
Taxonomist: Application Detection
Through Rich Monitoring Data

Emre Ates1(B) , Ozan Tuncer1, Ata Turk1,
Vitus J. Leung2, Jim Brandt2,

Manuel Egele1, and Ayse K. Coskun1

1 Boston University, Boston, MA 02215, USA
{ates,otuncer,ataturk,megele,acoskun}@bu.edu

2 Sandia National Laboratories,
Albuquerque, NM 87185, USA
{vjleung,brandt}@sandia.gov

Abstract. Modern supercomputers are shared among thousands of
users running a variety of applications. Knowing which applications
are running in the system can bring substantial benefits: knowledge of
applications that intensively use shared resources can aid scheduling;
unwanted applications such as cryptocurrency mining or password crack-
ing can be blocked; system architects can make design decisions based
on system usage. However, identifying applications on supercomputers is
challenging because applications are executed using esoteric scripts along
with binaries that are compiled and named by users.

This paper introduces a novel technique to identify applications run-
ning on supercomputers. Our technique, Taxonomist, is based on the
empirical evidence that applications have different and characteristic
resource utilization patterns. Taxonomist uses machine learning to clas-
sify known applications and also detect unknown applications. We test
our technique with a variety of benchmarks and cryptocurrency miners,
and also with applications that users of a production supercomputer ran
during a 6 month period. We show that our technique achieves nearly
perfect classification for this challenging data set.

Keywords: Supercomputing · HPC · Application detection
Monitoring · Security · Cryptocurrency

1 Introduction

Resource utilization and efficiency of supercomputers are top concerns for both
system operators and users. It is typical to use figures of merit such as occupation
of compute nodes or total CPU usage to assess utilization and efficiency; however,
these metrics do not measure if the compute capacity is used meaningfully.

In fact, fraud, waste, and abuse of resources have been major concerns in
high performance computing (HPC) [1]. Wasted resources in supercomputing

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 92–105, 2018.
https://doi.org/10.1007/978-3-319-96983-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_7&domain=pdf
http://orcid.org/0000-0002-2292-2626


Taxonomist: Application Detection Through Rich Monitoring Data 93

stem from a variety of sources such as application hangs due to software and
hardware faults, contention in shared resources (such as high speed networks,
shared parallel file systems or memory), and fraudulent use (e.g., bitcoin min-
ing, password cracking). Bitcoin mining in supercomputing environments has
recently been gaining media attention [20,23]. Knowing which applications are
running on the system is a strong aid in addressing fraud, waste, and abuse
problems.

Knowledge of applications running on the system can also be used for
various system-level optimizations. Bhatele et al. have shown that network-
intensive applications can slow down other applications significantly [7]. Sim-
ilarly, Auweter et al. presented a scheduling method that leverages application-
specific energy consumption models to reduce overall power consumption [5].
Knowing the most common applications and their characteristics is also useful
to system architects who make design decisions, or to the supercomputer procur-
ers who can make better funding and procurement decisions based on knowledge
of typical application requirements.

Typically, supercomputer operators and system management software run-
ning on these large computers have no knowledge of which applications are exe-
cuting in the supercomputer at a given time. A supercomputer is shared by many
users and runs hundreds to thousands of applications concurrently per day [19].
These applications are compiled by users using different compiler settings, which
result in vastly different executables even if compiled from the same source. It
has been shown that static analysis of the binaries is not enough to detect the
same application compiled with different compilers or flags [13]. Furthermore,
users tend to use non-descriptive names for the binaries and scripts used in their
job submission (e.g., submit128.sh, a.out, app runner.sh). Therefore, naive
methods for detecting applications such as looking at the names of the processes
and scripts are not useful.

To address these challenges, we present Taxonomist, an automated tech-
nique for identifying applications running in supercomputers. To identify appli-
cations, Taxonomist leverages monitoring data that is periodically collected
at runtime from a supercomputer’s compute nodes. Monitoring data includes
detailed resource usage information (e.g., CPU utilization, network events, etc.),
and is typically used for application tuning [2], gaining information on system
usage to aid procurement [12], or for anomaly detection [26]. Each application
has (often non-obvious) resource utilization patterns that can be observed in
the monitored data. Taxonomist uses machine learning techniques to learn these
patterns in the data. Taxonomist can then identify known applications, even
when they are running with new input configurations, and also new (unknown)
applications. Specifically, our contributions in this paper are as follows:

– We present Taxonomist: a novel technique that uses machine learning to
identify known and unknown applications running in a supercomputer based
on readily available system monitoring data (Sect. 4). Taxonomist is able to
detect applications that are new to the system, as well as previously unseen
input configurations of known applications.



94 E. Ates et al.

– We demonstrate the effectiveness of Taxonomist on a production supercom-
puter using over 50,000 production HPC application runs collected over
6 months of cluster usage, a wide selection of benchmarks, and cryptocur-
rency miners (Sect. 5). We report greater than 95% F-score with this data set
(Sect. 6).

2 Related Work

Several prior approaches have explored identifying applications. Peisert has iden-
tified application detection as a problem in supercomputers [21]. He focused on
using MPI calls through Integrated Performance Monitoring (IPM) [24] to iden-
tify application communication patterns. Further work by Whalen et al. refined
the method to classify applications based on their communication graphs [28],
and DeMasi et al. used system utilization data collected by IPM to identify
applications [11]. These works are based on IPM, which is a tool that monitors
the MPI calls in HPC applications. IPM needs to be linked with the applications
and introduces up to 5% performance overhead [11].

Combs et al. have studied the applicability of using power signatures to
identify applications [8]. As Combs et al. observed, power traces from different
servers are not consistently comparable, so such a method is not scalable for
large-scale systems. Our evaluation confirms that using only power signatures is
insufficient to identify a diverse set of applications in large-scale systems.

Monitoring data has traditionally been used for analyses other than applica-
tion detection. One of the earlier examples of data analysis in supercomputers
was presented by Florez et al., who monitored system calls and library function
calls for anomaly detection in applications [14]. Similarly, Tuncer et al. used
monitoring data to detect node-level anomalies [26]. Agelastos et al. leveraged
monitoring data for troubleshooting and application optimization in a 1200-node
supercomputer [3].

In contrast to related work, Taxonomist uses a monitoring system with neg-
ligible overhead [2] that is capable of monitoring every application regardless of
MPI use, and does not need to be linked with the applications. Taxonomist can
be trained with a selection of applications of interest, and can reliably distinguish
these applications from the remaining applications. Our method can also detect
unknown applications it has not been trained with, which is very important for
practical real-world scenarios.

Another line of work aims at blocking unwanted applications. One way to
block cryptocurrency mining in supercomputers is to prevent miners from get-
ting the most recent blockchain additions using firewalls [22]. However, many
unwanted applications such as password crackers do not need to be connected to
the Internet. Furthermore, firewalls may result in packet losses, and it has been
shown that even very small packet loss is unacceptable for scientific computing
because of the high bandwidth requirements [10]. Another approach to prevent
waste might be to whitelist only applications compiled by the system adminis-
trators. However, availability is considered to be an important aspect of HPC



Taxonomist: Application Detection Through Rich Monitoring Data 95

Fig. 1. Two example metrics from /proc/vmstat for 11 applications with two different
input configurations, where each application is running on 4 nodes. These two metrics
can be used to distinguish among some applications, but cannot be used to reliably
detect each of the 11 applications.

Fig. 2. Clustering of 11 different applications, where each application is running on 4
nodes with two different input configurations. We manually assign different colors to
represent different applications. (Color figure online)

systems, and limiting the users to use only specific applications would harm the
user experience and limit the flexibility and usability of the systems. Therefore,
knowledge of the applications running on the system can be a very important
aid in blocking unwanted applications.

3 Motivation

Taxonomist uses monitoring data to identify applications. Modern monitoring
systems are able to continuously collect hundreds of metrics per second from
every compute node in an HPC system [2]. It is infeasible to manually inspect
this data and identify applications relying on rules of thumb and expert knowl-
edge; therefore, we design an automated approach to systematically discover the
differences between the applications.

Figure 1 shows two example metrics for a set of 11 applications we run
on a supercomputer (see Sect. 5 for details on experimental setup). The x-
axis shows the median of nr inactive anon, which represents the number of



96 E. Ates et al.

Fig. 3. Overview of Taxonomist.

anonymous memory pages that are inactive, and the y-axis shows the mean of
nr slab unreclaimable, which is the number of pages in the slab memory that
cannot be reclaimed. As seen in the figure, applications have different resource
usage characteristics. However, these two metrics are not sufficient to distinguish
between all applications. It is rather challenging to determine the best metrics to
distinguish among a large set of applications using intuition or simple methods.

Figure 2 demonstrates clustering of the same 11 applications using all
721 metrics we collect (see Sect. 4.1 for details of the metrics). To con-
struct this figure, we extract statistical features such as percentiles and stan-
dard deviation from the collected data (see Sect. 4.2), and cluster the statis-
tics corresponding to the compute nodes. For clustering, we use Ward’s
method and standardized Euclidean distance (our implementation uses Python
scipy.cluster.hierarchy.linkage). The results indicate that nodes running
the same application are close to each other in the feature space, but the clus-
tering is not perfect (e.g., miniMD is clustered incorrectly).

Manually finding which metrics are important to distinguish each applica-
tion among hundreds of monitored metrics requires extensive knowledge on the
metrics and applications. With supervised learning, the most relevant features
can be automatically selected, and applications can be reliably identified. Thus,
Taxonomist uses supervised learning techniques.

4 Taxonomist: A Technique for Identifying Applications

Taxonomist, outlined in Fig. 3, is a technique for identifying applications in large-
scale systems using monitoring data collected from the machine. The monitoring
data is collected from every compute node in a timeseries format. We then gen-
erate statistical features that reduce our storage and computation overhead,
while enabling us to retain meaningful information in the timeseries. Finally,
we train a classifier for each application to separate that application from the
rest of the applications using labeled historical data. At runtime, Taxonomist
analyzes monitoring data and labels each node’s application according to the
predictions from the classifiers. We also mark applications as unknown, based on
the confidence of each classifier.



Taxonomist: Application Detection Through Rich Monitoring Data 97

4.1 Monitoring

The first step of our technique is data collection. Typically some form of moni-
toring is in place in supercomputers. These systems collect numeric information
about the usage of the network, memory, CPUs and other subsystems.

We monitor individual nodes and consider data from all nodes that are run-
ning a specific application separately. This enables us to recognize a known
application that possibly runs on a different number of nodes than the number
of nodes in that application’s training runs.

4.2 Statistical Feature Extraction

After collecting monitoring data, Taxonomist removes a segment (40 s in our
implementation) from each end of the timeseries to account for the transient
initialization and finalization phases from the applications. We have observed 40
seconds to be sufficient for all applications in this study; however, this duration is
application dependent. We also remove any constant metrics and convert metrics
that represent counter values to their deltas.

We generate statistics from the timeseries data gathered from the compute
nodes. The statistics used are the minimum, maximum, mean, standard devi-
ation, skew, kurtosis and the 5th, 25th, 50th, 75th and 95th percentiles. Each
metric’s timeseries is distilled into these 11 features. These statistics have been
shown to be useful in analyzing timeseries from supercomputers [26,27]. They are
also easy to calculate, reduce storage requirements, and enable us to compare
applications that have different durations. We scale each feature to the [0, 1]
range according to the values observed in the training set. The same scaling
factors are used at runtime.

4.3 Classification

To distinguish a set of given applications, we train a machine learning model
using a training set of these labeled applications. Taxonomist labels each run
with the corresponding application or it can also label new runs as unknown.

For each classifier, we use a one-versus-rest version of that classifier: i.e., for
each application in the training set, we train a separate classifier that differen-
tiates the application. This approach makes it easy to add a new application to
the ensemble of classifiers and to get information about the nature of each appli-
cation. This approach also enables us to train for only applications of interest,
and we do not have to re-train every classifier when a new application is added.

For evaluation purposes, we compare the following classification algorithms:
random forests, forests of extremely randomized trees (ExtraTrees), decision
trees and the support vector machine classifier (SVC) with linear and radial
basis function kernels. In practice, the best performing one for our data is the
random forest (Sect. 6).

From every classifier, we obtain confidence values on whether a new observa-
tion belongs to one of the existing training classes. For example, the confidence
threshold for the random forest is the percentage of trees in the forest that



98 E. Ates et al.

agree with the final classification. If none of the confidence values are above a
predetermined confidence threshold, we mark this new observation as unknown.

Confidence Threshold Selection. A very high threshold would result in
conservatively labeling new inputs of known applications as unknown, while too
low values would result in unknown applications being labeled as a similar known
application. To select the confidence threshold we first remove each application
from the training set and perform testing with examples of that application in
the training set while changing the confidence threshold. Then, we remove one
input of each application and perform the same test. We select the threshold
that results in the highest average F-score for both scenarios.

Hyperparameter Selection. Most classifiers have hyperparameters that
describe the configuration of the algorithm. We find the best hyperparameters
by splitting the training set into 5 cross validation folds. With 4/5 of the train-
ing data we train classifiers with different hyperparameters, and pick the best
performing one using 1/5 of the training set. We choose the important hyperpa-
rameters for each classifier and over a certain range we train all combinations of
hyperparameters, i.e., grid search. We find the best hyperparameter separately
for each application’s classifier. Note that we never use any test data during
training or hyperparameter selection.

4.4 Operation of Taxonomist

During normal operation, Taxonomist uses the monitoring data to label each
node of each application after a job finishes. These labels can be used to raise
alarms in the case of cryptocurrency mining and to generate system usage reports
or other summaries. They can also be used in further research and development
on application-specific system optimizations. Furthermore, identifying fraud,
waste, and abuse after application completion is still valuable.

As Taxonomist relies on machine learning, it requires a labeled training data
set as input. This data set can be collected by a collaboration of users, operations
staff, and analysts. After the applications of interest are determined, data can
be collected by running them with different input configurations. This training
is a one-time effort unless the applications of interest change.

In our current implementation, the application needs to finish before we
identify it; however, Taxonomist can be modified to work with only the first few
minutes of application data. The strategy proposed by Thebe et al. [25], which
executes applications for a short time before the main run is scheduled, can be
used with Taxonomist.

5 Experimental Methodology

We run our experiments on a production supercomputer, using the Lightweight
Distributed Metric System (LDMS) [2] already in place. We evaluate our system
with 11 benchmarks, 5 different unwanted applications, and also with 6 months
of typical supercomputer usage.



Taxonomist: Application Detection Through Rich Monitoring Data 99

Table 1. Applications used.

Application # of inputs # of ranks Description

BT [6] 3 169 Block tri-diagonal solver

CG [6] 3 128 Conjugate gradient

FT [6] 3 128 Fourier transform

LU [6] 3 192 Gauss-Seidel solver

MG [6] 3 128 Multi-grid on meshes

Representative

applications

SP [6] 3 169 Scalar penta-diagonal solver

miniAMR [15] 4 192/1536 Adaptive mesh refinement

miniMD [15] 4 192/1536 Molecular dynamics

CoMD [15] 3 192 Molecular dynamics

miniGhost [15] 4 192/1536 Structured PDE solver

Kripke [17] 4 192/1536 SN transport

minerd 10 2/4 CPU cryptocurrency miner

BFGminer 2 2/4 Cryptocurrency miner

Unwanted

applicationsa
xenon 2 96/192 Zcash competition [29] winner

davidjaenson 1 2/4 Zcash competitor

tromp 1 2/4 Zcash competitor

John the Ripper 194 96/192 Password cracker
aminerd: www.github.com/pooler/cpuminer, BFGminer: www.github.com/luke-jr/bfgminer,

xenon: www.github.com/xenoncat/equihash-xenon, davidjaenson: www.github.com/

davidjaenson/equihash, tromp: www.github.com/tromp/equihash, John the Ripper: www.

openwall.com/john

5.1 Platform

We run all of our experiments on Volta, a Cray XC30m supercomputer located at
Sandia National Laboratories. Volta is composed of 13 fully-connected routers,
with 4 nodes each, leading to a total of 52 compute nodes. The operating system
used is SLES 11 (SUSE Linux Enterprise Server) with kernel version 3.0.101.
Each node has 64 GB of memory and two Intel Xeon E5–2695 v2 CPUs with 12
2-way hyper-threaded cores.

LDMS is a scalable monitoring system deployed on Volta. We use the memory
metrics collected from /proc/meminfo and /proc/vmstat, CPU usage informa-
tion from /proc/stat, and network usage information from Cray network inter-
face card (NIC) counters. 721 metrics from every node every second in total.

5.2 Applications

Representative Applications. We pick a collection of 11 benchmarks and
proxy applications, described in the upper section of Table 1. We choose these
applications to be representative of characteristic HPC workloads. All represen-
tative applications use MPI, and are compiled with the Cray compilers. For each
application, we use 3 different input configurations, and we run the applications
on 4 nodes. We also run miniAMR, miniMD, miniGhost and Kripke on 32 nodes
with an additional input. We run each application on the maximum number of
hardware threads available that the application can utilize.

www.github.com/pooler/cpuminer
www.github.com/luke-jr/bfgminer
www.github.com/xenoncat/equihash-xenon
www.github.com/davidjaenson/equihash
www.github.com/davidjaenson/equihash
www.github.com/tromp/equihash
www.openwall.com/john
www.openwall.com/john


100 E. Ates et al.

Unwanted Applications. These are applications that are usually not allowed
on supercomputers such as cryptocurrency miners and password crackers. The
tromp, davidjaenson, and xenon miners are from an open source miner compe-
tition [29]; BFGminer and minerd are popular miners for mining with CPUs.
Xenon is single-threaded, so we execute 48 copies per node. Other cryptocur-
rency miners are multi-threaded, so we execute them one copy per node, using
48 threads. John the Ripper is a popular password cracking application which
supports MPI; we execute it one rank per hardware thread. The inputs for John
the Ripper are various password formats; and for the cryptocurrency miners, the
inputs are the different types of cryptocurrencies. Due to ethical considerations,
we ran all of the unwanted applications in benchmark mode to ensure that none
of the cryptocurrency mined was connected to the main blockchains.

Typical Volta Usage. This data includes unlabeled applications run by 28
unique Volta users, consisting of 58,366 jobs, from August 2016 until January
2017. Our controlled experiments are removed from these runs.

5.3 Baseline Technique

Combs et al. [8] have proposed a technique (referred to as Combs) for application
detection using power data instead of performance monitoring data. Combs uses
a similar feature extraction approach, but in contrast to our method, it extracts
serial correlation, non-linearity, self-similarity, chaos, and trend from the time-
series, as well as skew, kurtosis, serial correlation and non-linearity from the
timeseries with the trend component removed. Furthermore, Combs et al. nor-
malized maximum and median with the minimum for each timeseries to generate
two additional features. Their method uses a random forest classifier and does
not have a method for labeling unknown applications, so we do not implement
any thresholding for Combs’ method.

6 Evaluation

We evaluate the capability of Taxonomist in detecting applications with a variety
of workloads and scenarios. First, we examine the classification performance in
identifying known applications with new input configurations. Then, we evaluate
the performance in labeling unknown applications.

For all tests, we first perform 5-fold cross validation, where we split the whole
data into five sets with equal distributions of applications with the original data
set. We then train five different Taxonomist instances using four of the sets.
For testing, we use the fifth set that was removed from training data. For the
normalization and hyperparameter selection steps, Taxonomist performs another
5-fold cross-validation on the training set.

For the results, we report the F-Score, which is a widely used measure of
classifier performance. For binary classification, F-Score is defined as the har-
monic mean of precision and recall. Precision is the ratio of true positives to



Taxonomist: Application Detection Through Rich Monitoring Data 101

(a) F-scores for classifiers, vertical dashed
line indicates the chosen confidence thresh-
old.

(b) F-scores for classifiers at the chosen
confidence threshold, 0.75. Error bars in-
dicate the 95% confidence interval.

Fig. 4. F-scores with one input configuration removed from training. In most cases,
the applications are correctly identified in spite of the unknown input configuration.

the number of all positive predictions, and recall is the ratio of true positives
to the number of all actual positives in the data set. F-Score ranges between 1
(best) and 0 (worst). All of our results are multi-class; therefore we calculate
the average precision and recall for each class, and take the harmonic mean to
calculate the overall F-score.

Table 2. Five-fold cross validation
results with the full data set.

Classifier Precision Recall F-score

RandomForest 1.000 1.000 1.000
ExtraTrees 1.000 1.000 1.000
DecisionTree 0.998 0.998 0.998
LinearSVC 0.999 0.999 0.999
SVC 0.994 0.994 0.994
Combs 0.932 0.931 0.931

Full Data Set. Table 2 shows the 5-fold
cross validation results on the 11 repre-
sentative applications. All of the results
except the baseline technique (Combs)
have an F-Score of over 0.99. However,
this scenario where the training data con-
tains all applications and all input con-
figurations is unrealistic. SVM with the
linear kernel (LinearSVC) performs better than the rbf kernel (SVC). This is
likely due to the large data set with many features and datapoints, and this
behavior is consistent with the literature [16].

Detecting Applications with Unknown Input Configurations. Appli-
cations’ resource usage is affected by their input configurations. To evaluate
Taxonomist’s robustness against input configurations that are not in the train-
ing set, we remove one of the input sets from the training set. For the test set, we
keep the cross validation folds the same. Figure 4 shows that the classification is
successful unless the confidence threshold is over 0.9, in which case the unknown
input configurations are marked as unknown applications.



102 E. Ates et al.

Fig. 5. F-scores with one application removed from the training set. With the correct
confidence threshold choice, the unknown application can be correctly identified.

Detecting Unknown Applications. Figure 5 shows classification results with
one application removed from the training set. If the removed application is
labeled as unknown, we mark it as a correct prediction. In the majority of the
cases, the unknown application is correctly identified as such. The lowest F-
Scores are for the BT and SP applications, which are both partial differential
equation solvers and they have been shown to have similar behavior [18]. Hence,
the classifiers tend to mispredict SP and BT.

The confidence threshold that gives the maximum value for the average F-
scores of the unknown input and unknown application cases is 0.75, and Random
Forest is the classifier that gives the best average F-score.

Unwanted Applications and Typical Volta Usage. We show Taxonomist’s
ability to identify unknown applications from different domains by testing with
unwanted applications such as bitcoin miners, shown in Fig. 6a, and with 6
months of Volta usage data, shown in Fig. 6b. In both of these tests, we train
Taxonomist with the 11 representative applications, and consider the unknown
label to be correct. Random Forest, Extra Trees and SVC have an almost per-
fect F-score for identifying any of these applications as unknown. Combs is not
shown, because it is unable to identify unknown applications.

Feature Importance. In order to present the importance of different statisti-
cal features and metrics, we train a decision tree for each application, using all of
the data from the 11 applications. To compare feature importances, we use Gini
reduction, which is used to measure the reduction of heterogeneity in the data.
A feature that can divide the data set well has a high Gini reduction, which
means the resulting divided data sets are more homogeneous. We use the imple-
mentation in Python scikit-learn library (sklearn.DecisionTreeClassifi-
er.feature importances ).



Taxonomist: Application Detection Through Rich Monitoring Data 103

Fig. 6. The classifiers can correctly identify unknown applications, whether they are
HPC applications or bitcoin miners and password crackers.

Fig. 7. The importance of different metrics and statistics. Box-plots are constructed
using the different decision trees for each application. The box shows the quartiles
while the whiskers show the rest of the distribution except outliers, which are points
away from the low and high quartiles by more than 1.5 × IQR.

In the decision trees corresponding to our 11 applications, we calculate the
total Gini reduction of features extracted using the 11 statistics (Sect. 4.2), and
report it in Fig. 7a. The box-plots are constructed using the data from the deci-
sion trees, and the individual importance values from the trees are summed up.
Figure 7b shows the most important metric from each decision tree. The impor-
tant metric and subsystem1 are highly application specific.

1 metric-set-nic: Cray network counters [9], vmstat: /proc/vmstat, meminfo: /proc/
meminfo, procstat: /proc/stat, AR stands for AR-NIC-RSPMON-PARB-EVENT-
CNTR.



104 E. Ates et al.

7 Conclusion

We have presented Taxonomist, a technique for classifying applications in super-
computers with the help of readily available monitoring data. The technique
builds classifiers from historical data, and detects new applications while being
robust to new input configurations of applications. We have evaluated Tax-
onomist using a comprehensive data set including controlled experiments and
real-world workloads and demonstrated F-scores of over 95%.

Data Availability Statement and Acknowledgment. The datasets gen-
erated during and/or analyzed during the current study are available in the
Figshare repository: https://doi.org/10.6084/m9.figshare.6384248 [4].

This work has been partially funded by Sandia National Laboratories. Sandia
National Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under Contract DE-NA0003525.

References

1. ASCR cybersecurity for scientific computing integrity. DOE Workshop Report
(2015)

2. Agelastos, A., et al.: The lightweight distributed metric service: a scalable infras-
tructure for continuous monitoring of large scale computing systems and applica-
tions. In: International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), pp. 154–165 (2014)

3. Agelastos, A., et al.: Toward rapid understanding of production HPC applications
and systems. In: IEEE International Conference on Cluster Computing, pp. 464–
473 (2015)

4. Ates, E., et al.: Artifact for taxonomist: application detection through rich moni-
toring data (2018). https://doi.org/10.6084/m9.figshare.6384248

5. Auweter, A., et al.: A case study of energy aware scheduling on SuperMUC. In:
Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC 2014. LNCS, vol. 8488, pp.
394–409. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07518-1 25

6. Bailey, D., et al.: The NAS parallel benchmarks. Int. J. Supercomput. Appl. 5(3),
63–73 (1991)

7. Bhatele, A., Mohror, K., Langer, S.H., Isaacs, K.E.: There goes the neighborhood:
performance degradation due to nearby jobs. In: SC 2013, pp. 41:1–41:12. ACM,
New York (2013)

8. Combs, J., et al.: Power signatures of high-performance computing workloads. In:
Proceedings of the 2nd International Workshop on Energy Efficient Supercomput-
ing, E2SC 2014, pp. 70–78. IEEE Press, Piscataway (2014)

9. Cray: Aries hardware counters (s-0045-20). Technical report (2015). http://docs.
cray.com/books/S-0045-20/S-0045-20.pdf

10. Dart, E., Rotman, L., Tierney, B., Hester, M., Zurawski, J.: The science DMZ: a
network design pattern for data-intensive science. In: SC 2013, pp. 1–10 (2013)

https://doi.org/10.6084/m9.figshare.6384248
https://doi.org/10.6084/m9.figshare.6384248
https://doi.org/10.1007/978-3-319-07518-1_25
http://docs.cray.com/books/S-0045-20/S-0045-20.pdf
http://docs.cray.com/books/S-0045-20/S-0045-20.pdf


Taxonomist: Application Detection Through Rich Monitoring Data 105

11. DeMasi, O., Samak, T., Bailey, D.H.: Identifying HPC codes via performance logs
and machine learning. In: Proceedings of the First Workshop on Changing Land-
scapes in HPC Security, pp. 23–30. ACM, New York (2013)

12. Dongarra, J., et al.: The international exascale software project roadmap. Int. J.
High Perform. Comput. Appl. 25(1), 3–60 (2011)

13. Egele, M., Woo, M., Chapman, P., Brumley, D.: Blanket execution: dynamic sim-
ilarity testing for program binaries and components. In: 23rd USENIX Security
Symposium, pp. 303–317. USENIX Association, San Diego (2014)

14. Florez, G., Liu, Z., Bridges, S.M., Skjellum, A., Vaughn, R.B.: Lightweight moni-
toring of MPI programs in real time: research articles. Concurr. Comput.: Pract.
Exp. 17(13), 1547–1578 (2005)

15. Heroux, M.A., et al.: Improving performance via mini-applications. Technical
report SAND2009-5574, Sandia National Laboratories (2009)

16. Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vec-
tor classification. Technical report (2003). https://www.csie.ntu.edu.tw/∼cjlin/
papers/guide/guide.pdf

17. Kunen, A., Bailey, T., Brown, P.: KRIPKE-a massively parallel transport mini-
app. Technical report, Lawrence Livermore National Laboratory, Livermore (2015)

18. Ma, C., et al.: An approach for matching communication patterns in parallel appli-
cations. In: IEEE International Symposium on Parallel Distributed Processing, pp.
1–12 (2009)

19. NERSC: Number of NERSC users and projects through the years (2016). www.
nersc.gov/about/nersc-usage-and-user-demographics/number-of-nersc-users-and-
projects-through-the-years/

20. Office of Inspector General: Semiannual report to congress (2014). https://www.
nsf.gov/pubs/2014/oig14002/oig14002.pdf

21. Peisert, S.: Fingerprinting communication and computation on HPC machines.
Technical report, Lawrence Berkeley National Laboratory (2010). https://doi.org/
10.2172/983323

22. RedLock CSI Team: Lessons from the cryptojacking attack at Tesla. Technical
report (2018). https://blog.redlock.io/cryptojacking-tesla

23. Rosenberg, E.: Nuclear scientists logged on to one of Russias most secure computers
to mine bitcoin. The Washington Post (2018)

24. Skinner, D., Wright, N., Fuerlinger, K., Yelick, K., Snavely, A.: Integrated perfor-
mance monitoring IPM (2009). http://ipm-hpc.sourceforge.net/

25. Thebe, O., Bunde, D.P., Leung, V.J.: Scheduling restartable jobs with short test
runs. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2009. LNCS, vol.
5798, pp. 116–137. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04633-9 7

26. Tuncer, O., et al.: Diagnosing performance variations in HPC applications using
machine learning. In: Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D. (eds.) ISC
2017. LNCS, vol. 10266, pp. 355–373. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58667-0 19

27. Wang, X., Smith, K., Hyndman, R.: Characteristic-based clustering for time series
data. Data Min. Knowl. Disc. 13(3), 335–364 (2006)

28. Whalen, S., Peisert, S., Bishop, M.: Multiclass classification of distributed memory
parallel computations. Pattern Recogn. Lett. 34(3), 322–329 (2013)

29. Zcash Electric Coin Company: Zcash open source miner challenge (2016).
www.zcashminers.org

https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
www.nersc.gov/about/nersc-usage-and-user-demographics/number-of-nersc-users-and-projects-through-the-years/
www.nersc.gov/about/nersc-usage-and-user-demographics/number-of-nersc-users-and-projects-through-the-years/
www.nersc.gov/about/nersc-usage-and-user-demographics/number-of-nersc-users-and-projects-through-the-years/
https://www.nsf.gov/pubs/2014/oig14002/oig14002.pdf
https://www.nsf.gov/pubs/2014/oig14002/oig14002.pdf
https://doi.org/10.2172/983323
https://doi.org/10.2172/983323
https://blog.redlock.io/cryptojacking-tesla
http://ipm-hpc.sourceforge.net/
https://doi.org/10.1007/978-3-642-04633-9_7
https://doi.org/10.1007/978-3-642-04633-9_7
https://doi.org/10.1007/978-3-319-58667-0_19
https://doi.org/10.1007/978-3-319-58667-0_19
https://zcashminers.org/

	Taxonomist: Application Detection Through Rich Monitoring Data
	1 Introduction
	2 Related Work
	3 Motivation
	4 Taxonomist: A Technique for Identifying Applications
	4.1 Monitoring
	4.2 Statistical Feature Extraction
	4.3 Classification
	4.4 Operation of Taxonomist

	5 Experimental Methodology
	5.1 Platform
	5.2 Applications
	5.3 Baseline Technique

	6 Evaluation
	7 Conclusion
	References




