shows the satisfaction of
state constraint at this point. State evolution of the original PDE is shown in Fig. 7
where MPC is applied at ξ = 1. In the vicinity to the constrained point state evolu-
tion is shown in Fig. 8 which demonstrates satisfaction of the state constraints under
implementation of MPC control law.
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Fig. 5 Real and imaginary parts of the system inputs

Fig. 6 System response at
the constrained point ξr
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Fig. 7 Evolution of the real
and imaginary parts of the
state of GL equation under
MPC control law
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Fig. 8 Evolution of the state
of GL equation close to the
contained point under MPC
control law
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5 Conclusions

A linearGinzburg-Landau equation is used as amodel of vortex shedding instabilities
of the wake of a bluff body. An MPC formulation is presented for the control of
the Ginzburg-Landau equation. The boundary control problem is represented in a
complex abstract space as a standard state space formulation for which the available
MPC synthesis can be used. The proposed boundary controller achieves stabilization
of unstable GL equation and enforces both input and state of PDE constraints which
is demonstrated by numerical simulation. Finally, in our futurework the experimental
application of model based MPC design will be used to demonstrate the application
of well known and recognized MPC methodology to fluid flow control problems.
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