
Global-Local View: Scalable Consistency
for Concurrent Data Types

Deepthi Akkoorath1(B), José Brandão2,
Annette Bieniusa1, and Carlos Baquero2

1 Technical University of Kaiserslautern, Kaiserslautern, Germany
{akkoorath,bieniusa}@cs.uni-kl.de

2 HASLab, Universidade do Minho and INESC TEC, Braga, Portugal
jose.brandao1994@gmail.com, cbm@di.uminho.pt

Abstract. Concurrent linearizable access to shared objects can be pro-
hibitively expensive in a high contention workload. Many applications
apply ad-hoc techniques to eliminate the need for synchronous atomic
updates, which may result in non-linearizable implementations. We pro-
pose a new model which leverages such patterns for concurrent access
to objects in a shared memory system. In this model, each thread main-
tains different views on the shared object: a thread-local view and a
global view. As the thread-local view is not shared, it can be updated
without incurring synchronization costs. These local updates become vis-
ible to other threads only after the thread-local view is merged with the
global view. This enables better performance at the expense of lineariz-
ability. We discuss the design of several datatypes and evaluate their
performance and scalability compared to linearizable implementations.

1 Introduction

As the number of cores increases in multi-core systems, the synchronization cost
becomes more apparent [20]. While linearizability [14] is very useful for reasoning
about the correctness of concurrent data structures, its implementation can be
prohibitively expensive. As a consequence, programming patterns are emerging
in practice, that attempt to limit the associated cost of the required synchro-
nization on the memory accesses by relaxing the concurrent objects semantics.
For example, in the widely used messaging library ZeroMQ, adding messages
to the queue is performance-critical to the application. While lock-free lineariz-
able queues are fast, the developers observed that the synchronous enqueue of
each new messages was affecting the overall performance, especially in high con-
tention workloads [21]. An analysis of the problem domain revealed that only
the relative order of messages from a single thread is relevant for the semantics
of the message queue; it is not necessary to maintain a strict order of enqueue
operations when two independent threads try to insert messages. To overcome
the linearizability penalty, the developers re-engineered their message queue such
that multiple messages are added in batch, within a single atomic operation.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 492–504, 2018.
https://doi.org/10.1007/978-3-319-96983-1_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_35&domain=pdf

Global-Local View: Scalable Consistency for Concurrent Data Types 493

For another example, consider a shared counter that is concurrently updated
by several threads. The final value must include all increments performed, but the
order of increments is not relevant since they are commutative. If each increment
by each thread is an atomic operation made visible to all other threads, it can
become a bottleneck [8]. In many cases, it is sufficient to execute the increment
on a thread-local variable and to apply a combined update to the shared object.

In this paper, we propose a new model for shared objects that leverages the
different views of an object, the global-local view model. In this model, each
thread has a local view of the object which is private to it. Threads update and
read primarily their local view. The local updates, though visible in a local view,
are made visible on a global view only after an explicit two-way merge operation
is performed. The other threads observe these changes once they synchronize, by
merge, their local view with the global view. As the local view is non-shared, the
local updates can be executed without requiring synchronization. Threads can
execute many local updates without synchronizing with the global view, thus
enabling better performance, albeit at the expense of linearizability.

In addition to the local operations, the model also provides synchronous
operations on the global view. We call the operations that perform only on local
view, weak operations and those on global view, strong operations. Combining
operations on the global and the local views, we can build data types with
customizable semantics on the spectrum between sequential and purely merge-
able data types. Mergeable data types provide only weak and merge operations;
hybrid mergeable data types offer both weak and strong operations. An appli-
cation that uses a hybrid mergeable data type may use weak updates when a
non-linearizable access is sufficient (e.g. weak enqueue on a local queue) and can
switch to use only strong operations when stronger guarantees are required (e.g.
strong dequeue to guarantee that item are dequeued only once).

In distributed systems, similar concerns led to the development of conflict-
free replicated data types (CRDTs) [19]. CRDTs allow asynchronous updates to
local replicas, while guaranteeing strong eventual consistency. In this distributed
setting, each replica can be concurrently updated without requiring any synchro-
nization. It can then later be merged with other replicas, while it is guaranteed
that all nodes reach a convergent state once all updates are known. CRDTs
play an essential role in partition tolerance and scalability [1,2]. However, the
applicability of CRDTs as described in literature [19] is limited in a concurrent
shared memory environment. For example, a CRDT counter is implemented as
a map of replica id to integer. The merge operation iterates over the two maps
to be merged and returns a map with the maximum for each entry. Thus, the
relative cost in space and time of the merge is linear in the number of entries
and as such unfeasibly high. In the global-local view model, the merge is exe-
cuted synchronously on the global view. If the cost of merge is high, we lose the
benefits of allowing parallel updates. While our work is inspired by them, the
current CRDT designs are not suitable for relaxing consistency in concurrent
shared-memory objects.

Contributions. This paper makes the following contributions:

494 D. Akkoorath et al.

1. We describe the global-local view model for multi-threaded applications with
high contention that implements an adaptable trade-off between update vis-
ibility and synchronization cost (Sect. 3).

2. We discuss the implementation of a mergeable counter, a hybrid counter
and queue (Sect. 4) and compare their performance with their linearizable
counterparts under both low and high contention workloads (Sect. 6).

2 Related Work

Programming Models: Maintaining per-thread replicas and performing updates
on them has been considered by different programming models in the literature.
In Concurrent Revisions [9], a forked thread applies changes on its copy which is
merged (using type-specific merge) to the parent thread when it is joined back.
The focus of this work is on a fork-join model, where threads can communicate
their state only when they join their parent. In contrast, we provide a generic
model for the data types where a two-way merge and strong updates can share
states among the threads at any point in the execution.

The Global Sequence Protocol (GSP) [10] is a model for replicated and dis-
tributed data systems that allows offline client updates. Since GSP addresses
a distributed system model, with no bounds on message delays, there is much
less control on replica divergence and liveness of the global sequence evolution.
In contrast, we address a shared-memory concurrent architecture that allows
bounds on divergence and stronger guarantees on the evolution of shared state.

Read-copy-update (RCU) [13] is a synchronization mechanism, suitable for
a single-writer/multiple-readers scenario, that allows processes to read a shared
object while a concurrent modification is in progress. Read-log-update (RLU)
[16] is an improvement over RCU that allows concurrent writers. Unlike our
model, concurrent writes are serialized using fine-grained locking.

Relaxed Consistency Models: Many models attempt to relax the strict seman-
tics of linearizability [14] to achieve better performance. Quasilinearizability [3]
allows each operation to be linearized at a different point at some bounded
distance from its strict linearization point. Our work is complimentary to this
model, allowing a combination of strong and weak updates to achieve different
consistency semantics. Weak and medium future linearizability [15] is applicable
to data types implemented using futures which allow reordering of the opera-
tions. Others models, such as k-linearizability [4] and quiescent consistency [22],
also define the correctness based on some sequential history, possible reordered,
of the operations. Local linearizability [12] requires that each thread induced
history (a subset of each thread operations) is linearizable.

Mergeable Data Types: Conflict free Replicated Data Types (CRDTs) [19] pro-
vide deterministic merges and are now widely used in distributed replicated
data systems. Here, we present implementations of mergeable data types that
are tailored for shared memory concurrent programs. We benefit from a stronger

Global-Local View: Scalable Consistency for Concurrent Data Types 495

system model, where idempotence and merging among arbitrary replicas are no
longer required, as local state is merged atomically to a single global state.

Even though no consolidated theory on mergeable data types exists in the
shared memory ecosystem, there have been systems that use such types with
restricted properties. Doppel [18] is a multi-core database that uses a mechanism
called phase reconciliation to parallelize conflicting transactions. When a high
contention workload is detected, Doppel switches to a split phase where the
transaction updates per-core copy of the objects. At the end of the split phase,
per-core copies are merged. Only operations that are commutative are executed
in the split phase, thus guaranteeing serializability.

3 Global-Local View Model

The system we consider is built upon a classical shared-memory architecture
as supported by specifications such as the C++ or Java memory models. We
assume that the system consists of a variable number of threads. Any thread
can spawn new threads that may outlive their parent thread. The system dis-
tinguishes two types of memory: local memory is associated to a single thread
and can only be accessed by this thread; shared memory can be accessed by
any thread. Communication and coordination between the threads are done via
shared-memory objects; we assume that there are no side channels. In particular,
spawned threads do not inherit local objects from their parents.

Each shared object o has a global view that is accessible by all threads that
obtained a reference to it. In addition, each thread has its own local view of
o. A thread may update and read its local view, but the view is not accessible
by any other thread. The local updates are incorporated into the global copy
when a merge operation is executed. Conflicting (non-commutative) updates
from concurrent threads are resolved through a type-specific merge operation.
In addition to the local updates and reads, we also provide updates and reads
performed directly on the global view. This gives us flexibility for the data type
semantics and the implementation of the underlying data structure.

An object in the global-local view model consists of a global view g, and for
each thread identified by t, a non-shared local view consisting of two compo-
nents, st and lt. st denotes a local snapshot of the shared object state g which
gets updated upon synchronization, and lt refers to the local updates not yet
incorporated in the shared global state g. The state variables – g, st, lt – are
each modeled as a sequence of updates, initially empty; a sequence x can be
concatenated with another sequence y (or a single update), denoted by x · y.

An operation opKind on an object performed by thread t can be formalized
as a function

opKindt(m, g, st, lt) = (r, g′, s′
t, l

′
t)

where m comprises the (optional) type-specific update (u) or query (q) method
applied on the object. The operation returns a tuple (r, g′, s′

t, l
′
t) where r is the

return value of the method m and the other variables refer to the updated global
g′ and local state s′

t, l
′
t.

496 D. Akkoorath et al.

Following are the basic operations in the global-local view model; these are
type-independent and mergeable data types typically implement only a subset
of them:

pullt(, g, st, lt) = (⊥, g, g, lt)
weakReadt(q , g, st, lt) = (q(st · lt), g, st, lt)

strongReadt(q , g, st, lt) = (q(g · lt), g, st, lt)
weakUpdatet(u, g, st, lt) = (st · lt · u, g, st, lt · u)

strongUpdatet(u, g, st, lt) = (g · u, g · u, st, lt)
merget(, g, st, lt) = (⊥, g′, g′,⊥) where g′ = merge(g, (st, lt))

pull updates the local object snapshot with the global object state; local
operations are not modified. weakRead returns the result of a type-specific read-
only operation q on the state obtained by applying local updates on the local
snapshot. strongRead returns the result of a type-specific read-only operation
q on the state obtained by applying local updates on global state. Neither the
global state nor the local snapshot are modified. weakUpdate applies the update
method u on the local copy without any synchronization to the global state.
strongUpdate applies the update method u on the global state atomically. The
previous weak updates that are batched in lt are not merged at this point.
merge incorporates the local updates to the global states and updates the local
snapshot, using the type-specific merge(g, (st, lt)) operation.

A merge must incorporate all local updates into the global state in a mean-
ingful way, so that conflicting concurrent updates lead to a deterministic state.
For example, if the updates are commutative, they can be appended to the global
sequence g′ = g·lt. If they are not commutative, the data types offer a conflict
resolving merge operation, modifying the sequence of updates merged to g.

While weakRead and weakUpdate act exclusively on the local copy, strongRead
and strongUpdate act on the global state. The combination of these two oper-
ations supports flexible optimizations on each given data type. For example,
a queue can guarantee that an element is dequeued only once by executing
dequeues in strongUpdate. At the same time, enqueues can use weakUpdate and
merged later for better performance. For counters, we may enforce a weak limit
on the maximum value, i.e. values should not diverge arbitrarily from the defined
maximum value. We can use a strongRead to check the global value to adapt the
merge interval or switch to a fully synchronized version.

4 Data Types

Each mergeable type defines a subset of the basic operations from the global-
local view model, depending on the semantics needed. In this section, we discuss
the specification of several data types and their implementation.

Global-Local View: Scalable Consistency for Concurrent Data Types 497

4.1 Specification

Given a sequential counter with methods inc (increments the counter by 1), and
value (returns the current value), a purely mergeable counter implements the
following operations.

– weakValuet() = weakReadt(value, , st, lt)
– weakInct() = weakUpdatet(inc, , , lt)
– merge(g, (st, lt)) = g·lt

The merge appends the local increments to the global sequence g, because the
increments are commutative. A hybrid mergeable counter defines the following
operations in addition to the above ones. The applications may choose weak or
strong operations dynamically based on different criteria.

– strongInct() = strongUpdatet(inc, g, ,)
– strongValuet() = strongReadt(value, g, , lt)

The queue datatype has operations enqueue(e) and dequeue. A hybrid merge-
able queue with mergeable enqueue and synchronized dequeue defines the fol-
lowing operations:

– enqueuet(e) = weakUpdatet(enqueue(e), , , lt)
– dequeuet() = strongUpdatet(dequeue, g, ,)
– merge(g, (st, lt)) = g·lt

In the above semantics, if the global copy is empty, dequeue returns null
even if there are local enqueue operations by the same thread which have not
been merged yet. We can allow dequeue to include local enqueue operations by
defining

dequeuet() = strongUpdatet(dequeue, g
′, ,) with (, g′ ,) = merget(g, st, lt).

In this way we can combine the operations to give different semantics. For
example, a queue with weak enqueue and weak dequeue may be useful if redun-
dant dequeue is not a problem for the application. A queue with only strong
enqueue and strong dequeue behaves as a linearizable queue.

A grow-only bag is a set that provides only an add operation, and allows
duplicate elements. A purely mergeable bag implements weakAdd and merge [7].

4.2 Implementation

The implementation of (hybrid) mergeable data types consists of two parts – a
reference to the local view and another one to the global view.

498 D. Akkoorath et al.

Counter. The global view of a mergeable counter is an integer g. The local
view consists of a pair of integers (s,l). The weak increments are collected in
the thread-local state l and added to g during the merge. This design is inspired
on sloppy counters [8], while using a local counter per thread instead of per
core. The following pseudocode shows the implementation of a counter. It is
easy to extend this implementation to allow decrements, explicit arguments for
increments/decrements, and generalize to other commutative monoids.

type Counter: {
int g,
ThreadLocal int s,
ThreadLocal int l

}
weakInc () {

l++;
}
strongInc (){

atomic {g++}
}

int weakValue (){
return s+l;

}
int strongValue (){

return g+l;
}
merge(){

atomic {
g += l; s = g; l = 0;

}
}

A variable specified as ThreadLocal exists per thread in the thread’s private
storage. Many programming languages support some form of thread-local stor-
age (TLS). A mergeable data type can also implement its own TLS by mapping
thread ids to different instances of the local object. atomic refers to any synchro-
nization mechanism such as mutex or lock-free techniques such as compare-and-
swap or transactional memory that atomically executes the code block within.

For some data types, local views are isolated from each other and the global
view, by maintaining a full copy of the object in each view. For large data
structures, such as lists or trees, maintaining a full copy is not feasible. Thus,
the local views may contain references to parts of the data structures that are
shared by other local views and global view. The shared parts are not directly
updated by the weak updates, but only read. For example, a lookUp on a list may
first traverse the locally added items and then the shared parts of the list. The
following are the designs of a few data types where this can be done efficiently
and correctly without copying the entire data structure.

Grow-only Bag. A grow-only bag [7] is implemented using a multi-headed list
as shown in Fig. 1. The thread local view consists of a pointer to the local head.
A merge updates the global head of the list and does not change the local views
of other threads. A lookup that traverses the list starting from the local head
will never see an item that is concurrently added or merged.

head

T1

T2

(a) Two threads with different local
views.

T1

T2

head

(b) After T1’s local view is merged.

Fig. 1. Mergeable grow-only bag.

Global-Local View: Scalable Consistency for Concurrent Data Types 499

Queue. A hybrid mergeable queue can be implemented using a single-linked
list similar to a linearizable queue. The items enqueued are added to the tail
of the list, while dequeue is performed from the head. A mergeable queue
instance contains a global view – (head, tail), which points to the head and
tail nodes respectively of the global list and local view – (ThreadLocal lhead,
ThreadLocal ltail), which are the head and the tail of the local list of each
thread. The local list collects the items enqueued by the thread that are not yet
merged. The merge atomically appends the local list to the global list. The time
needed to merge a group of nodes is the same as the time needed to enqueue a
single node. By batching the enqueues, we can reduce the number of synchro-
nization operations, thus improving the overall throughput.

The dequeue operation directly updates the shared part of the list. For some
data types, an update on the shared part of the data structure should preserve
the old version, because local views may be keeping reference to it. However,
there is no weakRead, such as a weak lookup, defined on queue that must observe
a version before a concurrent dequeue. Hence, there is no need to keep those
versions, which simplifies the implementation.

5 Applications

In this section, we sketch some application scenarios that benefit from multi-view
mergeable data types.

A work-stealing queue is used to distribute tasks among threads running in
parallel. In Cilk runtime [11] each thread owns a queue with operations pushTop,
popTop, and popBottom. There is no pushBottom. When a thread is devoid of
tasks, it retrieves one from its queue using popTop, executes it and may generate
new tasks that are added to its queue using pushTop. When a thread’s task
queue is empty, it steals from other threads’ queue using popBottom. A work
stealing queue with this semantics is a natural fit to the global-local view model.
Instead of a queue per thread, we have a multi-view queue with a global view
and a local-view per thread. pushTop and popTop executes on the thread-local
views, and popBottom on the global view. One downside of this design is that it
may prevent threads from stealing tasks when the global view is empty even if
there are unmerged tasks in the local views. To avoid this, threads can be forced
to merge when the global view drops below a threshold.

In-memory multi-core databases. In high contention workloads, we can
achieve high performance by allowing concurrent conflicting transactions to pro-
ceed in parallel on different cores. Instead of serializing the access to the objects,
the transactions can update a per core copy of the object and merge them later.
In [18], authors describe a system that automatically parallelize high contention
transactions. A multi-view data type implemented in the global-local view model
is a natural fit to such scenario.

Message queues where multiple messages can be batched together and added
to the shared queue is a direct application of the hybrid queue described in this
paper. The applications that use aggregation counters that are computed by

500 D. Akkoorath et al.

Fig. 2. Throughput vs Overshoot of
mergeable counter. Points on the lines
are labeled with the number of threads.

Fig. 3. Throughput of hybrid merge-
able counter (overshoot free) vs atomic
counter, labelled with merge-interval.

parallel threads can use our mergeable counter. Similarly, the objects that store
statistical measures such as sums, min, max etc. that are computed by parallel
threads will benefit from the global-local view model. In software transactional
memory, we may use mergeable objects to avoid unnecessary aborts where the
conflicting updates can be meaningfully merged [6].

6 Evaluation

We evaluated the performance and scalability of the mergeable counter and the
hybrid mergeable queue using different micro-benchmarks. As an example of real
applications, we employed the hybrid queue in a breadth-first traversal on graphs.
We implemented the counter in C++ and the queue in Java. The evaluations
are performed on a 12 core CPU (2 NUMA nodes) with 2-way hyper-threading.

Counter. We provide two variants of a mergeable counter and compare them
with an atomic counter, implemented using the atomic compare and swap oper-
ation. In the first experiment, we allow threads to increment the shared purely
mergeable counter until a target value is reached. Since threads might not know
about non-merged increments from other threads, they typically end up over-
shooting the target. For this experiment, the target is set to 5 × 106 increments.
We evaluated several merge-intervals, labelled with how many local increments
are allowed between merges. Figure 2 shows that the throughput scales linearly
with the number of threads and with the merge-intervals. At the same time, the
overshoot increases. However, the percentage of the overshoot is small. (Notice
that overshoot is upper bound by the number of threads times the merge-interval,
as this reflects the amount of increments not yet accounted for.) The atomic
counter never overshoots the target, but since threads are always competing on
the increment, performance is very low and no speedup is obtained. In contrast,
the mergeable counter can scale linearly up to a good fraction of the available
concurrency, in particular with merge-interval of ≥4096.

While some applications could tolerate an overshoot, in general, applications
will require to further bound the overshoot. To address this, we provide a variant

Global-Local View: Scalable Consistency for Concurrent Data Types 501

of the mergeable counter that makes a hybrid use of initial weak local increments
and later switches to atomic strong increments when approaching the target. The
first thread that, upon the periodic merges, detects that it is close to the target,
initiates a barrier synchronization to ensure that all threads have switched to
strong operations. Figure 3 shows that under this approach, overshoot is elimi-
nated while the performance is mostly identical to the mergeable counter.

Fig. 4. CRDT counter using array and
map, m-mergeable counter with merge-
interval 1,16. sync-atomic counter.

Comparison to CRDT. In this
experiment, we demonstrate that
CRDT designs have significant over-
head in performance when used in a
shared memory program. We imple-
mented a CRDT counter on the
global-local view model, where each
local view and global view are a
CRDT replica. We implemented the
G-counter [19] using (1) a HashMap
that maps thread-id to an integer, (2)
an array where the array index corresponds to a thread id. Figure 4 shows that
the array scales better when the merge-interval is large. However, the size of
array must be fixed to the number of threads. The map implementation does
not scale well because (1) there is an overhead in accessing the map entries,
(2) merge requires an iteration over the entire map resulting in longer critical
section. Thus, the cost of merge operation is negating the benefit achieved by
the asynchronous local increment.

Queue. To evaluate the scalability of hybrid mergeable queue (referred to as
mergeable queue) in comparison to classical algorithms, we implemented four
different queues in Java – (1) a lock-based linearizable queue based on Michael
and Scott’s 2-lock queue [17] (LL), (2) a lock-based mergeable queue which
uses similar 2-lock mechanism (ML), (3) a lock-free linearizable queue adapted
from Michael and Scott’s lock-free queue [17] (LF) and (4) a lock-free mergeable
queue (MLF). Figure 5 shows the time to perform a total of 5×106 enqueues and
dequeues. We evaluated mergeable queues with different merge intervals m (a
merge is performed by a thread after m enqueues). In this experiment, we forced
half of the threads to run on one NUMA node and the other half on the second
NUMA node. For both lock-based and lock-free versions, the mergeable queue is
faster than the linearizable counterpart. Since this is a high-contention workload,
the lock-based version performs better than the lock-free version. Unlike the
mergeable counter, increasing the merge interval from 8 to 64 does not improve
the performance significantly because dequeue is always executed synchronously
which shadows the performance gain from asynchronous enqueues.

Breadth-First Traversal. A standard breadth-first traversal algorithm using
queues can be parallelized using concurrent queues. We evaluated four versions

502 D. Akkoorath et al.

Fig. 5. Queue. linearizable lock based
(LL), lock-free (LF). mergeable lock
based (ML), lock-free (MLF) 1,8,64-
merge interval.

Fig. 6. Breadth-first traversal. lineariz-
able lock based (LL), lock free (LLF).
mergeable lock-based (ML), lock-free
(MLF).

of the algorithm using different queue implementations, that traversed randomly
generated graphs of size of 2 × 106 vertices and 2 × 107 edges. Unlike the micro-
benchmark for the queue, there is no fixed merge interval. The threads merge
their local queue at the end of processing each level. Figure 6 shows the speedup
of each version compared to a single-threaded implementation. Mergeable queues
scale better than their linearizable counterparts. The speedup of the lock-free
mergeable queue is significantly higher than that of the others, and scales almost
linearly until 16 threads. Beyond 16 threads, the number of vertices processed
by each thread at each level is reduced, as they are divided among the threads,
leading to smaller merge frequencies. We believe the sudden drop in the speedup
of lock-based queues after 12 threads is due to the additional cost in synchro-
nization to the second NUMA core. This is a low-contention workload because a
significant amount of time is spent in processing the nodes rather than updating
the queue.

7 Conclusion

Incorporating more information about the respective datatype semantics is cru-
cial for datatype designs that are more parsimonious regarding synchronization.
CRDTs succeeded in capturing datatypes with clear concurrency semantics and
are now common components in industry. However, they do not migrate triv-
ially to shared-memory architectures due to high computational costs from merge
functions, which becomes apparent once network communication is removed.

In this paper, we define the global-local view model as base for a framework
that allows capturing the semantics of multi-view datatypes. The global-local view
distinguishes between local fast state and distant shared state where operations
need to be synchronized. This distinction allows the datatype designer to explore
the trade-offs in the design when using weak or strong operations. Our approach
enables speedups in order of magnitudes while preserving the datatypes’ target
behavior. It is quite possible that further increments of the number of compo-
nents involved will lead to a hierarchical model with more levels than the current
binary, local vs global, scheme.

Global-Local View: Scalable Consistency for Concurrent Data Types 503

Data Availability Statement and Acknowledgements. The work presented was
partially supported by EU H2020 LightKone project (732505), and SMILES Research
Line within project “TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of
Concept with Industrial Impact /NORTE-01- 0145-FEDER-000020” financed by the
North Portugal Regional Operational Programme (NORTE 2020), under the PORTU-
GAL 2020 Partnership Agreement, and through the European Regional Development
Fund (ERDF).

The datasets and code generated during and/or analysed during the current study
[5] are available in the figshare repository: https://doi.org/10.6084/m9.figshare.6383807

References

1. Antidotedb. http://syncfree.github.io/antidote/
2. Riak KV: a distributed key-value database. http://basho.com/products/riak-kv/
3. Afek, Y., Korland, G., Yanovsky, E.: Quasi-linearizability: relaxed consistency for

improved concurrency. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010.
LNCS, vol. 6490, pp. 395–410. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17653-1 29. http://dl.acm.org/citation.cfm?id=1940234.1940273

4. Aiyer, A., Alvisi, L., Bazzi, R.A.: On the availability of non-strict quorum sys-
tems. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 48–62. Springer,
Heidelberg (2005). https://doi.org/10.1007/11561927 6

5. Akkoorath, D., Brando, J., Bieniusa, A., Baquero, C.: Code to run experiments for
euro-par 2018 paper: Global-local view: Scalable consistency for concurrent data
types (2018). https://doi.org/10.6084/m9.figshare.6383807

6. Akkoorath, D.D., Bieniusa, A.: Transactions on mergeable objects. In: Feng, X.,
Park, S. (eds.) APLAS 2015. LNCS, vol. 9458, pp. 427–444. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26529-2 23

7. Akkoorath, D.D., Bieniusa, A.: Highly-scalable concurrent objects. In: Proceedings
of the 2nd Workshop on the Principles and Practice of Consistency for Distributed
Data. PaPoC 2016, pp. 13:1–13:4. ACM, New York (2016). https://doi.org/10.
1145/2911151.2911158

8. Boyd-Wickizer, S., et al.: An analysis of linux scalability to many cores. In: Pro-
ceedings of the 9th USENIX Conference on Operating Systems Design and Imple-
mentation. OSDI 2010, pp. 1–16. USENIX Association, Berkeley (2010). http://
dl.acm.org/citation.cfm?id=1924943.1924944

9. Burckhardt, S., Baldassin, A., Leijen, D.: Concurrent programming with revi-
sions and isolation types. In: Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications. OOP-
SLA 2010, pp. 691–707. ACM, New York (2010). https://doi.org/10.1145/1869459.
1869515

10. Burckhardt, S., Leijen, D., Protzenko, J., Fähndrich, M.: Global sequence proto-
col: a robust abstraction for replicated shared state. In: Boyland, J.T. (ed.) 29th
European Conference on Object-Oriented Programming (ECOOP 2015). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 37, pp. 568–590. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2015). https://
doi.org/10.4230/LIPIcs.ECOOP.2015.568

11. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-
tithreaded language. In: Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. PLDI 1998, pp. 212–223. ACM,
New York (1998). https://doi.org/10.1145/277650.277725

https://doi.org/10.6084/m9.figshare.6383807
http://syncfree.github.io/antidote/
http://basho.com/products/riak-kv/
https://doi.org/10.1007/978-3-642-17653-1_29
https://doi.org/10.1007/978-3-642-17653-1_29
http://dl.acm.org/citation.cfm?id=1940234.1940273
https://doi.org/10.1007/11561927_6
https://doi.org/10.6084/m9.figshare.6383807
https://doi.org/10.1007/978-3-319-26529-2_23
https://doi.org/10.1145/2911151.2911158
https://doi.org/10.1145/2911151.2911158
http://dl.acm.org/citation.cfm?id=1924943.1924944
http://dl.acm.org/citation.cfm?id=1924943.1924944
https://doi.org/10.1145/1869459.1869515
https://doi.org/10.1145/1869459.1869515
https://doi.org/10.4230/LIPIcs.ECOOP.2015.568
https://doi.org/10.4230/LIPIcs.ECOOP.2015.568
https://doi.org/10.1145/277650.277725

504 D. Akkoorath et al.

12. Haas, A., et al.: Local Linearizability for Concurrent Container-Type Data Struc-
tures. In: 27th International Conference on Concurrency Theory (CONCUR 2016).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 59, pp. 6:1–6:15
(2016). https://doi.org/10.4230/LIPIcs.CONCUR.2016.6

13. Hart, T.E., McKenney, P.E., Brown, A.D.: Making lockless synchronization fast:
performance implications of memory reclamation. In: Proceedings of the 20th
International Conference on Parallel and Distributed Processing. IPDPS 2006, p.
21. IEEE Computer Society, Washington, D.C. (2006). http://dl.acm.org/citation.
cfm?id=1898953.1898956

14. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990). https://doi.org/
10.1145/78969.78972

15. Kogan, A., Herlihy, M.: The future(s) of shared data structures. In: Proceedings of
the 2014 ACM Symposium on Principles of Distributed Computing. PODC 2014,
pp. 30–39. ACM, New York, (2014). https://doi.org/10.1145/2611462.2611496

16. Matveev, A., Shavit, N., Felber, P., Marlier, P.: Read-log-update: a lightweight
synchronization mechanism for concurrent programming. In: Proceedings of the
25th Symposium on Operating Systems Principles. SOSP 2015, pp. 168–183. ACM,
New York (2015). https://doi.org/10.1145/2815400.2815406

17. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Proceedings of the Fifteenth Annual ACM Sym-
posium on Principles of Distributed Computing. PODC 1996, pp. 267–275. ACM,
New York (1996). https://doi.org/10.1145/248052.248106

18. Narula, N., Cutler, C., Kohler, E., Morris, R.: Phase reconciliation for contended
in-memory transactions. In: Proceedings of the 11th USENIX Conference on Oper-
ating Systems Design and Implementation. OSDI 2014, pp. 511–524. USENIX
Association, Berkeley (2014). http://dl.acm.org/citation.cfm?id=2685048.2685088

19. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24550-
3 29. http://dl.acm.org/citation.cfm?id=2050613.2050642

20. Shavit, N.: Data structures in the multicore age. Commun. ACM 54(3), 76–84
(2011). https://doi.org/10.1145/1897852.1897873

21. Sstrik, M.: ZeroMQ. In: The Architecture of Open Source Applications, vol. 2
(2012)

22. Viotti, P., Vukolić, M.: Consistency in non-transactional distributed storage sys-
tems. ACM Comput. Surv. 49(1), 19:1–19:34 (2016). https://doi.org/10.1145/
2926965

https://doi.org/10.4230/LIPIcs.CONCUR.2016.6
http://dl.acm.org/citation.cfm?id=1898953.1898956
http://dl.acm.org/citation.cfm?id=1898953.1898956
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/2611462.2611496
https://doi.org/10.1145/2815400.2815406
https://doi.org/10.1145/248052.248106
http://dl.acm.org/citation.cfm?id=2685048.2685088
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
http://dl.acm.org/citation.cfm?id=2050613.2050642
https://doi.org/10.1145/1897852.1897873
https://doi.org/10.1145/2926965
https://doi.org/10.1145/2926965

	Global-Local View: Scalable Consistency for Concurrent Data Types
	1 Introduction
	2 Related Work
	3 Global-Local View Model
	4 Data Types
	4.1 Specification
	4.2 Implementation

	5 Applications
	6 Evaluation
	7 Conclusion
	References

