)

Check for
updates

Combinatorial Auction Algorithm
Selection for Cloud Resource Allocation
Using Machine Learning

Diana Gudu®™), Marcus Hardt, and Achim Streit

Karlsruhe Institute of Technology, Karlsruhe, Germany
{diana.gudu,marcus.hardt,achim.streit}@kit.edu

Abstract. Demands for flexibility, efficiency and fine-grained control for
the allocation of cloud resources have steered the research in this field
towards market-inspired approaches. Combinatorial auctions can fulfill
these demands, but their inherent A'P-hardness makes them impractical
if an optimal solution is desired in a reasonable time. Various heuristic
algorithms that yield good allocations fast have been proposed, but their
performance and solution quality are highly dependent on the input. In
this paper, we investigate which features of a problem instance are pre-
dictive of algorithm performance and quality, and propose an algorithm
selection method that uses machine learning to find the best heuristic
for each given input. We introduce a new cost model for the trade-off
between execution time and solution quality, which enables quantita-
tive algorithm comparison. Using feature-based classification to train the
algorithm selection model, we can show that our approach outperforms
the single best algorithm, as well as a random algorithm selection.

Keywords: Cloud resource allocation + Combinatorial auction
Algorithm selection - Feature-based classification

1 Introduction

Cloud computing leverages economies of scale to provide resources as a utility.
Therefore, market-oriented approaches are necessary to regulate the demand
and supply of cloud resources, as well as provide economic incentives for both
providers and customers [1].

The concept of dynamic pricing is gaining interest, as cloud providers such
as Amazon use single-good auctions to sell their unused resources on the spot
market [2]. Moreover, dynamic pricing is an essential part of smart contracts [3],
an emerging alternative to broker-based matchmaking for cloud service selec-
tion, which support changes in agreements while offering quality and security
guarantees through their self-executing nature.

Combinatorial auctions [4] can offer more flexibility and fine-grained con-
trol, by affording customers to request and pay only for the combination of
© Springer International Publishing AG, part of Springer Nature 2018

M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 378-391, 2018.
https://doi.org/10.1007/978-3-319-96983-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_27&domain=pdf

Combinatorial Auction Algorithm Selection for Cloud Resource Allocation 379

resources that fits their requirements. However, their applicability to resource
allocation has been limited to the realm of academic research [5], due to their
NP-hardness. The forecast growth of public cloud services market [6] will further
impede their practical use due to scalability concerns — as long as optimal solu-
tions are desired. Therefore, for real-world adoption, it is necessary to sacrifice
optimality requirements by using heuristics.

Existing heuristic algorithms for combinatorial auctions [7-9] perform dif-
ferently depending on the input characteristics, in terms of both runtime and
solution quality [10]. A more robust usage is essential, since any performance gain
can translate into high increases in revenue for cloud providers. Furthermore, the
quality-speed trade-off of each algorithm needs to be reliably controlled, in order
to fit any particular needs.

In this paper, we address these challenges by using machine learning to select
the most suited heuristic for each individual auction instance, while introducing
a quantitative definition for this suitability — based on a runtime and welfare-
dependent cost model. Furthermore, we propose a feature set tailored to combi-
natorial auctions to aid the learning process. We perform an extensive evaluation
and show that the proposed approach outperforms single algorithms, as well as
a random algorithm selection.

2 Related Work

Various approaches for algorithm selection have been applied to combinatorial
search problems, as summarized in [11]. The techniques are categorized according
to the type of algorithm portfolio (static or dynamic), features (low or high-
knowledge, static or dynamic), performance models, and prediction types. Their
applicability is exemplified across a range of application domains: SAT, Mixed
Integer Programming, machine learning, etc. However, these methods focus on
a single optimization objective, usually runtime.

The only work where algorithm selection was applied to combinatorial auc-
tions [12] is concerned with optimal algorithms and minimizing the execution
time, whereas we look at heuristic algorithms and optimize both social welfare
and execution time. Leyton-Brown et al. [12] studied the empirical hardness
of combinatorial auctions and devised a methodology to understand this hard-
ness using feature-based supervised learning. They identified certain structural
features of the WDP that are predictive of running time, and used this run-
time prediction to select the fastest algorithm for each problem instance, out-
performing the best algorithm in the average case. We note that this work used
regression-based learning techniques to predict the runtime of algorithms instead
of classification, in order to penalize mispredictions differently.

Beck and Freuder [13] use algorithm selection for scheduling problems. They
optimize the performance of a portfolio of optimal algorithms only based on low-
knowledge information, obtained by running all the algorithms for a short time,
recording their performance, and using this information to inform the prediction.

380 D. Gudu et al.

3 Formal Problem Definition

To model the cloud resource allocation using market-inspired concepts, we make
the following assumptions:

1. there are multiple cloud providers offering computing resources and multiple
customers requesting resources from any provider at a centralized market-
place,

2. there is a fixed number of resource types on the market, known apriori by all

market participants,

all resources requested by a customer need to come from the same provider,

all requests and offers are independent, and

5. no partial allocations or floating point quantities are allowed.

= w

The problem can then be formalized as a multi-unit, double combinatorial
auction, consisting of: a set of n bidders U = {1,...,n}, a set of m providers
P={1,...,m}, aset of [goods G ={1,...,1}, and an auctioneer that decides
the allocation and pricing of resources based on the bids and asks.

Each customer i submits a single bid for a bundle of resources, expressed as
({ri1y...,7a),b;), where r;; is the number of items of resource type k that the
bidder i requests, and b; is the maximum amount bidder ¢ is willing to pay for the
entire bundle. Similarly, a seller j submits its ask expressed as ({s;1, ..., Sj1), a;),
where s;;, are the quantities offered by seller j of each resource type k. Seller j
offers its bundle of resources at a price a;, which is the minimum acceptable.

In the context of cloud computing, a bundle represents a virtual machine
(VM), consisting of resources such as CPU cores, memory, disk storage, GPU
cores, etc. This model makes assumption 3 indispensable, since a VM cannot
contain resources from different providers. Furthermore, we showed that the
resource locality constraint makes the allocation problem harder in terms of time
complexity [10], and thus requires the use of heuristic algorithms. Therefore, the
algorithm selection approach is aimed at this specific use case.

The auctioneer collects the bids and asks, and finds the best allocation
of resources that maximizes the social welfare of the system. To that end, it
first determines which bidders will receive the requested bundles and which
providers can sell their resources — also called the Winner Determination Prob-
lem (WDP) [14] — and then decides the trading prices — also called the payment
scheme.

The social welfare is defined [15] as the sum of all the participants’ utilities,
where the utility is a measure of a trader’s satisfaction. For example, a bidder
i’s utility for a requested bundle S is defined as u;(S) = v;(S) — p;, if ¢ wins
the auction, and 0 otherwise, where v;(.5) (valuation) is the true value bidder ¢
is willing to pay for bundle S, and p; is the actual price paid at the end of the
auction. When a bidder is truthful, v;(.S) = b;.

We assume that customers and providers are single-minded, which means
that they are only interested in buying or selling the full bundle, and have 0
valuation for all the other bundles.

Combinatorial Auction Algorithm Selection for Cloud Resource Allocation 381

Then the WDP can be written as the following integer program:

ma (S br - 32 Y 0
Yo\i= j=11i=1
subject to:
zi,yi; €{0,1},Vie U,Vj € P (2)
Zyz‘jﬁl,vjep (3)
i=1
Zyij = .’Ei,Vi ceU (4)
j=1
m
Tikli < ZSjkyij,Vi eUVkeG (5)
=1

where constraint (2) expresses the single-mindedness of bidders and sellers, con-
straint (3) ensures that a seller can allocate its bundle to at most one bidder,
and constraint (4) ensures that each customer receives the resources in its bundle
from a single provider. Finally, constraint (5) ensures that a provider cannot sell
more than the amount of resources it offered.

The auctioneer then uses a s-pricing scheme [10] to set the bundle prices by
distributing the trade surplus among the auction winners, thus ensuring budget-
balance. The truthfulness requirement is relaxed, but it was shown that it can
be achieved in practice, since non-truthful bidding increases the risk of no allo-
cation [16].

4 Algorithm Selection

Combinatorial auctions are N'P-hard [4], hindering their wide adoption in real-
world applications. Existing heuristic algorithms mitigate the scalability and
efficiency issues posed by optimal algorithms, but their solution quality varies
with the input [10]. For a more robust usage of heuristic algorithms for combina-
torial auctions, we propose using an algorithm selection approach [11]: selecting
the most suitable algorithm on a case-by-case basis. To predict which heuristic
will perform best on each problem instance, we propose the use of supervised
machine learning in conjunction with an algorithm portfolio.

The workflow for algorithm selection, based on similar approaches for run-
time prediction [12], is depicted in Fig. 1. We first build an algorithm portfolio
by assembling a collection of complementary heuristic algorithms for combina-
torial auctions. The data are collected in two sub-steps: (1.a) generating a large
number of auction instances (defined by a set of bids and asks) that covers a
representative part of the input space, by using our artificial input generator
for combinatorial auctions CAGE [10]; (1.b) running all the algorithms in the

382 D. Gudu et al.

Features:
- average bid price
- average ask price
- demand-supply ratio
- bid-ask spread

auto-sklearn

(1.a) Input generation

AN (3) Train classifier
Instances

Raw data
D=instances
c=algorithm costs

(1.b) Run all

(2) Preprocessing Training set
X=instance features

y=Dbest algorithms

combinations

Algorithm
portfolio #

Test set
instance features
y’=best algorithms

(4) Evaluate
model

Prediction
y=predicted algorithms

Fig. 1. Algorithm selection workflow

portfolio on all the generated instances to record their runtime and resulting
social welfare. Since using the raw input for learning can be computationally
expensive or even intractable, we propose to use domain knowledge to extract a
set of features that contain sufficient information; the features are mainly statis-
tics related to bid and ask values, quantities or demand-supply balance (see
Sect. 4.2). The preprocessing step (2) includes feature extraction, labeling the
data by selecting the best algorithm for each instance — the algorithm with the
lowest cost, as defined in Sect. 4.3 — and splitting the dataset into training and
test data for supervised learning. We formulate the algorithm selection prob-
lem as a multi-class classification problem: given observations (a set of instances
defined by their features) whose class labels (best algorithm) are known, we (3)
train a model that can predict the class label of any new observation. The model
is then (4) tested on unseen data. At this step, several appropriate metrics to
evaluate the quality of the prediction should be considered (see Sect.4.4).

4.1 Algorithm Portfolio

In [10], we investigated and compared different algorithms for approximating
the solutions of WDPs. We built an algorithm portfolio by either adapting var-
ious combinatorial auction algorithms [7-9], or applying well-known optimiza-
tion methods [17,18] to combinatorial auctions. The experiments revealed that
algorithm runtime and solution quality are highly dependent on the input, and
no single algorithm outperformed the others in all test cases. This result was
most pronounced when resource locality was a desired property — all resources
requested by a customer being allocated on the same cloud provider. The prob-
lem formulation presented in this paper already includes the resource locality
constraint, and the algorithms were adapted accordingly.

In the rest of this section, we briefly describe the 12 algorithms included
in our portfolio. Based on the employed optimization approach, we can group

Combinatorial Auction Algorithm Selection for Cloud Resource Allocation 383

the algorithms into four families: greedy, hill climbing, simulated annealing, and
stochastic local search.

The greedy algorithms sort the bid and ask lists according to a certain cri-
teria (e.g. bid density), and then traverse the list to greedily match bids with
asks. Based on [7], we used three different sorting criteria to implement algo-
rithms GREEDY1, GREEDY2 and GREEDY3. A greedy algorithm that gives pri-
ority to sellers was also implemented (we denote seller priority by a ‘-s’ suffix:
GREEDY1S).

Hill climbing algorithms perform a local search in the solution space, similar
to gradient descent. We included two methods of exploring the neighborhood of
a solution: first, by changing the ordering of bids or ask onto which a greedy allo-
cation is performed [8] (algorithms HILL1 and HILL1S), and second, by toggling
the allocation of a bid through the z; variables [19] (HILL2 and HILL2S).

Simulated annealing algorithms (sA and SAS) use the same method of gener-
ating a neighboring solution as HILL2, but randomly accept worse solutions to
escape from local optima.

Finally, to mitigate the same problem, stochastic local search algorithms
(CASANOVA and CASANOVAS) use random walks with restarts, while exploring
the solution neighborhood by adding bids based on their ranking and novelty [9].

The algorithms based on simulated annealing and stochastic local search
techniques are stochastic, yielding different results for multiple runs on the same
input. For reliable usage, the average welfare and execution time over 10 runs
were used in our experiments.

The portfolio is easily extensible, and more algorithms can be added as they
are developed. However, this affects the rest of the algorithm selection pipeline:
the prediction models need to be retrained for every portfolio change.

4.2 Features

Using domain knowledge — insights into the inner workings of combinatorial
auctions, as well as each individual algorithm — we defined a number of 75
features that can be extracted from any problem instance. The features are
mainly statistics, and can be computed in O (I (m + n)), which is faster than
any of the algorithms in the portfolio. The defined features can be grouped in
four categories: price related, quantity related, quantity per resource related (as
measures of heterogeneity of requests) and demand-supply balance related.

We give some examples of features in the following. First, statistics of the
distribution of the asking price per unit over all asks were included (mean, stan-
dard deviation, skewness and kurtosis). Similarly, we looked at the distribution
of the bid price per unit over all bids, as well as the corresponding quantity
related features: the total bundle sizes of bids and asks. Moreover, we included
economics concepts such as the bid-ask spread, defined as the difference between
the minimum ask and maximum bid, and used as a measure of the market lig-
uidity. Similarly, we defined a quantity spread per resource, as the difference
between the maximum requested quantity and the minimum offered quantity
per resource, and computed the first four central moments of the distribution

384 D. Gudu et al.

of quantity spread over all the [resource types. Other features in the group
of demand-supply balance related features deal with quantity surpluses, either
total surplus (the difference between the total number of resources offered and
requested), or a quantity surplus per resource type.

4.3 Cost Model

Since the algorithms in the portfolio are heuristic, they generally trade solution
quality for speed. Thus, labeling the dataset requires, for each problem instance,
a comparison of all algorithms with respect to both social welfare and execution
time, which can then yield the best algorithm for both criteria. We propose
modeling this as a multi-objective optimization problem [20], whose objectives
are a maximum social welfare and a minimum execution time. In order to find
a Pareto optimal solution, we use the idea of a compromise solution [21], which
minimizes the distance between the potential optimal point and a utopia (or
ideal) point.

As welfare and time are measured on different scales, they should first be
normalized to obtain non-dimensional objective functions. We normalize the
welfare objective function, and call it welfare cost cy(0,a), as defined in Eq. 6,
where w(o, a) is the welfare computed by algorithm a on instance o, while W (0)
and wmax(0) are, respectively, the minimum and maximum welfare obtained for
instance o by any algorithm in the portfolio. Thus, the best algorithm when only
welfare objective is considered will have zero welfare cost.

Wmax(0) — w(o,a)
wmax(o) - wmin(o)

cw(0,a) = (6)

Similarly, in Eq.7 we define the time cost ¢¢(0,a) as the normalized time
objective, where t(0, a) is the execution time of algorithm @ on instance o, and
tmin(0) and tax(0) are the execution times of the fastest and slowest algorithms
in the portfolio on instance o. The best algorithm with respect to time will also

have zero time cost.
t(o,a) — tmin(0)

7
tmax(o) - tmin(o) ()
Then the multi-objective function is defined as a vector in the two-

¢i(o0,a) =

dimensional objective space, C' = [Cu, Ct}—r. Furthermore, we introduce a user-
defined preference parameter A € [0, 1] that reflects the relative importance of the
two objectives, in order to provide more control over the decision of selecting the
best algorithm. This changes the multi-objective vector to Cy = [)\ (1-)\)] C.
A value of A = 1 implies that solely the welfare objective should be considered,
while A = 0.5 places equal importance on welfare and time.

Finally, we find the optimal solution (best algorithm) by minimizing the
distance to the utopian vector C'°, whose components are the lower bounds of
each objective function — in this case [0 O} T, We use the Euclidean distance to
compute the scalar cost metric that will ultimately be used to select the best
algorithm, as defined in Eq. 8.

Combinatorial Auction Algorithm Selection for Cloud Resource Allocation 385

ex(0,a) = [On = €%l =/ Qew (0,00 + (L= N et (0,00 (8)

In Fig.2, we exemplify the use of A on a random problem instance. For
different A values, different algorithms have minimum cost and are thus selected
as the best: when speed is more important (A = 0.1), the CASANOVAS algorithm
is selected, while an algorithm based on hill climbing (HILL2S) is best when
welfare has a higher priority (A = 0.9). A simulated annealing algorithm (SAS)
is the best when time and welfare are weighted equally (A = 0.5).

A = 0.1, best=CASANOVAS A = 0.5, best=sAs A = 0.9, best=HILL2S * GREEDY1
1 1 1 * GREEDY2
X GREEDY3
+ GREEDY1S
@ HILL1
OHILL1S
$ 05 $ 05 s 05 A2
A HILL2S
0 SA
0 SAS
[CASANOVA
og = op @ p @ [0 CASANOVAS
0 - % 0 = —* 0 = %
0 0.5 1 0 0.5 1 0 0.5 1
Cw Cw Cw

Fig. 2. Visualization of a problem instance in the two-dimensional objective space.
Isolines represent scalar cost cy. Different algorithms emerge as best depending on A.

4.4 Evaluation Metrics

There are several success measures when evaluating a classification model. The
most intuitive measure is the accuracy, namely how often the model correctly
predicts the algorithm with the lowest cost. More specifically, we define the
accuracy in Eq.9, for a given dataset O, as the fraction of the instances for
which the predicted algorithm 7, is the same as the algorithm with the lowest
cost yo.

accuracy (v, J) |O\ Z = Yo) (9)
0cO
However, the accuracy does not give a quantitative evaluation of a model’s
mispredictions: it penalizes all misclassifications equally, irrespective of their
associated costs. To that end, we introduce a metric that considers the cost of
the predicted algorithm: the mean relative error (MRE), as defined in Eq. 10.

MRE)\ |O| Z C)\ o yo (07 yo))2 (10)
0€0

For a meaningful evaluation, we also compare our portfolio-based algorithm
selection against a single algorithm a*. Therefore, we introduce the relative mean
relative error (RMRE) metric, defined in Eq. 11 as the ratio between the MRE of

386 D. Gudu et al.

the classification model and the MRE of using algorithm a* on the entire dataset.
The classification model can be similarly compared to a random selection model.

MRE y
RMRE(y,§,a") = AU D)

- MRE\(y,a*) (11)

5 Evaluation

We evaluated our machine learning-based algorithm selection on an artificially
generated dataset, as real data for combinatorial auctions of cloud resources
(e.g. user bidding data) is not available. We used CAGE [10], a flexible input
generator designed specifically for multi-unit, multi-good double combinatorial
auctions.

We created a dataset of 5970 auction instances by varying input parameters
such as the number of bids, asks and resource types, sparsity of resources inside a
bundle, additivity, and distributions used for generating base prices. Given that
we model cloud resources, we assume that bundle sizes for both bids and asks
are drawn from exponential random distributions, which means that most of the
bundles are small. This is in accordance with Google cloud traces [22], where
most task are short, while only a few tasks are long running with high resource
demands. Regarding bidding strategies, we assume a normal distribution around
base prices, meaning that bidders are willing to pay, per unit, a price close to a
resource’s known market price.

5.1 Dataset Analysis

We analyze the dataset by evaluating the relevance of the defined features to the
prediction, as well as the distribution of class labels. The dataset was labeled by
selecting, for each problem instance, the algorithm that yielded the lowest cost.
Since the cost is A-dependent, so are the labels.

Figure 3 shows the support for each class, over 11 values of A\ equidistantly
distributed over [0, 1]. Note that the dataset is imbalanced for all A. Furthermore,
for small A\ values, when time is more important than welfare, greedy algorithms
were selected more frequently, as they are fast, but have poor quality, while at the
other end hill climbing algorithms, although slower, were selected for their higher
welfare. For A € [0.1,0.6], simulated annealing algorithms were often selected as
best — not surprising, since they are similar to hill climbing, but randomly accept
worse solutions to climb out of local optima and reach to a solution faster. An
interesting result is the A-independent number of instances for which the greedy
algorithms are selected as best (e.g. 47 instances for GREEDY1). These are the
infeasible instances, or the auctions where no match exists and the social welfare
is 0—thus the fastest algorithm is always selected as best.

Figure 3 hence demonstrates the input-dependent performance of heuristic
algorithms, and the potential for improvement by using algorithm selection.

Next, we investigated which features are more relevant to the prediction.
The aim is to identify irrelevant or redundant features, and remove them to

Combinatorial Auction Algorithm Selection for Cloud Resource Allocation 387

GREEDY1 164 47 A7 47 47 47 47 47 47 47 0

GREEDY2 17 8 8 8 8 8 8 8 8 8 0
3200

GREEDYJ3 A28 338 334 334 334 334 334 334 334 334 O
GREEDY1S B 1833 B 33 1833 1833

2400

HILL1
HILL1S
HILL2
1600
HILL2S
SA

SAS 800

CASANOVA

CASANOVAS O 8 0 0 0 0 0 0 1 2 6

Fig. 3. Algorithm selection dataset: breakdown by class labels for several A values.

reduce the dimensionality of the input space and prevent over-fitting. We used
tree-based estimators to compute relative feature importances to the model’s
performance.

In Fig. 4, all 75 features are sorted based on their importance and the first 20
are shown. Note that only a few are relevant, e.g. 16 features have an importance
over 0.02. The most relevant features are related to the quantities per resource,
demanded or supplied on the market — minimum, maximum, and average val-
ues — as well as the mean and standard deviation of bundle sizes. This can be
explained by the fact that quantities per resource are instrumental in assessing
the feasibility of a solution, as enforced by constraint (5), and influence the way
algorithms move in the search space. From the price-related features, only the
minimum and standard deviation of the asking price per unit have a certain
effect on the prediction.

5.2 Classification Evaluation

The dataset was split into a training set (70%) and a test set (30%), used to test
how the model generalizes on unseen data. Because of the imbalanced dataset,
the splitting was performed using stratified sampling, to ensure that the train
and test sets have the same percentage of samples of each class as the full set.
Using auto-sklearn [23], we trained a classification model for each A value. The
auto-sklearn library implements an automated machine learning approach, which
relies on Bayesian optimization methods to construct an ensemble of classifiers
and find their best hyperparameters and preprocessing steps. The preprocessing,

388 D. Gudu et al.

[en)
[en)
=
e
=
ot

0.05

minimum_supply_per_resource_mean
maximum_supply_per_resource_mean
average_ask_price_stddev
minimum_supply_per_resource_stddev
minimum_supply_per_resource_kurtosis
minimum_demand_per_resource_mean
maximum_supply_per_resource_stddev
maximum_demand_per_resource_mean
quantity_spread_per_resource_mean
average_ask_price_min
ask_bundle_size_mean
bid_bundle_size_mean
bid_bundle_size_stddev
average_supply_per_resource_stddev
ask_bundle_size_stddev
total_supply_per_resource_stddev
maximum_demand_per_resource_stddev
total_demand_per_resource_mean
minimum_demand_per_resource_stddev

@@@@@@m@@m@@@@@@@mww

total_demand_per_resource_stddev

Fig. 4. Relative feature importances averaged over all A values, computed using Extra-
TreesClassifier in scikit-learn with 500 estimators. Only the first 20 most relevant fea-
tures are shown.

in this case, includes feature scaling and feature selection for dimensionality
reduction, based on their relevance as described in Sect. 5.1.

Figure 5 shows the accuracy of the models for each A, on both training and
test set. Good accuracies over 93% are obtained for most A preferences, with
higher accuracy for higher A, suggesting that the selected features are more
relevant to the welfare objective rather than the time objective.

100
X
> 90
g
3 —o— Training Set
s 80 - a- Test Set

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 5. Accuracy of ML-based algorithm selection for different A values.

More importantly, a comparison between the trained models for each A and
random selection (see Fig.6) shows that our algorithm selection approach is

Combinatorial Auction Algorithm Selection for Cloud Resource Allocation 389

always 2 to 4 orders of magnitude better than a random selection approach.
Note that an RMRE value below 1 implies that the algorithm selection using
machine learning is better than its counterpart in the comparison.

Similarly, a comparison between our models and the best pure algorithm a*
for each A\, where a* is defined as the algorithm selected most often as the best
in the labeling phase (cf. Fig. 3), showed that our approach outperforms the best
pure algorithm for all values of A except 0.7 and 0.8 (see Fig.6), with overall
lower RMRE for smaller A\. The best pure algorithm method can also be seen
as a rule-based system that uses domain knowledge to select an algorithm per
A value, e.g. when speed is the most important, greedy algorithms are always
used.

Therefore, our machine learning approach yields higher welfare, but also
higher cost error MRE with increasing A, leading to worse performance than
a single algorithm when only the welfare obective is considered. This can be
explained by the fact that the algorithms’ performances vary more in the wel-
fare dimension than the runtime, but classification penalizes all mispredictions
eaqually, ultimately leading to the paradox of 96% accuracy with RMRE > 1.

—o— Training Set (ax*) —a— Test Set (ax*)
—@— Training Set (random) —¢— Test Set (random)

Fig. 6. RMRE comparison of ML-based algorithm selection to random selection and
best pure algorithm for different A\ values.

6 Conclusions

In this paper, we proposed an algorithm selection approach to improve the per-
formance and solution quality of combinatorial auctions, applied to the problem
of cloud resource allocation. We introduced a machine learning approach that
selects the best heuristic algorithm for each problem instance, where the best
algorithm is defined by our proposed multi-objective cost model. Another con-
tribution of this paper is a feature set to aid in the learning process, engineered
using domain knowledge. We showed that our proposed approach predicts the
best algorithm per instance with an accuracy of up to 99%. This approach also
outperforms a random algorithm selection approach, as well as the best pure
algorithm, in most cases.

390 D. Gudu et al.

To further improve the prediction, in the future we will integrate low-
knowledge, dynamic features, that can be obtained by running all the algorithms
on a small sample of the problem instance.

References

1. Buyya, R., Yeo, C.S., Venugopal, S.: Market-oriented cloud computing: vision,
hype, and reality for delivering IT services as computing utilities. In: 10th IEEE
International Conference on High Performance Computing and Communications,
2008. HPCC 2008, pp. 5-13. IEEE (2008). https://doi.org/10.1109/HPCC.2008.
172

Amazon: Amazon EC2 spot instaces (2017). https://aws.amazon.com/ec2/spot/

3. Scoca, V., Uriarte, R.B., De Nicola, R.: Smart contract negotiation in cloud
computing. In: 2017 IEEE 10th International Conference on Cloud Computing
(CLOUD), pp. 592-599. IEEE (2017). https://doi.org/10.1109/CLOUD.2017.81

4. De Vries, S., Vohra, R.V.: Combinatorial auctions: a survey. INFORMS J. Comput.
15(3), 284-309 (2003). https://doi.org/10.1287 /ijoc.15.3.284.16077

5. Zaman, S., Grosu, D.: Combinatorial auction-based allocation of virtual machine
instances in clouds. J. Parallel Distrib. Comput. 73(4), 495-508 (2013). https://
doi.org/10.1016/j.jpdc.2012.12.006

6. Smith, D.M.: Predicts 2017: cloud computing enters its second decade. Gartner
Special report (2017)

7. Nejad, M.M., Mashayekhy, L., Grosu, D.: Truthful greedy mechanisms for dynamic
virtual machine provisioning and allocation in clouds. IEEE Trans. Parallel Distrib.
Syst. 26(2), 594-603 (2015). https://doi.org/10.1109/TPDS.2014.2308224

8. Zurel, E., Nisan, N.: An efficient approximate allocation algorithm for combinato-
rial auctions. In: Proceedings of the 3rd ACM conference on Electronic Commerce,
pp. 125-136. ACM (2001). https://doi.org/10.1145/501158.501172

9. Hoos, H.H., Boutilier, C.: Solving combinatorial auctions using stochastic local
search. In: AAAT/TAAI pp. 22-29 (2000)

10. Gudu, D.; Zachmann, G., Hardt, M., Streit, A.: Approximate algorithms for double
combinatorial auctions for resource allocation in clouds: an empirical comparison.
In: Proceedings of the 10th International Conference on Agents and Artificial Intel-
ligence, ICAART, pp. 58-69 (2018). https://doi.org/10.5220,/0006593900580069

11. Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. In:
Bessiere, C., De Raedt, L., Kotthoff, L., Nijssen, S., O’Sullivan, B., Pedreschi, D.
(eds.) Data Mining and Constraint Programming. LNCS (LNAI), vol. 10101, pp.
149-190. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50137-6_7

12. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Empirical hardness models:
methodology and a case study on combinatorial auctions. J. ACM (JACM) 56(4),
22 (2009). https://doi.org/10.1145/1538902.1538906

13. Beck, J.C., Freuder, E.C.: Simple rules for low-knowledge algorithm selection.
In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 50-64.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24664-0_4

14. Lehmann, D.; Miiller, R., Sandholm, T.: The winner determination problem. In:
Combinatorial Auctions, pp. 297-318 (2006). https://doi.org/10.7551 /mitpress/
9780262033428.003.0013

15. Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press, Cambridge
(2008). https://doi.org/10.1145/1753171.1753181

N

https://doi.org/10.1109/HPCC.2008.172
https://doi.org/10.1109/HPCC.2008.172
https://aws.amazon.com/ec2/spot/
https://doi.org/10.1109/CLOUD.2017.81
https://doi.org/10.1287/ijoc.15.3.284.16077
https://doi.org/10.1016/j.jpdc.2012.12.006
https://doi.org/10.1016/j.jpdc.2012.12.006
https://doi.org/10.1109/TPDS.2014.2308224
https://doi.org/10.1145/501158.501172
https://doi.org/10.5220/0006593900580069
https://doi.org/10.1007/978-3-319-50137-6_7
https://doi.org/10.1145/1538902.1538906
https://doi.org/10.1007/978-3-540-24664-0_4
https://doi.org/10.7551/mitpress/9780262033428.003.0013
https://doi.org/10.7551/mitpress/9780262033428.003.0013
https://doi.org/10.1145/1753171.1753181

16.

17.

18.

19.

20.

21.

22.

23.

Combinatorial Auction Algorithm Selection for Cloud Resource Allocation 391

Schnizler, B., Neumann, D., Veit, D., Weinhardt, C.: Trading grid services-a multi-
attribute combinatorial approach. Eur. J. Oper. Res. 187(3), 943-961 (2008).
https://doi.org/10.1016/j.ejor.2006.05.049

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., et al.: Optimization by simulated
annealing. Science 220(4598), 671-680 (1983). https://doi.org/10.1126 /science.
220.4598.671

Russell, S., Norvig, P.: Beyond classical search. In: Artificial Intelligence: A Modern
Approach, pp. 125-128 (2010)

Bertocchi, M., Butti, A., Stomin ski, L., Sobczynska, J.: Probabilistic and deter-
ministic local search for solving the binary multiknapsack problem. Optimization
33(2), 155-166 (1995). https://doi.org/10.1080/02331939508844072

Deb, K.: Multi-objective optimization. In: Burke, E., Kendall, G. (eds.) Search
Methodologies, pp. 403-449. Springer, Boston (2014). https://doi.org/10.1007/
978-1-4614-6940-7_15

Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engi-
neering. Struct. Multidiscip. Optim. 26(6), 369-395 (2004). https://doi.org/10.
1007/s00158-003-0368-6

Mishra, A.K., Hellerstein, J.L., Cirne, W., Das, C.R.: Towards characterizing cloud
backend workloads: insights from Google compute clusters. ACM SIGMETRICS
Perform. Eval. Rev. 37(4), 34-41 (2010)

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.:
Efficient and robust automated machine learning. In: Advances in Neural Informa-
tion Processing Systems, pp. 2962-2970. Curran Associates, Inc. (2015)

https://doi.org/10.1016/j.ejor.2006.05.049
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1080/02331939508844072
https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1007/s00158-003-0368-6
https://doi.org/10.1007/s00158-003-0368-6

	Combinatorial Auction Algorithm Selection for Cloud Resource Allocation Using Machine Learning
	1 Introduction
	2 Related Work
	3 Formal Problem Definition
	4 Algorithm Selection
	4.1 Algorithm Portfolio
	4.2 Features
	4.3 Cost Model
	4.4 Evaluation Metrics

	5 Evaluation
	5.1 Dataset Analysis
	5.2 Classification Evaluation

	6 Conclusions
	References

