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Abstract. In order to handle the dramatic growth of digital data, cloud
storage systems demand novel techniques to improve data reliability.
Replication and erasure codes are the most important data reliability
techniques employed in cloud storage systems, but individually they
have their own challenges. In this paper, we propose a hybrid tech-
nique employing proactive replication of data blocks in erasure-coded
storage systems. The technique employs a set of erasure coding-agnostic
bandwidth-efficient data recovery techniques that reduce the bandwidth
used for recovery without compromising data reliability. Experiments
show that our approach improves repair bandwidth efficiency and reduces
network traffic in cloud storage systems with limited storage overhead
compared to available recovery approaches.

1 Introduction

A recent trend in cloud storage systems is the adoption of erasure codes, as
it provides excellent reliability with less storage overhead than replication [1].
For example, Facebook and Microsoft Azure replaced replication with erasure
coding in parts of their data, resulting in significant cost savings in terms of
storage overhead [2]. However, failure rates in large-scale cloud storage systems
are high as such systems are composed of large number of hardware and soft-
ware components. Repairing a single data block stored using Reed-Solomon(n,k)
code requires k data blocks to be transferred over the network, while repairing a
single data block in replication involves the transfer of one data block [3]. Hence,
repair network traffic is increased by k times in Reed-Solomon(n,k) code com-
pared to replication. The network traffic incurred by such data movement has
also the extra drawback of increasing energy consumption significantly, resulting
in extra costs for cloud service providers. Moreover, growing network traffic is
regulated by network throttling, which affects read performance. All the above
facts prevent cloud storage systems to adopt erasure codes in large scale.

Hardware failures (disk failures, machine failures, and latent sector errors)
and temporary machine failures are the most common failures that affect dura-
bility and availability of data in cloud storage [2]. In order to avoid permanent
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data loss due to hardware failures, contents in failed nodes or disks have to be
restored in another hardware devices, a process that is known as data recovery.
Data stored in a machine that experiences temporary outage will cause tempo-
rary data loss. Temporary data loss in erasure code is handled by degraded read,
i.e., data blocks in the failed node are reconstructed and served using the next
available k blocks. In order to avoid unnecessary repairs of short term transient
node failures, data recovery is delayed for a certain amount of time. Google File
System (GFS) delays recovery of unavailable nodes for 15 min. However, this
affects availability and degrades read performance [5]. In contrast, when replica-
tion is used, degraded read is handled by simply redirecting the request to the
next available replica.

As both replication and erasure coding have its own advantages, cloud stor-
age systems require hybrid approaches in order to leverage the advantages of
both methods, which are the recovery performance of replication and the stor-
age efficiency of erasure coding. In this paper, we propose several novel recovery
techniques. These techniques follow a proactive replication method. They repli-
cates erasure-coded data blocks which are predicted to fail, keeping down repair
network bandwidth/traffic at the same time without much overhead. We also
showed that the ProDisk method proposed by Li et al. [13], reduces repair net-
work bandwidth/traffic. All the aforementioned methods use machine and disk
failure prediction techniques to predict hardware failures and long-time tempo-
rary machine outage. When hardware failures (permanent machine/disk failures)
are predicted, proposed storage system immediately starts the recovery of data
and proactively replicates erasure-coded data fragments in to permanent stor-
age. When long-term machine failures are predicted, proposed storage system
starts proactive recovery with the goal of maintaining data availability. During
proactive recovery of long-term machine failures, data is written into dedicated
temporary storage rather than on recovered blocks.

The amount of dedicated temporary storage required in the proposed app-
roach is linearly related to the number of long term machine failures predicted
over the time period. In order to address this issue, we introduce a novel method
to proactively replicate hot data in temporary storage and apply lazy recovery
for cold data. This reduces the recovery bandwidth/traffic significantly without
increasing the temporary storage needed for supporting transient node failures.

2 Background and Motivation

In a distributed storage system, a data file is dispersed into multitude of intercon-
nected nodes, which serves any end user request by tapping data from multiple
nodes. Improving the resilience of distributed storage system with limited storage
overhead is desirable. Replication is the simplest mean of increasing resiliency
of the distributed storage. In replication, a data file is divided into multiple
data blocks which are replicated into several locations such that failure of any
data block in one location enables the user to access it from different location.
However, reliability is directly proportional to storage overhead in replication.
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Erasure coding is an important option to increase reliability with less storage
overhead. In erasure coding, data file is divided in to k data blocks and dispersed
into n locations while adding n-k parity blocks. Upon any failure, a data block
is reconstructed by downloading any k available data blocks. The data recovery
in erasure coding increases recovery network bandwidth k times, compared to
replication.

Facebook employed Reed-Solomon to only 8% of data in 3000 node pro-
duction cluster and it has been estimated that if 50% of data were replaced
with Reed-Solomon, repair network traffic would saturate their network links [4].
Increased repair network traffic is one of the major bottleneck to erasure cod-
ing becoming more pervasive in cloud storage systems. Novel blockchain-based
cloud storage systems like Sia1 and Storj2 use consumer storage to serve their
customer’s storage needs. They suggest, as a means to improve reliability, the
use of Reed-Solomon (60, 40) code. This means that, to reconstruct any missing
data, 40 surviving data fragments have to be transferred to reconstruct any sin-
gle failed data fragment. These novel storage systems demand more bandwidth-
efficient recovery, which is the focus of this paper. The proactive recovery tech-
niques proposed in this paper use several failure prediction methods. As these
systems are running on end-users client, it may not be possible to apply exist-
ing hardware failures prediction techniques on the users computers. However, it
is possible to predict the availability of user computers using availability logs.
Hence it is possible to apply the proposed methods in blockchain-based cloud
storage systems.

The main contribution of this paper is the definition of bandwidth-efficient
recovery techniques based on client’s needs without significant increase of per-
manent storage.

3 Related Work

A substantial amount of research concentrated on reducing repair bandwidth of
erasure codes. Dimakis et al. [6] presented a theoretical framework for regen-
eration codes that can optimize recovery bandwidth for a given storage. How-
ever, exact repair of regeneration codes, matching information theoretic bound,
remained unresolved. Following this, several works [2] showed that exact repair
is possible for some parameters. Sathiamoorthy et al. [4], proposed Xorbas which
reduces network traffic by half compared to Reed-Solomon codes with 14% addi-
tional storage overhead [4]. LRC in Windows Azure storage reduces repair net-
work bandwidth significantly with the help of local parities, which have the
side effect of increasing storage overhead by 1.33x compared to Reed-Solomon
[1]. Hitchhiker code, built on top of Reed-Solomon code using “piggybacking”
framework, reduces network traffic by 35% with some encoding time overhead
incurred [7].

1 https://sia.tech/.
2 https://storj.io/.

https://sia.tech/
https://storj.io/


328 R. Nachiappan et al.

Failure predictions in cloud storage systems offer cloud service providers an
efficient proactive failure management in cloud storage. Various statistical and
machine learning methods are used to predict failures in cloud storage systems.
A few methods [8,9] are used to predict hard drive failures based on SMART
attributes. Li et al. [9], achieved 95% predictions with False Alarm rate less
than 0.1%. Many researches focused on predicting failures in distributed systems
based on system logs. Javadi et al. [10], presented failure model as a predictive
method of distributed systems availability and unavailability. Agrawal et al. [11],
uses log messages to predict failures in Hadoop clusters.

Silberstein et al. [12], proposed lazy recovery to reduce recovery bandwidth
in distributed storage by reducing the recovery rate. It reduces recovery band-
width up to 76% compared to Reed-Solomon. However, applying this method
on cloud storage affects read performance and data durability. Li et al. [13],
used failure prediction techniques to implement proactive replication in erasure
codes for reducing degraded read latency and improving read performance. Li
et al. [14], defined a cost effective data reliability management mechanism to
ensure reliability of massive data with minimum replication based on a gener-
alized data reliability model. Wu et al. [15,16], used prediction tools to identify
the upcoming events and proactively migrates the data blocks on the degraded
device belonging to the hot data zones in the large-scale data centers.

4 The Proposed Cloud Storage System

The target system in this paper is an object storage that initially stores data
with any appropriate erasure code to reduce storage overhead while maintaining
reliability. Consider a distributed cloud storage system composed of a number
of disks accommodated in a machine, group of machines in a rack, and several
racks in a distributed storage. Data blocks stored in a disk can be determined
as an at-risk block based on the machine and disks health status where it is
stored. Machine and disk failure prediction algorithms run individually to pre-
dict disk/machine failure and machine unavailability. Since rack failures are tran-
sitory, the health of data blocks is determined with machine and disks health
status. Data blocks that are marked as at-risk in this system are proactively
replicated before the occurrence of failure based on the client’s Service Level
Agreement (SLA). Proactive replication reduces the number of blocks required
for reconstructions in erasure coded cloud storage system. Hence, the system
reduces network traffic with less storage overhead. This system utilizes various
recovery schemes to reduce reconstruction bandwidth in erasure coded cloud
storage systems.

4.1 Architecture and Design

An overview of the system architecture is depicted in Fig. 1. It is implemented
as an extension of a regular object storage. Object storage manages data as
objects where each object has both data and metadata. A dedicated proxy server
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Fig. 1. Architecture of the proposed recovery techniques.

extends the support of encoding and decoding erasure codes. It also handles
failures in storage systems. The object server stores and retrieves object data.
Object server’s availability status and disks health status are reported to the
proxy server, which is responsible for increasing or decreasing the data object’s
replication factor. The system adjusts the replication factor of erasure coded
objects when failures are predicted. The components of the architecture are
discussed as follows.

Disk Failure Prediction. This module monitors the health status of indi-
vidual disks and reports prediction results to the Node Failure History & Disk
Health Information module in the proxy server. SMART is implemented on disks
and it monitors, compares disk attributes and issues warnings. This SMART
attributes are used to predict disk health status using various statistical and
machine learning techniques [8,9]. Disk failures are calculated using classifica-
tion and regression trees methods here [9].

Proactive Replication Management. Redundancy of data blocks are
adjusted according to node/disk health status and client SLA.

Node Failure History and Disk Health Information. This module collects the
information of disk health status and node failure history. Various statistical
and machine learning techniques can be used to predict node’s Mean Time To
Failure (MTTF) and Mean Time To Repair (MTTR). Based on node’s predicted
MTTF and MTTR, node failures are classified as permanent, long time, or short
time failures. Node’s MTTF and MTTR are calculated using various statistics
of availability and unavailability [10].
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Data Block Health Monitor and Client SLA. Failure predicted nodes and disks
information are collected from Node Failure History and Disk Health Information
module. It identifies the disks that are predicted to fail in the underlying storage
system. It also identifies permanent, long term, and short term machine failures
by predicting machines MTTF and MTTR. Permanent machine failures are
handled as disk failures. This module sends failure information to the Dynamic
Replication module, which takes an action when necessary. Clients can request
various recovery schemes based on their needs. The client can define several
reconstruction requests as follows,

– High durability, normal availability (ProDisk).
– High durability, high availability (ProMachine).
– High durability, high availability for hot and normal availability for cold data

(ProHot).
– High durability, high availability for hot and low availability for cold data

(ProHot LazyCold).

Based on the client SLA, the variable for different recovery scheme will be set.

Data Access Pattern. Data access patterns in a distributed storage can be used
to identify the popularity of data blocks in real-time over a certain period of time.
Based on their popularity, data blocks can be classified as hot, warm, or cold.
As the access pattern changes, popularity of data blocks need to be updated.
Various researches used popularity-based classification to improve durability,
availability, and read performance of cloud storage systems [17]. Our approach
combines both failure prediction and data access patterns to make the decisions.
Data access pattern is used here to define hot data. We assume that data blocks
with high access frequency have more chance to be accessed in the future and
those are defined as hot. This module uses data access pattern to classified a
block as hot data block and recorded as H = {b1, b2, ...} where the block bi is
identified as hot.

Dynamic Replication Manager. This module collects information from Data
Block Health Monitor, Client SLA, and Data Access Pattern module and acti-
vates various proposed recovery schemes, as follows:

– ProDisk: When disk failures/permanent machine failures are predicted, all
the data blocks in the failure predicted disks (all disks in failure predicted
machine) are proactively replicated permanently as described in [13]. In the
occurrence of failure, the reference is made to the proactively replicated data
instead of the typical reconstruction of erasure codes. This was originally
proposed by Li et al. [13] but the early approach only considered the recovery
performance not recovery bandwidth. The following ProMachine, ProHot,
ProHot LazyCold are the novel methods proposed in this research which are
the main contribution of this paper.

– ProMachine: When temporary long term machine failures are predicted
with MTTR greater than 15 min, data in failure predicted machines are
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proactively replicated to a dedicated node allocated specifically to handle
temporary machine failure. In case of any failure, data is accessed from the
dedicated node.

– ProHot: When temporary long term machine failures are predicted with
MTTR greater than 15 min, data identified as hot in failure predicted machine
will be proactively replicated to the dedicated node which has been allo-
cated to handle temporary machine failure. In case of any failure, hot data
is accessed from the dedicated node and typical reconstruction is applied to
recover cold data.

– ProHot LazyCold: When temporary long term machine failures are pre-
dicted with MTTR greater then 15 min, data identified as hot in failure pre-
dicted machine is proactively replicated to a dedicated node that is allocated
specifically to handle temporary machine failure. In case of any failure, hot
data is accessed from the dedicated node and lazy recovery [12] is applied for
cold data recovery.

This module is responsible for scaling up and down the number of dedicated
temporary storage nodes, according to the failure predictions and amount of
data need to be stored in temporary storage during a period of time. It is also
responsible for allocating highly available node as a temporary storage such that
any failure in this temporary storage node is minimal. Any failure prediction
in this temporary storage will also lead to proactive replication. Any failure
prediction in this temporary storage will also lead to proactive replication.

4.2 Recovery Approach

In our target scenario, a cloud storage system initially stores data with any
(n,k) erasure code. With the help of disk/machine failure prediction methods
employed in cloud storage systems, failure types and MTTR of node failures are
predicted. Failures are also identified as disk, permanent machine, temporary
long term machine (MTTR > 15 min), or temporary short term machine (MTTR
< 15 min) failures. The set of data blocks (b1, b2, ..., bi) that is more likely to be
accessed soon is defined as the hot data set H. Based on the failure types, hot
data blocks, and client SLAs, one of the proposed recovery techniques ProDisk,
ProMachine, ProHot, ProHot LazyCold will be chosen.

When the disk/permanent machine failures are predicted (proDisk), all the
data blocks in the failure predicted disk (all data blocks of each disk in a fail-
ure predicted machine) are proactively replicated into the permanent storage
as described in Procode [13]. The counter variables of corresponding replicated
data blocks are incremented. These counter variables are used to identify if the
particular data blocks are replicated already or to delete data blocks against
noisy prediction. A delay is applied while deleting data blocks against noisy
prediction. Time In Advance (TIA) which is provided by failure prediction algo-
rithm is used as a time delay to delete the data blocks that are replicated due
to noisy prediction. Time delay larger than TIA is the better choice. However,



332 R. Nachiappan et al.

this will result in extra storage. The choice of time delay varies and depends on
the storage system where the system is utilized.

While temporary machine failures are predicted, proactive recovery is acti-
vated for either all (ProMachine) or some of the data blocks (ProHot, Pro-
Hot LazyCold) in a failure predicated machine. Data are replicated into the
dedicated temporary storage. The data blocks that are not replicated are recov-
ered by typical reconstruction of erasure codes. While data blocks are proactively
replicated into temporary storage, the corresponding data blocks counter vari-
ables are incremented. These variables are used to identify if the particular data
blocks are replicated already or to delete blocks when the machine recovers from
temporary machine failures. The dynamic replication module also provisions and
adjusts the number of temporary dedicated nodes, based on long term temporary
machine failure rate and client SLAs. When the failure predicted nodes recover
from actual failure and if no further failures are predicted for the same nodes,
the proactively replicated data blocks corresponds to those nodes are deleted.
Also, any data fragments which have more than one copy in the system are also
deleted periodically. In the occurrence of node/disk failure, the reference is made
to proactively replicated blocks which reduces number of data reconstructions
in erasure coded storage systems.

5 Performance Analysis

Since all the methods proposed in this paper use a combination of proactive
and lazy recovery methods, we will carry out the performance analysis on those
methods.

5.1 Bandwidth Analysis

The bandwidth required to reconstruct any missing data is directly proportional
to the number of transfers required, which is k in (n,k) erasure coded storage
system. The amount of data transfer required to recover any missing block is

TransferRequired = S ∗ (k + NumberOfMissingBlocks − 1) (1)

where S is the chunk size and k is number of fragments needed to reconstruct
data. k is 1 for replication. The recovery bandwidth is calculated as

RecoveryBandwidth = TransferRequired/RecoveryT ime (2)

Equation 2 shows that the RecoveryBandwidth is directly proportional to
TransferRequired. Let us consider (14, 10) Reed-Solomon code with the chunk
size of 250 MB. From Eq. 1, TransferRequired can be calculated as 2500 MB for
recovering a single missing data block. However, it is 250 MB if the data block
is proactively replicated. From this, we can conclude that proactive replication
reduces the recovery bandwidth significantly. Lazy recovery delays the recovery
of the data fragments until certain amount of data fragments are unavailable.
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In this paper, we use lazy recovery only for handling long term temporary
machine failures such that it does not impact durability of data. Since all the
predicted disk failures are proactively replicated, it does not affect durability.
Furthermore, lazy recovery is activated based on client SLA. If the client needs
good read performance only for data identified as hot, it activates lazy recovery
only for cold data. It also activates proactive recovery for hot data.

5.2 Storage Overhead Analysis

Erasure coding offers excellent storage efficiency compared to replication. Pro-
portional increase in storage of various reliability methods is defined as:

(systematicdata + originaldata)/systematicdata (3)

The method proposed in this paper proactively replicates data into a new
hardware device when permanent node/disk failures are predicted. Once the
failure predicted device fails, reference will be made to the proactively repli-
cated device. Eventually, there will be wrong predictions about devices failing.
When this occurs, it is expected that the storage overhead will suffer a slightly
increase. False positive for disk failures are calculated as less than 0.1% using
classification and regression trees [9]. Hence, the storage overhead will not be
significantly increased by wrong predictions. Temporary nodes are dedicated to
handle long term node failures. However, data in those temporary nodes are
periodically evicted. Hence, temporary node failures will not increase storage
overhead permanently.

6 Performance Evaluation

We use ds-sim simulator [12] to compare recovery bandwidth from replication
and erasure coding to the various bandwidth efficient recovery technique pro-
posed in this paper. We have simulated 3-tier storage components including
disks, machines, and racks. We have modified ds-sim to add failure predic-
tions, proactive replication, and hot data prediction. As output, ds-sim calcu-
lates repair bandwidth and number of degraded strips. The simulator models
distributed storage systems of 3 Petabyte of storage for 10 years. Simulation
parameters are 11 machines/rack, 20 disks/machine with each disk capacity of
750 GB and maximum recovery bandwidth capacity of 650 TB/day. Also 40%
of random data blocks were considered as hot to evaluate ProHot and Pro-
Hot LazyCold recovery methods. For each result we run the simulation with
number of iterations and calculated the result with 95% confidence interval.

6.1 Results and Discussions

In this section, we compare the bandwidth and reliability of replication, Reed-
Solomon (14,10) and various recovery techniques proposed in this paper.
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Fig. 2. (a) Average recovery bandwidth in GB per day and (b) Maximum instantaneous
recovery bandwidth, in MB/hr, calculated over 10 years.

Recovery Bandwidth. We run simulations with the above configuration
parameters with failure prediction rate 90%, false positive 0.1%, and time in
advance 24 h which found reasonable in [9,11]. Recovery bandwidth is calcu-
lated for each failure event except for machine failures lasting less than 15 min.
Figure 2 shows the comparison of average recovery bandwidth in GB/day versus
storage overhead for replication, Reed-Solomon(14,10), Lazy [12], and the various
recovery techniques proposed in this paper. The proposed recovery techniques
are also applied on Reed-Solomon (14,10) erasure code in this comparison.

Replication reduces recovery bandwidth in up to 66% compared to Reed-
Solomon (14,10). ProDisk reduces average repair bandwidth up to 19% compared
to Reed-Solomon (14,10). ProHot reduces recovery bandwidth up to 38% whereas
ProMachine reduces recovery bandwidth by 75% compared to the same app-
roach. ProMachine and ProHot LazyCold outperform replication.This is because
in replication, data blocks are distributed among large number of hardware
devices. Hence it experiences a large number of recovery events that increases
recovery bandwidth. ProHot LazyCold outperform lazy recovery. This is because
the failure predicted hot data blocks are replicated proactively and it reduces
number of lazy recoveries. However, ProMachine technique increases the tempo-
rary storage proportionally to the temporary long term machine failure rate.

Figure 2(b) shows the maximum instantaneous recovery bandwidth, in
MB/hr (network traffic) in distributed storage systems over the simulation
period. The simulation calculates network traffic as follows. Upon each recov-
ery event, instantaneous total recovery bandwidth, in MB/hr is calculated and
compared with the previous maximum recovery bandwidth. If the new recov-
ery bandwidth is larger than maximum recovery bandwidth, the new recovery
bandwidth becomes the maximum recovery bandwidth. The network traffic in
(14,10) Reed-Solomon code is approximately 10 times higher than replication.

ProDisk, ProMachine, ProHot and ProHot LazyCold reduces network traffic
better than replication and lazy recovery. This is due to proactive replication in
erasure coding, which reduces amount of data to be transferred while keeping
number of recoveries less than replication.
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Fig. 3. Number of durable degraded and available degraded slices over 10 years.

Reliability. To evaluate reliability of different approaches, we use the number
of durable degraded slices and available degraded slices to compare durability
and availability over the mission time. In a distributed storage systems, disks are
partitioned into units called strip. Set of corresponding strips from n disks that
encode and decode together is called stripe [18]. A stripe is termed degraded if
one or more systematic blocks is unavailable. The term durable degraded refers
the degraded stripe due to permanent failures, whereas available degraded refers
to transient failures.

Replication does not increase available degraded slice counts in the system
as request to any temporary unavailable slices are redirected to next avail-
able replica. Smaller number of durable and available degraded stripes indi-
cates smaller probability of data loss as the system has less number of fail-
ure and repair events. Moreover, smaller number of degraded slices reduces the
access latency and increases the performance of the application running on it.
From Fig. 3 ProHot and ProHot LazyCold methods do not decrease number
of available degraded stripes. However, available degraded slices are increased
with respect to cold data. Also, the proposed system predicts and handles disk
and node failures separately. ProHot and ProHot LazyCold methods handle all
failure predicted disk failures proactively. Hence, they do not affect durability,
contrary to lazy recovery method [12].

Proactively replicated data blocks reduce the number of durable degraded
and available degraded slices in cloud storage systems and hence reduce the
number of reconstructions. Less reconstructions reduces the number of data loss
events in distributed storage. Figure 3 shows that even 90% of disk failure pre-
diction rate do not eliminate degraded slices.

6.2 Sensitivity Analysis

The proposed recovery techniques are influenced by various important factors
such as TIA and Failure Detection Rate. In this section, we examine how disk
failure prediction rate affects network traffic and how the recovery bandwidth is
affected by TIA.
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Fig. 4. Maximum instantaneous recovery bandwidth, in MB/hr, calculated over 10
years. (a) with varying failure prediction rates (b) for ProDisk with varying TIA.

Disk Failure Prediction Rate. For analyzing how the system is affected by
the failure prediction rate, we measured network traffic with varying disk failure
prediction rate. Li et al. [9], showed that more than 90% accuracy of disk failure
prediction is possible. We run simulation with disk failure prediction accuracy
varying from 50% to 90% and calculated recovery network traffic in ProDisk
method, as shown in Fig. 4(a).

The proactive recovery in the storage systems will reduce network traffic
(max instantaneous recovery bandwidth in MB/hr) associated with data recon-
struction. As expected, network traffic decreases as the failure prediction rate
increases. Accurate failure predictions proactively handle failures (transfer one
data block instead of 10 data blocks in Reed-Solomon) in storage systems and
hence reduce the recovery traffic. Moreover, only in the ProDisk the network
traffic varies according to the prediction rate. The rest of the methods are accor-
dance with machine failures. It transfers large amount of data while proactive
recovery compared to ProDisk. Hence it is not showing much variations in net-
work traffic with respective to prediction rates.

Time in Advance. We examine how the failure prediction’s TIA affects recov-
ery network traffic of storage systems. Figure 4(b) shows how the recovery net-
work traffic changes with reduction of TIA of failure prediction in the ProDisk
method. This will be similar for the rest of the methods. Since the maximum
recovery bandwidth capacity in this experiments is set to 650 TB/day, reducing
TIA from 24 h to 12 h does not change average recovery bandwidth drastically.
However, reduction in TIA below 30 min increases network traffic in storage
systems. Hence TIA will not affect the recovery bandwidth drastically.

Amount of Data Transferred. To evaluate resource savings from proactive
replication only for hot data, we calculated the total amount of data transferred
to the temporary dedicated storage to handle long term temporary machine
failure. The amount of data transferred in ProHot/ProHot LazyCold are directly
proportional to the percentage of data determined as hot. Figure 5 shows that the
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Fig. 5. Total number of proactively replicated slices due to long term temporary
machine failures calculated over 10 years.

total amount of data transferred in ProMachine is approximately twice than in
ProHot. The methods ProHot and ProHot LazyCold reduces temporary storage
needs.

7 Conclusions and Future Work

The two primary reliability mechanisms employed by cloud storage systems have
its own drawbacks. Even though erasure code offers tremendous storage savings
compared to replication, reconstructing lost or corrupted data blocks involves
large communication overhead.

In this paper, we proposed an approach that applies failure prediction tech-
niques to proactively replicate and handle failures in erasure coded storage sys-
tems. We defined various recovery techniques with the combination of repli-
cation, erasure codes, and lazy recovery methods in order to reduce network
bandwidth/traffic in cloud storage systems. It uses data blocks hot data status
and client SLAs to define an appropriate recovery technique in cloud storage
systems.

In our future work, we plan to investigate scheduling of proactive replicas in
distributed storage such that it reduces degraded read latency in cloud storage.
The interactions of foreground running tasks during proposed recovery schemes
could also be considered in future. Another interesting and promising area of
future research is energy-efficient scheduling of proactive replicas in cloud stor-
age.
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