
A Methodology for Performance Analysis
of Applications Using Multi-layer I/O

Ronny Tschüter(B), Christian Herold, Bert Wesarg, and Matthias Weber

Center for Information Services and High
Performance Computing, Technische Universität

Dresden, Dresden, Germany
ronny.tschueter@tu-dresden.de

Abstract. Efficient usage of file systems poses a major challenge for
highly scalable parallel applications. The performance of even the most
sophisticated I/O subsystems lags behind the compute capabilities of
current processors. To improve the utilization of I/O subsystems, sev-
eral libraries, such as HDF5, facilitate the implementation of parallel
I/O operations. These libraries abstract from low-level I/O interfaces
(for instance, Posix I/O) and may internally interact with additional
I/O libraries. While improving usability, I/O libraries also add com-
plexity and impede the analysis and optimization of application I/O
performance. In this work, we present a methodology to investigate
application I/O behavior in detail. In contrast to current methods, our
approach explicitly captures interactions between multiple I/O libraries.
This allows to identify inefficiencies at individual layers of the I/O stack
as well as to detect possible conflicts in the interplay between layers.
We implement our methodology in an established performance monitor-
ing infrastructure and demonstrate its effectiveness with an I/O analysis
study of a cloud model simulation code. In summary, this work pro-
vides the foundation for application I/O tuning by exposing inefficiency
patterns in the usage of I/O routines.

Keywords: I/O · Performance analysis · Monitoring
Instrumentation

1 Introduction

Modern HPC systems provide powerful storage hardware equipped with high
bandwidth interconnects and parallel file systems. Nevertheless, input and out-
put (I/O) operations still present a major limitation factor for the performance
of scientific applications. Current research topics, such as big data and machine
learning, further increase the trend of processing large data volumes.

Highly-scalable applications transfer data in parallel to cope with large data
volumes and efficiently utilize available I/O resources. A wide range of I/O
libraries, such as HDF5 [24], NetCDF [26], and MPI I/O [18, Chap. 13] sup-
port developers in implementing parallel I/O operations by abstracting from
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 16–30, 2018.
https://doi.org/10.1007/978-3-319-96983-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_2&domain=pdf


A Methodology for Performance Analysis 17

Application

NetCDF

HDF5

MPI I/O

Posix I/O

File System

Storage Hardware

Fig. 1. Software layers of an application using three I/O interfaces concurrently.

low-level I/O interfaces. Often, these libraries provide features for storing meta-
data to describe the data format and units along with specific data values. This
further increases the data volume in addition to the actual raw data.

Hiding the complexity of implementing low-level parallel I/O operations is
a major benefit of I/O libraries. Yet, using I/O libraries does not necessar-
ily guarantee efficient I/O resource utilization [10]. Improved usability gained
by abstraction also implies a more challenging I/O performance analysis. This
is especially true for applications using multiple I/O interfaces concurrently.
Figure 1 shows an example application that uses multiple I/O libraries indepen-
dently. The application itself calls NetCDF, MPI I/O, and Posix I/O functions
directly. The NetCDF library issues HDF5 function calls. HDF5 in turn contains
MPI I/O and Posix I/O in its software stack. Complex interactions between I/O
libraries and user code impact each other. It is essential to gather information
from all involved I/O layers to evaluate the effectiveness of resulting I/O opera-
tions. This allows detailed understanding of the actual I/O behavior and enables
the identification of underlying root causes of I/O problems. For example, I/O
operations are propagated through the I/O software stack. An open call at the
top level will also cause open operations in lower levels. Hence, each layer of the
I/O software stack maintains own file descriptors to manage I/O resources. In
case of writing data, each I/O layer may rearrange operations or add additional
meta-information to the actual raw data. Thus, to correctly assign and evaluate
specific operations, we need to capture information at each individual I/O layer.

Monitoring of multi-level I/O operations poses two challenges: (a) recording
I/O operations arising from multiple I/O libraries and (b) recording of inter-
actions between individual I/O libraries. This work addresses both challenges.
Thereby, we support users in investigating and improving the I/O performance
of parallel applications. Our contributions are:

– An approach to record information about I/O resources used by applications
as well as performance relevant data of I/O operations including the interac-
tions of multiple I/O libraries.



18 R. Tschüter et al.

– Tracking the mount information of I/O resources in order to determine their
generic scope and recording this information for enhanced analyses.

– Implementation of the approach in an established monitoring infrastructure.
– A detailed I/O analysis study of a real-world application to demonstrate the

applicability of our approach.

2 Related Work

Several techniques exist for monitoring I/O activities. In principle these
approaches can be distinguished by: (a) the data acquisition scope (system or
application) (b) the recorded data format (statistics or event log) and (c) the
ability for monitoring relations between individual I/O layers.

Statistics on System-Level: The tools iotop [15], iostat [14], blktrace [5], and
sar [20] monitor system performance with special focus on I/O resource usage.
These tools collect statistics and report measurement values per device, parti-
tion, or network filesystem as well as a global view of the whole system.

Statistics on Application-Level: Arm MAP [4], Darshan [8], and TAU [22] moni-
tor individual applications. Among other runtime events, like function entry and
exit, they can record information about I/O operations. With respect to I/O,
Arm MAP focuses on Posix I/O and captures Lustre [16] counters, whereas
Darshan and TAU record Posix I/O and MPI I/O activities. HPCToolkit [1]
intercepts selected I/O operations and records their number of bytes read or
written to mark I/O intensive application phases. In contrast to our work, all of
the previously mentioned tools collect statistics.

Event Logs on Application-Level: VampirTrace [19] records I/O activities and
writes the collected information to event logs. However, it only records calls to
I/O functions of the standard C library and is no longer supported. Its successor
Score-P [11] does not support I/O recording yet. ScalaIOTrace [28] generates
compressed event logs of MPI I/O and Posix I/O function calls. None of the
mentioned tools explicitly correlates individual layers of the I/O software stack.

Visualization: Vampir [2] visualizes event logs generated by VampirTrace and
Score-P in timeline and statistical charts. Event logs retain temporal information
of each individual event. This enables detection of performance problems with
changing characteristics over application runtime. The Virtual Institute for I/O
(VI4IO) [27] is a collaboration platform for research groups in the field of HPC
I/O. It provides an overview about I/O middleware, benchmarks, and tools.

3 Methodology

This section describes our approach for analyzing applications using multiple
I/O libraries. We cover both I/O resources (e.g., files and file descriptors) as well
as I/O activities (e.g., reading and writing). Therefore, we distinguish between
definitions and events. Definitions provide detailed information about I/O
resources, whereas events represent I/O activities during application runtime.



A Methodology for Performance Analysis 19

3.1 Definitions

Definitions describe resources of I/O operations. Posix I/O operations do not
directly work on input/output resources, but use file descriptors as an abstract
handle. This allows multiple processes/threads to access the same file indepen-
dently. Consequently, our definitions, Fig. 2, distinguish between I/O resources
and file descriptors. The following paragraphs introduce each definition in detail.

Fig. 2. Overview of definitions to reflect I/O resources and their relationships.

Definitions of I/O Resources: According to the “Everything is a file” phi-
losophy Unix and its derivatives treat a wide range of I/O resources as a file,
e.g., files, directories, and sockets. This is reflected by the polymorph IoFile def-
inition that provides a common namespace for objects used by I/O operations.
Currently, definitions for files (IoRegularFile) and directories (IoDirectory)
are available within this namespace. However, it is possible to add further defi-
nitions to this namespace.

IoRegularFile and IoDirectory definitions store the name of a file or directory.
HPC machines mount several file systems concurrently. Thus, name or path alone
do not represent unique identifiers for I/O resources. In principle, two categories
of file systems can be distinguished: (a) local file systems available only on a
single compute node (b) global file systems shared via network on the whole
machine. Figure 3 depicts an example. The illustrated compute nodes nodea and
nodeb use two different file systems—a shared network file system fsglobal and
a local scratch file system fs local. The file filex in fsglobal is accessible on the
whole machine. In contrast filey represents two distinct physical files, because
they reside in separate file systems fs local. Therefore, the scope attribute marks
the physical scope with regard to the system topology.

The IoFileProperty definition attaches user-defined attributes (e.g., mount
point information or Lustre strip policy) to an IoFile definition.



20 R. Tschüter et al.

Fig. 3. A file’s scope depends on its storage position (global or local file system).

Definitions of I/O Handles: IoParadigm describes an available I/O library.
The identification attribute categorizes an IoParadigm (e.g., “MPI I/O”),
while the name distinguishes specific implementations (e.g., “OMPIO” [9] or
“ROMIO” [23]). The class attribute specifies whether the I/O paradigm is
serial or parallel. Only parallel I/O paradigms enable collective I/O operations
within a group of multiple processes/threads. The flags attribute allows to set
further boolean characteristics for the I/O paradigm (e.g., mark if the paradigm
either directly accesses the operating system or maps its functionality to other
I/O paradigms such as HDF5 or NetCDF). In addition, IoParadigm provides an
extensible mechanism to specify further properties such as version information.

An IoHandle definition reflects a file descriptor based on a prior I/O resource
definition specified by the file attribute. The parent attribute of an IoHandle
models hierarchical relations between I/O handles. This mechanism enables cor-
relation of operations between individual layers of the I/O software stack. If the
paradigm supports collective I/O operations, the group attribute specifies the
set of participating processes/threads.

The IoPreCreatedHandleState definition marks a handle that is stan-
dardly created (e.g., stdin, stdout, stderr) or inherited from a parent pro-
cess/thread. The definition holds the access mode (e.g., read or write) and status
flags of this default I/O handle.

3.2 Events

Events represent I/O activities at application runtime. In this work, we focus
on events required for performance analysis. Therefore, we assume that I/O
operations finish successfully, otherwise performance analysis is not reason-
able. However, our approach is not limited to performance analysis and we
plan to support the handling of unsuccessful I/O operations (see Sect. 7). We
distinguish events into meta data (e.g., open/create, close) and data trans-
fer (e.g., read/write) operations. All events store an accurate timestamp and



A Methodology for Performance Analysis 21

information about the issuing process/thread. Additional information depend on
the specific event type.

Meta Data Operations: Events of this category indicate the creation and
the destruction of file descriptors. The IoCreateHandle event marks the cre-
ation of a new handle (e.g., after opening a file). The mode attribute determines
the access mode to the file descriptor (e.g., read-only, write-only, or read-write).
According to the Posix I/O API, IoCreateHandle stores optional creationFlags
(e.g., create if the file does not exist) and statusFlags (e.g., open file in append
mode). An IoDestroyHandle marks the end of an active I/O handle’s lifetime.
Thus, a pair of consecutive IoCreateHandle and IoDestroyHandle events defines
the time in which the handle is active and can be used by other events. The
IoDuplicateHandle event represents the duplication of an existing file descrip-
tor. This event references the original file descriptor (oldHandle) as well as the
newly created one (newHandle). The IoDuplicateHandle activates the newHandle
and the oldHandle remains active. In our event design, the new handle does not
inherit the status flags. Instead, the statusFlags attribute explicitly records
this information. This option releases analysis tools from the need of tracking
the inheritance. Figure 4 illustrates the life cycle of tracked I/O handles.

Fig. 4. Events create and destroy I/O handles at runtime. Commands to duplicate
handles build a special case: the original handle remains in active state, the newly
created handle changes from inactive to active state.

The following events track the status of active I/O handles. The IoSeek event
records changes of the position within a file. The event stores the offset requested
by the user (offsetRequest), the position to which the offset should be applied
(whence), e.g., absolute from the start or end, relative to the current position,
and the resulting offset relative to the beginning of the file (offsetResult). An
IoChangeStatusFlags event tracks changes to the status flags of an active
handle. The statusFlags attribute holds the updated status.

The IoDeleteFile event marks the deletion of an I/O resource. Similar to
deletion functions, such as unlink, rename, or remove, this event operates on
I/O resources instead of I/O handles. In addition to the affected file, this record
stores the paradigm that issued the deletion.

Data Transfer Operations: Events of this category record data transfer opera-
tions. One complete transfer operation might be split into basic events. Further,
we distinguish between blocking and non-blocking operations. For example, a
blocking Posix I/O read operation consists of two events—one for its start and



22 R. Tschüter et al.

Fig. 5. Sequence of generated events for different I/O operation types.

one for its completion. Consequently, both events need an identifier to relate all
parts composing an I/O operation. Therefore, these events contain a matchingId
attribute, identifying an I/O operation in-flight. The attribute is valid for a pro-
cess including all its threads. The IoOperationBegin event lists the affected
handle, the operation mode (e.g., reading or writing), and operationFlags
providing additional semantic information. In particular, the operationFlags
attribute defines two distinct characteristics of an operation: (a) collective or
non-collective, and (b) blocking or non-blocking. The bytesRequest attribute
reflects the user defined maximum number of transferred bytes. An IoOpera-
tionComplete event marks the end of a data transfer operation. It references
the affected handle. The bytesResult attribute stores the actual number of
transferred bytes. Corresponding IoOperationComplete-IoOperationBegin event
time stamps define the transfer operation duration. Figure 5a shows the event
sequence generated by blocking I/O data transfer operations. The “blocking” bit
in the operationFlags of the IoOperationBegin event is set accordingly. The
semantic of blocking operations ensures that a pair of matching IoOperationBe-
gin and IoOperationComplete events occurs within the event stream of the same
thread. In contrast, Fig. 5b illustrates the event sequence of a non-blocking I/O
data transfer operation (e.g., aio write). Typical for non-blocking operations is
the decoupling of issuing and completing operation, i.e., started on one thread
but completed on another thread of the same process. Non-blocking data trans-
fer operations also start with IoOperationBegin events. In case of a successful
initiation an IoOperationIssued event follows. IoOperationBegin and its corre-
sponding IoOperationIssued event must occur on the same thread. Users can test
active non-blocking operations to ensure their completion. IoOperationTest
events represent unsuccessful tests (I/O operation not finished yet), IoOpera-
tionComplete events indicate finished operations. The IoOperationCancelled
event represents the successful cancellation of a non-blocking operation. Any
thread of the same process can test, cancel, or complete a non-blocking I/O
operation in-flight.



A Methodology for Performance Analysis 23

Collective I/O operations are executed by all processes/threads of the respec-
tive I/O handle. The “collective” bit in the operationFlags attribute of the
IoOperationBegin event marks the special semantic of such operations.

4 Implementation

In the previous Sect. 3, we presented our approach for recording I/O operation
information, whereas we focus on the implementation details in this section.
We implement our design in OTF2 (Open Trace Format Version 2) [12]. Many
analysis tools, such as Vampir and Scalasca [13], process OTF2 event traces.
The OTF2 library provides an API for reading and writing event traces. It
already supports events for function entry and exit, parallelization constructs,
and communication. In this work, we extend OTF2 with definitions and events
implementing the I/O operations presented in Sect. 3. OTF2 maintains a list of
parallelization paradigms (e.g., MPI, OpenMP, Pthreads) as a C-enumeration
in its application programming interface1. Adding support for new paralleliza-
tion paradigms would require to extend this enumeration as well. However, this
could result in inconsistencies due to unknown enumeration members, when older
OTF2 versions read event logs written by a newer OTF2 version. Considering
the wide range of available I/O interfaces, we conclude that this approach is
unsuitable. Therefore, we abstain from providing a fixed list of supported I/O
paradigms in our implementation. Instead, we implement the IoParadigm def-
inition record using a self-describing mechanism. For the sake of convenience,
the OTF2 library maintains a list of known I/O paradigms in its documenta-
tion2. Users are encouraged to follow these suggestions when generating their
own event logs.

Besides OTF2, we require a software component that monitors the applica-
tion behavior at runtime. For this purpose, we select the Score-P measurement
infrastructure and add components for intercepting calls to specific I/O libraries.
In order to intercept calls to MPI, we utilize the existing MPI profiling inter-
face (PMPI) [18, Sect. 14.2]. For all remaining I/O interfaces we use a generic
interception method [6]. Each time an application issues an I/O function, we
intercept this call. The control flow passes to the Score-P measurement system
which has access to all function parameters and can record performance rele-
vant data. Then, the measurement system calls the original function. After the
original function returns, the control flow passes back to the application and the
program execution continues.

We strive to support a flexible list of I/O paradigms in Score-P. There-
fore, Score-P must handle the interactions of I/O paradigms in a generic way.
Especially, the mapping of I/O operations to an a priori known lower-level
I/O paradigm requires a paradigm agnostic implementation. We achieve this by
implementing a shared per-thread I/O management stack. Individual paradigms
1 https://silc.zih.tu-dresden.de/otf2-2.1.1/OTF2 GeneralDefinitions 8h.html#

aa14d0751354081d258913145a80e79a9.
2 https://silc.zih.tu-dresden.de/otf2-2.1.1/group io.html.

https://silc.zih.tu-dresden.de/otf2-2.1.1/OTF2__GeneralDefinitions_8h.html#aa14d0751354081d258913145a80e79a9
https://silc.zih.tu-dresden.de/otf2-2.1.1/OTF2__GeneralDefinitions_8h.html#aa14d0751354081d258913145a80e79a9
https://silc.zih.tu-dresden.de/otf2-2.1.1/group__io.html


24 R. Tschüter et al.

can communicate via this stack. The following describes this approach using
the example case of MPI I/O implemented on-top of ISO-C. If the MPI I/O
component from Score-P intercepts a call to MPI File open, it creates a new
IoHandle (handle1) and pushes it to the I/O management stack. Then, the
PMPI File open function is called via the MPI profiling interface. The MPI
implementation may than call fopen, which is subsequently intercepted by
Score-P as well. The ISO-C component inspects the top element of the I/O
management stack to determine whether a potential higher-level I/O paradigm
is active. If a handle is available on the stack (handle1 in this example), this han-
dle is used as parent for the newly created IoHandle (handle2). After leaving
fopen and MPI File open, the top element from the I/O management stack is
removed for each involved paradigm. In summary, whether lower-level paradigms
will create new IoHandles is unknown a priori. Therefore, each I/O component
must push and pop its current active handle onto the I/O management stack.
This ensures proper references to controlling higher-level I/O paradigms in indi-
vidual handles. As a result, all occurring IoHandles create a root-directed tree.

5 Case Study

We evaluate our methodology and implementation in an analysis of the Met
Office NERC Cloud model (MONC) simulator. Our study checks MONC for
I/O performance penalties and exposes insights of operations using multiple
I/O layers. MONC, a Fortran+MPI code, utilizes NetCDF to write results to
disk. The cloud simulator has two kinds of processes: (a) simulation processes
for computing the cloud model and (b) I/O server processes for storing results to
disk. Users can individually set the number of I/O server processes. At runtime,
the I/O servers keep simulation results in main memory. After N simulation
steps or at program termination, the I/O servers flush the results to disk [7].

We record the I/O behavior of MONC using our Score-P prototype. Score-P
instruments the source code and intercepts library calls to Posix I/O, MPI I/O,
and NetCDF. We conduct our experiments on ARCHER [3]. This Cray XC30
system consists of 4920 compute nodes, each containing two 12-core E5-2697 v2
(Ivy Bridge) processors running at 2.7 GHz. Our experiments use a 4.4 PB Lus-
tre file system (stripe count 1, stripe size 1 GiB) to store simulation results and
collected event logs. We run MONC on 112 processes, distributed over 8 nodes.
Each node hosts one I/O server process with a pool of 10 additional threads. The
remaining 104 simulation processes compute the cloud model. In our experiment
setup, MONC simulates 100 timesteps. At the end of the application run, the
I/O server processes write the data to disk via calls to NetCDF. Using our app-
roach, we can inspect internal function invocations of MPI I/O and Posix I/O.
In order to avoid interference with the I/O behavior of the observed application,
we keep all collected performance data in main memory during application run-
time. After the application has finished, event logs are written to disk. In our
experiments the recording of performance data caused an increase in application
runtime of about six percent. We visualize the resulting event logs using the tool



A Methodology for Performance Analysis 25

Fig. 6. Function and I/O statistics of the MONC experiment run.

Vampir. Since version 9.4 Vampir features new displays with special focus on
the visualization of I/O behavior of applications. The paper “Visualization of
Multi-layer I/O Performance in Vampir” [17] presents a detailed description of
these sophisticated visualization techniques using I/O related performance data.

Figure 6a depicts the overall exclusive time spent in particular function
groups. The event log contains 7 groups, while most of the time is spent in
application code (about 50%). Furthermore, the simulator spends more time in
MPI communication routines than in I/O operations. Although this first analysis
suggests that MONC does not exhibit poor I/O performance it is worth taking
a closer look at I/O operations.

To investigate I/O performance in detail, Fig. 6 depicts three I/O sum-
mary charts for NetCDF (Fig. 6b), MPI I/O (Fig. 6c), and Posix I/O (Fig. 6d),
respectively. All three layers utilize the same RCE dump 329.nc file. The num-
ber of accesses to this file increases while traversing the NetCDF, MPI I/O, and
Posix I/O layer. This statistic reflects how each library abstracts functionality in
order to hide complex operations. Furthermore, the figure shows that Posix I/O
also utilizes additional files. In further analyses we will identify the origin of
these file accesses.

Figure 7 depicts the I/O timeline (top) and the process summary (bottom)
for Thread 7 of Rank 0. The I/O timeline displays the performed type of I/O
operations (Read (orange), Write (yellow), Open (blue), Close (green)) on the
x-axis and the accessed files as well as associated handles on the y-axis. If an
I/O library (e.g., NetCDF) utilizes another I/O library, the individual handles
of each library are attached to each other, as represented in a tree-like hierarchy
to the left of the upper chart. The top chart in Fig. 7 depicts all handles used to
access the NetCDF file RCE dump 329.nc. Thereby, NetCDF internally utilizes
MPI I/O (see handle MPI-IO #0) which in turn performs Posix I/O operations
(see POSIX I/O #20) on RCE dump 329.nc. This view also shows that MPI I/O
opens (blue bars) maps-files from the /proc filesystem through the ISO-C API.
Each I/O server process reads (red boxes) its maps-file before transferring sim-
ulation data to the NetCDF file.



26 R. Tschüter et al.

Fig. 7. The I/O timeline (top) shows individual I/O operations of Thread 7 from Rank
0 on specific files. The process summary (bottom) depicts the call stack. (Color figure
online)

Fig. 8. Call stack comparison of two different I/O server processes. (Color figure online)



A Methodology for Performance Analysis 27

Fig. 9. Number of syscalls in MPI I/O mapped to the system tree topology.

The bottom chart in Fig. 7 depicts the process timeline for Thread 7 of Rank
0 and provides details about the calling context of I/O operations in this time
slice. For example, the execution of nc put vara double (bottom chart, level 7)
creates an I/O write event of the NetCDF #0 handle (top chart). This operation
in turn calls MPI File Write at all (bottom chart, level 8) which generates the
I/O write event of the MPI-IO #0 handle (top chart). Level 9 in the bottom chart
shows internal details of this collective MPI I/O routine. It depicts the fgets call
to access the maps-file (/proc/43867/maps). write calls to store the final data
which correspond to the write events of the POSIX I/O #20 handle (top chart).
Interestingly, NetCDF executes MPI communication operations (bottom chart,
level 8, red bars) within the nc put vara double routine. In this time slice,
these operations are small compared to the MPI File Write at all routine and
do not impede performance. However, in a different scenario, these functions
may lead to a communication bottleneck or undesirable wait states.

So far we investigated only one I/O server process. In the next analysis we
will compare different I/O server processes. Figure 8 shows the process timelines
of I/O server Rank 0/Thread 7 (top) and Rank 14/Thread 2 (bottom). Both
servers call identical functions with similar durations until call level 9. On this
level, both servers perform ISO-C I/O operations (brown bars) at the beginning
of MPI File Write at all. Then, one server process (top) executes write func-
tions. It seems that only one I/O server process accesses the RCE dump 329.nc
file through the collective I/O operation. The collective operation appears to syn-
chronizes all processes (causing waiting time) except process Rank 0/Thread 7,
that performs the actual I/O operations. Figure 9 depicts the number of syscalls
within MPI I/O routines aggregated per compute node. Node nid01713 per-
forms the most syscalls within MPI. This confirms, that only one I/O server
transfers data to the RCE dump 329.nc file. Reasons could be the (small) data
size or missing support for parallel accesses in the current implementation. For
MONC, our analysis suggests optimization potential by switching from collective
operations to individual accesses per I/O server process.

6 Conclusions

This work presents a methodology for recording calls to I/O libraries on multiple
layers of the software stack. In contrast to current approaches, our methodology



28 R. Tschüter et al.

explicitly correlates operations between multiple I/O libraries. This enhanced
level of detail in the recorded performance data is essential for understanding the
overall I/O behavior of applications. Consequently, users can now identify root
causes of I/O bottlenecks inside a complex I/O stack. We prove the applicability
of our approach in an analysis study of the Met Office/NERC Cloud Model
(MONC) code.

7 Future Work

In this work, we show that our approach records valuable information about the
I/O behavior of applications. With an intuitive presentation of this information,
we support application developers in optimizing I/O-intensive applications. Cur-
rently, we are working on integrating our approach into the Score-P open-source
measurement infrastructure and OTF2 trace format. Consequently, it will be
available in one of the next official Score-P releases. Meanwhile, we provide a
prototype implementation [25].

Automatic analysis as a complementary technique to visualization directly
guides users to performance bottlenecks. Tools like Scalasca or Casita [21] apply
detection mechanisms to identify inefficiency patterns in MPI message transfers
or computation offloading to accelerator devices. Similar analysis techniques can
be applied to our I/O performance data recordings.

This work focuses on performance analysis of file I/O operations. However,
it can be easily extended to monitor I/O operations on sockets. This use case
would only require new definitions for representing sockets as an I/O resource
(besides files and directories). Furthermore, we plan to add information about
failed operations to the current records. This would extend their usability from
performance analysis to debugging and correctness checking applications.

Data Availability Statement and Acknowledgments. This research was under-
taken as part of the NEXTGenIO project, which is funded through the European
Union’s Horizon 2020 Research and Innovation programme under Grant Agreement
no. 671951. The datasets and code generated during and/or analysed during the cur-
rent study are available in the figshare repository: https://doi.org/10.6084/m9.figshare.
6384164 [25].

References

1. Adhianto, L., et al.: HPCTOOLKIT: tools for performance analysis of optimized
parallel programs. In: Concurrency and Computation: Practice and Experience
(2010). https://doi.org/10.1002/cpe.1553

2. Knüpfer, A., et al.: The vampir performance analysis tool-set. In: Resch, M., Keller,
R., Himmler, V., Krammer, B., Schulz, A. (eds.) Tools for High Performance Com-
puting. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68564-7 9

3. Archer Hardware Specification, February 2018. https://www.archer.ac.uk/about-
archer/hardware

https://doi.org/10.6084/m9.figshare.6384164
https://doi.org/10.6084/m9.figshare.6384164
https://doi.org/10.1002/cpe.1553
https://doi.org/10.1007/978-3-540-68564-7_9
https://www.archer.ac.uk/about-archer/hardware
https://www.archer.ac.uk/about-archer/hardware


A Methodology for Performance Analysis 29

4. Arm MAP - Low-Overhead Profiling to Optimize C, C++, Fortran and F90
Codes, February 2018. https://www.arm.com/products/development-tools/hpc-
tools/cross-platform/forge/map

5. blktrace(8) - Linux man page, February 2018. https://linux.die.net/man/8/
blktrace

6. Brendel, R., Wesarg, B., Tschüter, R., Weber, M., Ilsche, T., Oeste, S.: Generic
library interception for improved performance measurement and insight. In: Pro-
ceedings of the 6th Workshop on Extreme Scale Programming Tools, ESPT 2017,
November 2017

7. Brown, N., et al.: A highly scalable met office NERC cloud model. In: Proceedings
of the 3rd International Conference on Exascale Applications and Software, EASC
2015, pp. 132–137 (2015)

8. Carns, P., et al.: Understanding and improving computational science storage
access through continuous characterization. Trans. Storage 7(3), 8:1–8:26 (2011).
https://doi.org/10.1145/2027066.2027068

9. Chaarawi, M., Gabriel, E., Keller, R., Graham, R.L., Bosilca, G., Dongarra, J.J.:
OMPIO: a modular software architecture for MPI I/O. In: Cotronis, Y., Danalis,
A., Nikolopoulos, D.S., Dongarra, J. (eds.) EuroMPI 2011. LNCS, vol. 6960, pp.
81–89. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24449-0 11

10. Cyrille Rossant: Should you use HDF5? February 2018. http://cyrille.rossant.net/
should-you-use-hdf5/

11. Dieter An Mey and others: Score-P: A Unified Performance Measurement System
for Petascale Applications. In: Competence in High Performance Computing (2012)

12. Eschweiler, D., et al.: Open trace format 2 - the next generation of scalable trace
formats and support libraries. In: Proceedings of the 14th Biennial ParCo Confer-
ence on Applications, Tools and Techniques on the Road to Exascale Computing.
Advances in Parallel Computing, vol. 22, pp. 481–490 (2012)

13. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The
scalasca performance toolset architecture. Concurr. Comput.: Pract. Exp. 22(6),
702–719 (2010). https://doi.org/10.1002/cpe.v22:6

14. iostat, February 2018. https://github.com/sysstat/sysstat
15. iotop, February 2018. http://guichaz.free.fr/iotop/
16. Lustre, February 2018. http://lustre.org/
17. Mix, H., Herold, C., Weber, M.: Visualization of multi-layer I/O performance in

vampir. In: 2018 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), May 2018

18. MPI Forum: MPI: A Message-Passing Interface Standard, Version 3.1, 14 June
2015. https://www.mpi-forum.org/docs/mpi-3.1/. Accessed May 2018

19. Müller, M., et al.: Developing scalable applications with Vampir, VampirServer and
VampirTrace. In: Parallel Computing: Architectures, Algorithms and Applications.
Advances in Parallel Computing, January 2007

20. sar(1) - Linux man page, February 2018. https://linux.die.net/man/1/sar
21. Schmitt, F., Stolle, J., Dietrich, R.: CASITA: a tool for identifying critical optimiza-

tion targets in distributed heterogeneous applications. In: 43rd International Con-
ference on Parallel Processing Workshops, pp. 186–195, September 2014. https://
doi.org/10.1109/ICPPW.2014.35

22. Shende, S., Malony, A.D., Spear, W., Schuchardt, K.: Characterizing I/O perfor-
mance using the TAU performance system. In: PARCO, pp. 647–655 (2011)

https://www.arm.com/products/development-tools/hpc-tools/cross-platform/forge/map
https://www.arm.com/products/development-tools/hpc-tools/cross-platform/forge/map
https://linux.die.net/man/8/blktrace
https://linux.die.net/man/8/blktrace
https://doi.org/10.1145/2027066.2027068
https://doi.org/10.1007/978-3-642-24449-0_11
http://cyrille.rossant.net/should-you-use-hdf5/
http://cyrille.rossant.net/should-you-use-hdf5/
https://doi.org/10.1002/cpe.v22:6
https://github.com/sysstat/sysstat
http://guichaz.free.fr/iotop/
http://lustre.org/
https://www.mpi-forum.org/docs/mpi-3.1/
https://linux.die.net/man/1/sar
https://doi.org/10.1109/ICPPW.2014.35
https://doi.org/10.1109/ICPPW.2014.35


30 R. Tschüter et al.

23. Thakur, R., Gropp, W., Lusk, E.: On implementing MPI-IO portably and with
high performance. In: Proceedings of the 6th Workshop on I/O in Parallel and
Distributed Systems, IOPADS 1999, pp. 23–32 (1999). https://doi.org/10.1145/
301816.301826

24. The HDF Group: Hierarchical Data Format, version 5, February 1997–2018.
http://www.hdfgroup.org/HDF5/

25. Tschueter, R., Herold, C., Wesarg, B., Weber, M.: Score-P measurement system
code and event logs for Euro-Par 2018 paper: a methodology for performance
analysis of applications using multi-layer I/O. figshare. Fileset (2018). https://doi.
org/10.6084/m9.figshare.6384164

26. Unidata: Network Common Data Form (NetCDF) [software] (2018). https://doi.
org/10.5065/D6H70CW6,https://doi.org/10.5065/D6H70CW6

27. Virtual Institute for I/O, February 2018. https://www.vi4io.org/start
28. Vijayakumar, K., Mueller, F., Ma, X., Roth, P.C.: Scalable I/O tracing and anal-

ysis. In: Proceedings of the 4th Petascale Data Storage Workshop, PDSW 2009
(2009). https://doi.org/10.1145/1713072.1713080

https://doi.org/10.1145/301816.301826
https://doi.org/10.1145/301816.301826
http://www.hdfgroup.org/HDF5/
https://doi.org/10.6084/m9.figshare.6384164
https://doi.org/10.6084/m9.figshare.6384164
https://doi.org/10.5065/D6H70CW6,
https://doi.org/10.5065/D6H70CW6,
https://doi.org/10.5065/D6H70CW6
https://www.vi4io.org/start
https://doi.org/10.1145/1713072.1713080

	A Methodology for Performance Analysis of Applications Using Multi-layer I/O
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Definitions
	3.2 Events

	4 Implementation
	5 Case Study
	6 Conclusions
	7 Future Work
	References




