)

Check for
updates

Multi-granularity Locking in Hierarchies
with Synergistic Hierarchical
and Fine-Grained Locks

K. Ganesh, Saurabh Kalikar®™), and Rupesh Nasre

CSE, IIT Madras, Chennai, India
{cs16m006, saurabhk,rupesh}@cse.iitm.ac.in

Abstract. We propose a new locking mechanism for hierarchies wherein
the locking requests can be a combination of coarse and fine. Existing
protocols such as multiple-granularity locking (MGL) are efficient when
all the requests are of the same granularity. MGL is either too coarse or
too fine-grained when multiple threads request for various parts of the
hierarchy with differing granularity requirements. Simultaneous handling
of hierarchical and fine-grained requests poses new challenges in checking
for racy requests. We propose a novel indexing technique for hierarchies
which uniquely identifies every node as an interval value and effectively
captures hierarchical dependencies between nodes even when the hier-
archy is a tree, DAG or a cycle. Our experiments with real-world XML
hierarchies and synthetic benchmarks show that the proposed locking
technique provides a higher degree of concurrency with minimal locking
cost resulting in overall performance improvement.

1 Introduction

One of the main challenges in developing a multi-threaded parallel application is
the design of an efficient synchronization mechanism for shared data structures.
Lock constructs are widely used for thread synchronization. The nature of data
structures and their associated operations necessitate the use of various locking
protocols. In the context of shared data structures, hierarchies are special linked
structures, where each child node denotes a specialization or a part of its parents.
For instance, a node representing a department in an academic hierarchy is a part
of its parent institute. Conversely, a node representing an institute contains all
its departments. In the concurrent setting, operating on different nodes in such
a hierarchy is achieved using traditional fine-grained locking, which maintains
a lock with each node. While fine-grained locks ensure consistency of the data
structure, it also poses scalability challenges in the presence of a large number of
threads and unpredictable locking request pattern. For instance, in fine-grained
locking, an operation such as calculate GPA for all the students in department
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Fig. 1. (a) Example hierarchy along with its HiFi numbering (b) Compatibility matrix
for intention locking protocol

CS needs to acquire a lock on each student separately. This is clearly inefficient
and happens because locking cost is proportional to the number of students.

In this example, it seems logical to acquire a single lock on the department
CS, and process all the student records. This is achieved using hierarchical lock-
ing or multi-granularity locking. Multi-granularity locking (MGL) protocols [7,9]
ensure that if a node in a hierarchy (say, CS department) is locked, then every
node reachable from the locked node (i.e., every student, faculty and staff mem-
ber) is also implicitly locked.

On the other hand, there exist several operations that do not require hier-
archical locks. For instance, a fine-grained operation such as update class-room-
count =20 where department = CS does not need the whole department (stu-
dents, staff, faculty) to get locked. Existing approaches do not support co-
existence of hierarchical and fine-grained locks. Thus, all the MGL locks are
either purely hierarchical (e.g., even to update number of classrooms), or purely
fine-grained (e.g., even to update GPA of all the students). The former is too con-
servative leading to reduced concurrency, while the latter is too precise leading
to locking overheads.

To address these issues, this paper makes the following contributions:

1. We propose a novel indexing technique which allows quick checking of overlaps
between two thread requests in a hierarchy. The indexing has useful properties
which can be independently exploited for other applications.

2. We propose HiFi, a locking protocol that allows synergistic co-existence of
fine-grained and hierarchical locks. The protocol crucially relies on the new
indexing mechanism and offers more concurrency.

3. We illustrate that HiFi considerably improves the parallel performance of
the underlying application. Using real-world XML hierarchies and synthetic
datasets, we identify scenarios where HiFi is a better choice for locking.

2 Background and Motivation

In this section, we provide a brief background on a de facto hierarchical locking
technique and highlight its limitations. To motivate HiFi, we use the example
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hierarchy from Fig. 1 which contains 18 nodes spread across six levels. The hier-
archy is carefully crafted to contain paths, tree-like substructure, as well as DAGs
and a cycle. Most real-world hierarchies we have come across are acyclic.

2.1 Hierarchical Locking

Hierarchical locking is a way to lock a node in a hierarchy which implicitly
locks its descendants. This is useful because the whole sub-hierarchy rooted at a
node can be protected using a single lock. A node could be hierarchically locked
only if (i) it is not locked by any other thread, and (ii) none of its descendants
are currently locked by any other thread, and (iii) none of its ancestors are
currently locked by any other thread. For instance, in Fig. 1, hierarchical locking
of node g requires that no other thread currently holds locks on (i) g itself, (ii)
its descendant nodes k and [, and (iii) its ancestors a, b, and d. Clearly, the naive
mechanism of traversing through the descendants and ancestors for every lock
request works, but is impractical. In practice, database management systems
such as MySQL use an optimized traversal technique called intention locking.

Intention Locks. Traditionally, hierarchical locking is implemented using inten-
tion locks [7]. Unlike traversing sub-hierarchies, intention locking technique
marks all the ancestors of the targeted node before acquiring a hierarchical lock.
These markers serve as indicators to other concurrent threads, that there exists
a node along this path on which a lock has been acquired. These markers are
nothing but the intention locking modes, i.e., IS and IX of conventional shared
(S) and exclusive (X) locks respectively. Thus, before locking any node in S or
X mode, a thread has to lock all the ancestors (i.e., all the reference paths from
root) in IS or IX modes respectively. For example, before locking node g in X
mode, a thread must lock its ancestor nodes a, b and d in IX mode. Possible lock-
ing modes and their inter-operability are shown in the compatibility matrix 1.
Intention locks is an effective way to achieve hierarchical locking for tree struc-
tures, as each tree node has a single reference path from the root. However, in
case of directed graph structures (such as DAGs), a node may have multiple
reference paths from the root necessitating intention locking across each refer-
ence path. For instance, for locking node ¢, we need to traverse the hierarchy to
mark intention along each path a-c-e and a-c-f. For a large real-world hierarchy,
such a traversal is costly, and increases the thread waiting time. In summary,
intention locks are ill-suited for complex hierarchical structures.

Motivating Example. Consider a thread 77 currently holding a hierarchical
lock on node g for exclusive access and another thread T, which wants to perform
a simple fine-grained update operation on node d. Intuitively, such a concurrent
operation seems plausible. However, intention locking (IL) protocol does not
support it, as MGLs support only hierarchical locking. Thus, locking node d
using IL protocol also locks ¢. IL can be extended to support extra modes for fine-
grained (shared and exclusive) locking. Thus, in this extension, a thread would
also mark along the path whether it wants to lock the target node in fine-grained
mode or hierarchical mode. Unfortunately, such an extension takes away the very
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benefits of fine-grained locking — although the update is local (fine-grained), the
thread needs to traverse the hierarchy of ancestors. This poses several scalability
challenges when both hierarchical and fine-grained locking modes are desired. To
address this, we need a mechanism that (i) supports efficient co-existence of fine-
grained and hierarchical locks, and (ii) allows quick checking of overlap between
two lock requests (e.g., whether a node is already locked in a fine-grained manner
within a sub-hierarchy which is to be locked in hierarchical mode).

In this paper, we propose a new locking protocol which supports efficient
handling of fine-grained locks in presence of hierarchical (MGL) locks.

3 Our Proposal: HiFi

We design a new protocol that allows maximum concurrency; that is, if two
lock requests do not overlap, they can be executed in parallel (assuming the
availability of enough computing resources). Central to our method is a new
interval numbering technique which converts the structural overlap between sub-
hierarchies to interval overlap between numbers, which allows fast overlap check,
retaining the benefits of fine-grained locking.

Overview. Our proposed numbering is shown for the example hierarchy in
Fig. 1. Each node is assigned an interval [low, high] where low and high are
floating-point numbers. The numbering of nodes in a hierarchy follows the fol-
lowing invariants:

71 The interval of each node is unique if the node is not part of a cycle. All the
nodes in a cycle have the same interval.

72 The interval of every ancestor strictly subsumes the interval of each of its
(transitive) descendants. Interval [a, b] strictly subsumes interval [c, d] iff
a<candb>d.

73 Intervals of two nodes partially overlap if they have a common descendant.

For instance, in Fig.1, each node has a unique interval value, except for
the cycle nodes j, n, r, o, which all have the same interval [26, 27], validating
Invariant Z1. Also, interval of node e, which is [13, 21.5], subsumes those of
its descendants h, i, m, p, q, validating Invariant Z2. The root subsumes the
intervals of all other nodes in the hierarchy (except when the root itself is part
of a cycle). Similarly, each leaf node has a non-overlapping interval with other
leaves. We can observe that nodes h and f have overlapping intervals that do
not subsume one another. The overlap is justified by the common descendants
m, p, q, thereby validating Invariant Z3. Note that although A and f do not
subsume one another’s intervals, they both individually subsume the intervals
of m, p, and ¢, due to Invariant Z2.

Using such an interval numbering, HiFi can quickly check if two hierarchies
overlap. Thus, the proposed numbering acts as an alternative to IL. In other
words, if there are two hierarchical locking requests, HiFi can exploit the pro-
posed numbering mechanism to identify if the two requests can be simultane-
ously satisfied. For instance, if thread T1 wants to lock the hierarchy rooted at
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h, and thread T2 wants to lock the hierarchy rooted at j, then HiFi can check
their intervals [14, 20.5] and [26, 27] which do not overlap, and permit access.
In contrast, if thread T2 wants to lock the hierarchy rooted at node i, then
HiFi can check the intervals [14, 20.5] and [14.5, 21] which overlap, and disallow
one of the locking requests (the other thread needs to block or try again later).
Note that, unlike in IL, HiFi protocol does not need to traverse the hierarchy to
identify overlap. This considerably improves the performance of the underlying
application — which usually has locking in its critical path. Once the hierarchy is
numbered as a pre-processing step, all runtime locking requests can be quickly
served.

3.1 Compatibility in HiFi

Assuming a numbering such as the previous subsection exists, we now describe
how fine-grained and hierarchical locks can co-exist in HiFi. Note that the locking
request could be shared or exclusive, and fine-grained or hierarchical.

Figure 2 shows the compatibility matrix for various locking scenarios in HiFi.
Using this matrix, our locking methodology allows/disallows locking the input
set of nodes in the given mode (S/X, fine/hierarchical). For instance, in our run-
ning example from Fig. 1, if thread T1 has locked descendant node g in f, mode,
and thread T2 requests node d in Hg mode, then the requests being incompat-
ible according to the matrix, would be denied concurrent access. In contrast, if
T1 has locked node g in H, mode, and T2 requests node d in f, mode, then
the matrix deems these operations compatible with each other for concurrent
execution. Compared to the original compatibility matrix from Fig. 1, clearly
inter-operability of fine-grained and hierarchical locks allows more concurrent
operations.

Lock held by
Ancestor | Descendant
fs fan Hs Hac fs f;L Hs Han

fa X

Lock requested
o

> X X X

X X
H, X XX X X

Fig. 2. Lock compatibility matrix in HiFi (Legend: H = Hierarchical, f = Fine-grained,
s = shared, = exclusive)

3.2 Numbering Algorithm

We now describe our numbering algorithm in detail. We first attend to cyclic sub-
structures in the hierarchy, if present. Unlike trees and DAGs, the nodes forming
cycles in a hierarchy do not have well-defined ancestor-descendant relationship
among themselves, that is, every node is an ancestor as well as a descendant of
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every other node. For instance, nodes j, n, r and o are part of a cycle and each
of them is assigned the same interval [26, 27]. Therefore, it is logical to treat all
the nodes forming a cycle as one entity, with a single interval value.

Our interval-numbering algorithm has two passes. In the first pass, we per-
form a conventional depth-first traversal (DFS) from the root node and track
pre-visit and post-visit numbers of each node in the hierarchy. The advantage of
DFS-based numbering is that the intervals obtained using the pre- and post-visit
numbers [pre, post] satisfy all the three invariants when the underlying hierar-
chy is a tree. This can be validated from the left subtree of the root node a in
our running example from Fig. 1. Such a numbering, however, does not satisfy
the invariants in case of DAGs because DFS does not explore the already visited
nodes. Due to this, the numbering may miss out on some descendants, essentially
failing to satisfy invariants 72 and Z3.

Meeting the invariants necessitates a bottom-up propagation of [pre, post]
intervals from leaf nodes towards the root. Such a propagation re-adjusts the
intervals of the ancestors to satisfy all the invariants.

Interval Propagation. Intervals are propagated in bottom-up fashion, there-
fore the intervals of leaf nodes remain unchanged to [pre, post] intervals according
to DF'S traversal. According to Invariant Z2, a node’s interval must strictly sub-
sume those of all its descendants. Therefore, the smallest integer interval which
subsumes the interval of the child nodes is assigned to the parent. For instance,
with k [5, 6] and [ [7, 8] as children, g’s interval becomes[4, 9]. Similarly, the
intervals of nodes d, b and m become [3, 10], [2, 11] and [15, 20] respectively.

Such a mechanism works well when the sub-hierarchy is a tree. When a node
has more than one parent (e.g. node m), the subhierarchy is no longer a tree and
it poses interesting challenge to the numbering algorithm. The interval assigned
to each parent should be such that (i) it strictly subsumes the children’s interval,
and (ii) the parent intervals must overlap with each other but not subsume one
another. Thus, intervals of nodes h and i must overlap with each other, but not
subsume each other; however, they both should subsume m’s interval. To satisfy
these conditions, we exploit the range of floating point numbers. For instance,
we assign intervals [14, 20.5] to h and [14.5, 21] to ¢ which both subsume m’s
interval [15, 20] and also have partial overlap with each other.

The propagation faces another difficulty due to strict subsumption. Since
the intervals of the ancestors are always larger than those of the children, it
can happen that an ancestor’s interval becomes so big that it subsumes that of
another of its sibling! For instance, when ¢ propagates its interval [14.5, 21] to
its parent node f, strict subsumption property can assign interval [13, 22] to
f. While this does satisfy Invariant 72 between ¢ and f, it also falsely satisfies
the invariant between h and f ([13, 22] subsumes [14, 20.5]). Note that f is not
an ancestor of A, and hence their intervals should not subsume each other. This
necessitates limiting the interval propagation to parents (as explained next).

Maintenance of Locks. To check if the new locking request overlaps with
an existing one, HiFi needs to track the currently locked nodes (along with
their type S/ X and fine-grained / hierarchical). We use the lock-pool imple-
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Fig. 3. Example of interval propagation

Algorithm 1. Bottom-up traversal (invoked with ROOT as the parameter)

1 Function bottomUp (root):

2 if root.isLeafNode() then root.lowLimit = root.upLimit = —1 ;
3 else

4 forall the c¢ € root.children do

5 L if c.explored == false then bottomUp(c);

6

7

8

root.mergeIntervals ()

sendPartitionLimits (root.lowLimit, root.upLimit, root)
root.explored = true

mentation from DomLock [9], which maintains per-thread lock information in
a table. A thread needs to check the complete table before inserting its entry,
which requires heavy synchronization. To counter this inefficiency, the lock-pool
exploits sequence locks to make the reading synchronization-free.

3.3 Main Algorithm

We now present Algorithm 1 for interval numbering and explain it using our run-
ning example. After the first phase of DFS pre-post visit numbering for the leaf
nodes, we call Algorithm 1 with the root of the hierarchy as a parameter. Algo-
rithm recursively traverses down to the leaf nodes and starts back-propagation
of intervals to respective parents (line 2). We use two flags lowLimit and upLimit
to indicate the restrictions placed on the interval updates that a node can send
to its parent(s). For instance, starting from the root node a in Fig. 1, the algo-
rithm recursively descends to the leaf node k and assigns default limit of —1.
Node k with interval [5, 6] invokes the method sendPartitionLimits to propa-
gate the limits upward (line 7). The function sendPartitionLimits is presented
in Algorithm 2. Tt partitions an interval into np (number of parents) partially
overlapping intervals, each of which strictly subsumes the child’s interval and is
within the range of lowLimit and upLimit. Thus, Algorithm 2 ensures that the
interval updates sent to the parents conform to the invariants 71 — 73.

For instance, When k invokes the method to partition and update its parents,
Case 1 (line 2) of the method is invoked. It sends the intervals [4, 7] to g.
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Similarly, g receives the interval [6, 9] from [, which is merged along with k’s
update to g (Algorithm 1, line 6), expanding ¢’s interval to [4, 9]. Similarly, node
m, as seen previously, has the default limits of -1 (line 2), and therefore splits the
range [14, 21] among its parents. In this case, the offsets for the limit partitioning
A; and Ay, are set to 1 since m has two parents (line 5). As illustrated in Fig. 3a,
the interval [14, 20.5] is updated to h while the interval [14.5, 21] is sent to 4
(lines 20-25). With the interval updates, m also sends the relevant upper and
lower limits to its parents for interval expansion, to be used while they further
propagate intervals towards the root of the hierarchy. In case of node i, it receives
interval [14.5, 21] along with a lower limit of 14, and no upper limit from its child
node m (Case 3, line 10). This indicates to i that the interval updates it sends
to its parents must be bounded within the range [14.25, 22]. As illustrated in
Fig. 3b, node i splits the interval [14.25, 22] into two equal partitions. Note that
in this case A; and Ay, are % and % respectively (line 13). Therefore, via i nodes e
and f’s intervals are updated to [14.25, 21.5] and [14.375, 22] respectively. Node
e also merges the interval updates from h and ¢ and assigns the interval [13,
21.5] to itself. The backpropagation of intervals continues until the root receives
all the updates.

4 Experimental Evaluation

All our experiments are carried out on an Intel Xeon E5-2640 v4 machine with
40 cores clocked at 2.40 GHz having 64 GB RAM running CentOS 7.4. To assess
the effectiveness on real-world data, we use XML hierarchy from Treebank [16].
Further, to check scalability aspects and how HiFi works on various structures, we
also use synthetically generated hierarchies. In our synthetic dataset, we generate
k-ary trees with a million nodes, and arbitrary graphs with 0.1 million nodes.
k-ary trees allow us to assess the effect of HiFi on bushy versus skinny structures
by varying k, while graphs allow us to check for multiple path locking. Our test-
driver creates multiple pthreads which operate concurrently on the underlying
data structure. We note that the standard deviation in all our results is quite
small (about 2%). We compare HiFi against state-of-the-art DomLock [9] and
Intention Locking [7], under different values of critical section (CS) size, number
of nodes locked, and the density of the hierarchy (k-ary trees). DomLock is an
alternative to IL which locks the dominator of the requested nodes, and hence
has a constant locking cost. Note that neither of the two protocols support co-
existence of fine-grained and hierarchical locks.

4.1 Effect of Number of Nodes

Figure 4 describes the effect of varying locking request size. Figures 4a—c capture
the performance of concurrent requests with increasing number of nodes on
binary trees, while Figs.4d—f show the same for arbitrary graphs. IL acquires
intention locks on nodes lying on all the paths that lead to the requested set of
nodes, while DomLock acquires a single lock on their dominator. With increasing
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Algorithm 2. Procedure sendPartitionLimits to propagate interval
limits

1 Function sendPartitionLimits (lowLimit, upLimit, root):

// np is number of parents of the root node

2 if lowLimit == —1 AND upLimit == —1 then

// Case 1l: No Limits on interval expansion on either side

3 if np == 1 then

4 L updateParent (lowLimit,upLimit,root.] —1,root.h +1)
5 A= nip; Ap = %p; I' = root.l —1; h' = root.h + 1
6 else if lowLimit == —1 AND upLimit # —1 then

// Case 2: Limited interval expansion only on right side
7 if np == 1 then

8 L updateParent (lowLimit,upLimit,root.| —1,7e0t-htuplimity

9 Ay = Ly Ay = upkimitorooth |1 — oot ] 1; b = reothtuplimit
[ np np

10 else if lowLimit 2 —1 AND upLimit == —1 then

// Case 3: Limited interval expansion only on left side
11 if np == 1 then

12 | updateParent (lowLimit,upLimit, 72t lowLimit root h +1)
13 AZI%W;A}LInipﬂ':w;h'zroot.h—l—l
14 else if lowLimit 2 —1 AND upLimit # —1 then

// Case 4: Limited interval expansion on both sides
15 if np == 1 then

HSo HSo . imsi t.h Limit
16 L updateParent (lowLimit,upLimit, 722 l"'lzole"”t,mo +;‘p vmat 'y
__ root.l—lowLimit . __ upLimit—root.h ,
17 Al =" anp Ah =" oy
| _ root.l+lowLimit, 1 __ root.h4tupLimit
18 | I'= 5 ;h' = =

19 for i =1 tonp AND np # 1 do

20 if i ==1 then

21 L updateParent (lowLimit,root.h+2A 1" ;root.h+Ap)

22 else if i == 1 to np —1 then

23 | updateParent (I' +(i-2) A, root. ht(i-1) Ap,I" +(i-1) Ay root.hti Ap)
24 else if i == np then

25 L updateParent (I' +(np —2)A;,upLimit,l' +(np —1)A;,h")

locking request size, the cost of marking intention across paths also increases,
making IL a less favorable choice until a certain threshold, as shown in Figs. 4a—c.
We do not depict IL’s performance in case of graphs as it is far worse compared to
that of DomLock and HiFi. In comparison, HiFi acquires exactly n, locks, where
n, is the number of nodes requested. In the cases shown in Figs.4a, b, d and e
HiFi and DomLock perform almost similarly when the number of nodes requested
is less than 32, irrespective of the size of the critical section (small and medium
here). Beyond a threshold number, the cost of individual fine-grained operations
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increases, and it is expected that hierarchical locking performs better, which is
evident from better performance of DomLock. In summary, HiFi is better suited
for operations with fewer node requests.
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4.2 Effect of Critical Section Size

Critical section is critical in deciding the overall performance of an application.
It can be observed from Fig. 4 that for large critical section (CS) size, the critical
section quickly becomes the bottleneck compared to the rest of the processing.
Thus, the importance of fine-grained locking is more imperative for large CS.
This can be observed from Figs. 4c and f, wherein co-existence of fine-grained
and hierarchical locks improves concurrency in case of HiFi. This suggests that
HiFi is better suited for large critical sections. Figure 6 indicates that HiFi scales
well with increasing the value of k in a k-ary tree.

Execution Time (sec)

Execution Time (sec)
(ﬁ

L5 R
—o— DomLock
1
0s
o
2 4 2

]
Number of nodes locked

(a) Small critical section

Number of nodes locked
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Number of nodes locked
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Fig. 5. Effect of the number of nodes in XML hierarchy, with varying CS size
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4.3 Effect on Real-World XML Hierarchy

XML, since its inception has been used to transfer and store information. Its
hierarchical method of organizing data provides us with a real-world use case
to verify the effectiveness of our locking protocol. We use a real dataset, Tree-
bank hierarchy, publicly available in XML format [16] as the input hierarchy.
The XML hierarchy contains 2,437,666 nodes, over 57% of which are leaf nodes.
Over 37% of all the nodes are at a height of one from the leaf nodes, and the
maximum out-degree among the non-root nodes is 51. This indicates that the
hierarchy is quite bushy towards the bottom. Figure5 shows the performance
of HiFi against DomLock for varying critical section sizes. We observe that HiFi
performs consistently better than DomLock. Due to the bushy nature of the hier-
archy, the dominator of the requested nodes occurs closer to the root, reducing
concurrency in case of DomLock. DomLock acquires a lock on the dominator, in
this case the root or a node close to the root, thereby blocking concurrent access
to the underlying hierarchy. HiFi, however, acquires locks only on the requested
nodes, improving the concurrency. To summarize, HiFi is better suited when the
concurrent data structure accessed is irregular and has a large fanout.

4.4 Effect of Variation in Fine-Grain Operations

We now study the behavior of HiFi, DomLock and IL for different percentages of
hierarchical versus fine-grained operations. Figure7 shows the effect for differ-
ent critical section sizes. If all the operations are fine-grained, HiFi is expected

Execution Time (sec, logscale)

Execution Time (sec, logscale)

—— DomLock
m w @ m ow W w10 0 1w = W @ = @ W oW W W o ® ®m W e w @ W W W 1w

Percentage of fine-grained operations Percentage of fine-grained operations Percentage of fine-grained operations.

(a) Small critical section (b) Medium critical section (c) Large critical section

Fig. 7. Effect of varying the percentage of fine-grained locks
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to perform better than IL and DomLock. On the other hand, if all the opera-
tions are hierarchical, then HiFi should ideally be comparable to DomLock, as
both the approaches avoid traversal using intervals. However, a major difference
between HiFi and DomLock is that DomLock acquires a lock on a single dominator
node, while HiFi locks each interval separately. Therefore, for hierarchical-only
operations, DomLock performs better than HiFi, as shown in Figs.7a and b.
Interestingly, however, for large critical section size (Fig.7¢), HiFi outperforms
DomLock. This is primarily because of the imprecise nature of DomLock which
internally restricts the degree of concurrency.

In a general case of mixed fine-grained and hierarchical operations, we observe
that the performance of HiFi improves as we increase the percentage of fine-
grained operations. IL and DomLock are unaffected by the percentage of fine-
grained operations as all the operations are treated uniformly as hierarchical
operations. We believe that HiFi would offer an attractive alternative for syn-
chronization in hierarchies.

5 Related Work

The idea of MGL was introduced in database systems [7]. Ries and Stone-
braker [14,15] report that there are cases where a coarse-grain-only approach
may not be desired. In particular, if all the transactions requesting access to
the database are randomly requesting small parts of it, then finer granular-
ity is to be preferred. Their work also reported that transactions operating on
more than one percent of the database must use few large locks rather than
many locks of finer granularity. This indicates the need for co-existence of fine-
and coarse-grained locks. Unrau et al. [1] describe a hybrid approach combining
properties of both coarse and fine-grained for four types of access behaviors,
namely, non-concurrent accesses, concurrent accesses to independent data struc-
tures, concurrent read-shared accesses, and concurrent write-shared accesses.
Their method uses coarse-grained locks held for short duration to collectively
lock multiple data structures, and fine-grained locks should the underlying data
be held for longer duration. The method, however, locks one resource only in
one type of mode and does not support co-existence. Golan-Gueta et al. [6]
proposed automatic fine-grain locking for trees, while Chaudhri et al. [2] pro-
posed locking for DAGs and trees. These methods perform sub-graph traversals
to compute lock request intersections thereby giving rise to performance issues
when large number of rows are queried. Liu and Zhang [10] presented fine-grain
locking for hierarchies based on intention locks by applying fine-grain locks on
fields of objects in the hierarchy. The hierarchy under access here is an abstract
object graph which is statically constructed to approximate the runtime object
graph. This method also suffers from the same issues as IL. Recent advances
in automatic lock inferences [3,4,13] for parallel programs also adopted MGL
for efficient lock placements. Cherem et al. [3] use static analysis for extract-
ing points-to information of shared objects and apply MGL locking for avoiding
deadlocks.
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The idea of using logical intervals to capture structural subsumption prop-
erty for hierarchical locking was originally proposed in DomLock [9]. However,
the interval numbering in DomLock does not work with fine-grained locks, let
alone together for fine-grained and hierarchical. HiFi proposes a new indexing
mechanism to support this. The interval labels assigned unique intervals only
to the leaf nodes in the hierarchy, otherwise leaving the internal nodes indistin-
guishable in case of chain like structures within the hierarchy.

The key-range locking [11,12] and predicate queries in semi-structured
databases [5] also use locks as a range of keys in the databases community.
In key-range locking, every lock protects the key value of a record as well as the
keys which are absent during the transaction. The locks on absent keys restrict
the insertion of any phantom record by other parallel transaction. However, the
notion and the purpose of our interval locking is quite different from the key-
range locking.

6 Conclusion

We proposed HiFi, a new locking protocol that allows simultaneous co-existence
of fine-grained and hierarchical locks. The protocol devises a new indexing
scheme for hierarchies, which ensures quick identification of concurrent, over-
lapping lock requests. We illustrated the effectiveness of our approach using
real-world XML hierarchies, and the scalability using synthetic datasets of vary-
ing complexity. We believe HiFi would pave the way for newer locking protocols
in future.
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