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Abstract. Failed jobs in a supercomputer cause not only waste in CPU
time or energy consumption but also decrease work efficiency of users.
Mining data collected during the operation of data centers helps to find
patterns explaining failures and can be used to predict them. Automating
system reactions, e.g., early termination of jobs, when software failures
are predicted does not only increase availability and reduce operating
cost, but it also frees administrators’ and users’ time. In this paper,
we explore a unique dataset containing the topology, operation metrics,
and job scheduler history from the petascale Mistral supercomputer. We
extract the most relevant system features deciding on the final state of
a job through decision trees. Then, we successfully train a neural net
to predict job evolution based on power time series of nodes. Finally,
we evaluate the effect on CPU time saving for static and dynamic job
termination policies.

Keywords: HPC - Slurm - Failure prediction * Failure prevention
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1 Introduction

Data centers are a core element in most I'T systems, hosting cloud applications,
enabling HPC or performing intensive Big Data analytics. Although the opti-
mal architecture of a data center may be different for each of these applications,
general maintenance problems remain the same. Failures in hardware and infras-
tructure can both cause software failures or may be the result of such software
failures. Software errors are the most common cause of failures [4]. Also, many
jobs produce large network and storage system loads which degrade the system
performance [3].
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Data presenting the state of a system is usually so complex that administra-
tors might not take the best decision to recover a system efficiently. Moreover, in
many cloud-oriented services, system monitoring information is limited to hard-
ware metrics, and do not include user application logs. Thus, it is even more
challenging to predict job failures and take proper action. Evaluating jobs in
run-time augments administrative metrics and increases the confidence of taken
decisions. Therefore, jobs which are likely to fail or decrease the performance of
a system can be terminated in advance, saving resources, computing and human
time, and lowering operational costs. According to the dataset used in this paper,
completed jobs in the petascale Mistral' supercomputer consume about 45 mil-
lion CPU hours per month and they are 91.3% of all submitted jobs. Predicting
the final job state at the time of job submission and during run-time allows
for forcing job termination before a failure occurs, enabling savings. However,
deciding when it is necessary to terminate a job is a nontrivial task.

In this paper, we analyze the impact of both static and dynamic job ter-
mination policies using different data center metrics. We propose new job state
prediction algorithms based on Decision Trees (DT) and Convolutional Neural
Networks (CNN). We use data extracted from the Mistral supercomputer that
includes system metrics, job scheduler history, and system topology information.
We augment datasets during the exploration to show how knowledge coming
from job scheduler, monitoring system, and topology and structure, can increase
prediction capabilities and uncover new patterns. We discriminate among job
submission features these that explain the termination status of jobs based on
job traces. We use power series of nodes to build a model used for failure pre-
diction at run-time. For this task, we use machine learning (ML) and a CNN.
The trained CNN achieves 85% of precision in the classification of failed jobs by
power series. The CNN predicts failures for more than 40% of failed jobs in the
20" percentile of their duration.

The remainder of this paper is divided into six sections. Work related to
failure prediction and prevention in HPC is discussed in Sect.2. In Sect. 3, we
provide description of Mistral supercomputer (42°¢ most powerful computer in
November 2017 (See footnote 1)) and data exported from this environment.
Section 4 presents extraction of important features and their discovery by means
of DTs that are created using these data. Then, in Sect.5, we describe the
training and use of a CNN for job state prediction. At the end of Sect. 5, we show
savings applying different policies for early job termination. We discuss results,
the usefulness of the proposed policies and include plans for future research in
Sect. 6.

2 Related Work

Authors in [18] describe the role of software in failures occurring in data centers.
Software problems in an OS, middleware, application, or the wrong configura-
tion, e.g., underestimated resources cause the majority of job failures in HPC

! https://www.top500.org/system /178567.
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workload [1,22]. The authors of [5] discover the correlation between failures,
and different characteristics of supercomputer operations, such as node usage,
last state of a job, and hardware metrics. This research explores state sequences
from the perspective of a node. The authors perform job-oriented analysis only
to point users with a high failure rate. Analysis of logs and the rate of failed
jobs allows detecting slow-downs and targeted failures [4]. Recently, the authors
in [10] characterized workload in an HPC environment with the primary goals to
find patterns across different applications and disciplines. Latest work presented
in [9] analyzes failures of the Oak Ridge supercomputer. The authors describe
hardware reliability, correlate failure types, and investigate failure trends in the
time and spatial distribution. However, leveraging user history for prediction of
failed jobs and learning application workload patterns is not a primary focus
area in the prior publications. Also, there are not many publications addressing
the separate analysis of jobs and job steps.

There is many research on ML in data center maintenance for either pre-
diction or classification problems [6,7,17,20]. For instance, research in [8] uses
dynamic association rules to predict failures in the Blue Gene. The authors
of [15] focus on predicting failures in computing nodes, and as a reaction, redi-
recting a job to another set of nodes. Another possible action is checkpointing,
and the authors of [2] investigate the optimal policy to reduce trade-off between
checkpoints frequency and MTBF. The authors in [13] use power and tempera-
ture metrics to predict errors in GPU clusters via neural network (NN) model.
Recently, decision trees are implemented for failure prediction in HPC domain
[12]. The proposed algorithm identifies the causes of failures, performing better
comparing to other SoA techniques.

Despite the popularity and progress in ML algorithms and software, the area
of prediction of the final HPC job states through accurate modeling of power
series seems to be unexplored. The focus of most of the work is put on predicting
failures per hardware unit, rather than learning workload patterns of failed jobs.
The complexity of IT systems and their dynamic structure are one of the main
obstacles to create accurate models. The authors in [21] propose power model-
ing techniques via Petri networks, to estimate power consumption. Also, work
presented in [19] reports research on power profiling in HPC environments. The
authors discuss application network architecture, performance, and scalability
in the dimension of power consumption, and they propose a system for accurate
power monitoring. However, in our work, we aim to use as little information as
possible — power metrics representing the load of nodes.

3 Mistral Supercomputer Dataset

DKRZ Mistral supercomputer contains 3336 computing nodes, about 90 special
nodes dedicated to other activities, and a separate 54 PiB Lustre file system.
Applications for climate science generate the production workload. Slurm? main-
tains node reservations, resource allocation, and accounting.

2 https:/ /slurm.schedmd.com/.
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3.1 Job Scheduler History

Through analysis of historical data from the scheduler, we investigate which
features are important, thus deciding on a final job state. This goal motivates
our strategy, which is oriented to jobs rather than nodes. We use states from the
scheduler to determine an output of a job. In the dataset, each job finishes with
one of the following states, defined by Slurm documentation.

— Cancelled — A user or administrator cancelled a job. The job may or may
not have been initiated. In the following analysis, we take into account only
cancelled jobs longer than O s.

— Completed — Job has terminated all processes on all nodes with an exit code
of zero.

— Failed — Job terminated with non-zero exit code or another failure condition.
According to Mistral, another failure condition includes failures caused by any
external factor to an allocated node, e.g., failures of Lustre FS, IB.

— Node fail — Job terminated due to a failure of one or more allocated nodes.
This state includes only hardware related problems of a computational node.

— Timeout — Job terminated upon reaching its time limit.

Each job consists of one or more steps. A job submission script defines the
execution order of steps; also the order can be read from Slurm history. The
order can be sequential, parallel, or mixed, see example script in Listing 1.1.

Listing 1.1. Example Slurm batch script. Two steps run sequentially on 80 nodes.

#SBATCH —nodes 80

#SBATCH —tasks —per—node 10

# First step

srun —nodes 80 ——tasks 10 mkdir /home/$USER/$SLURM_JOBID
# Second step

srun app.mpi in.csv out.csv

Most steps in Mistral dataset are executed sequentially. In the Slurm
database, there are 76 columns. They contain information about jobs: (1) job
configuration specified by a user, and (2) statistics known at the end of a job.
We give more details about these data in Subsect. 3.3. In this paper, we consider
all above job states. For steps, the dataset includes: Completed, Failed and
Cancelled.

3.2 Time Series Data Analysis

Mistral metrics are acquired every 60s into an Open Time Series Database
(OTSDB) instance that is installed on the top of HBase cluster. For this research,
the data from the cluster are exported using the HBase ExportSnapshot tool.
Then, we import a snapshot with the size of 0.5 TB from a regular continuous
period of 10 months of system executions to our analysis environment contain-
ing 8 machines with 120 physical cores, 672 GB of RAM. We use Apache Spark
for data processing. For training of a CNN, we need job scheduler data merged
with power metrics. We merge Slurm steps with data from OTSDB representing
power metrics of nodes used by a step during its run-time. That merged steps
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should contain at least two power measurements. In the worst case, for steps
shorter than 120s, it is possible to merge only one timestamp with node power
metrics. So, in the evaluation, we consider a subset of steps longer than 120s.
Discarding short jobs, we do not lose a lot of data: about 1.2M of all steps from
the set run for more than 60s and 1.1M more than 120s.

3.3 Dataset Split

We show how different knowledge sources: software — job scheduler, hardware
— monitoring system, and platform — topology and structure, impact prediction
and classification accuracy. Also, we detect which part of the data increases the
prediction capabilities of a model when the only used information is the one
known at the time of a job submission; and which part of the data improves
classification capabilities, when we use statistics of finished jobs. Datasets are
divided into the following sets - named with a capital letter for later reference:

— Slurm job configuration data: information of either jobs or steps, which is
known at the time of submission e.g., reserved time, allocated nodes, required
CPU frequency, start time. [we call it dataset C in the experiments]

— Slurm user data: columns with information about prior user allocations.

Also, this dataset contains aggregated user data. The set includes factors of

jobs terminated with each of 5 possible states to a number of all submissions in

different windows. We aggregate the data by user and windows with different

sizes: last N submissions (N = 1, 100, 1k, 10k). [dataset U]

Slurm job summary data: information is known at the end of a job,

e.g., duration, disk read/write (R/W) — the sum of local storage and Lustre

operations done by a job, virtual memory (VM) size, other hardware usage.

[dataset S|

— Power metrics of nodes (OTSDB data): power metrics of computing
nodes (blades). [dataset P]

— Data center topology: topology and localization of nodes. [dataset T|
— Hardware profiles of nodes: types of nodes, number and types of CPUs,
amount of RAM. [dataset H|

4 Failed Job Analysis

According to the data from the job scheduler, more than 1.3M jobs, and more
than 270k different job names are submitted in the 10-month period that is
represented by the dataset extracted from the Mistral production environment.
These submissions, which are mainly executed in batch mode (98.8%), result in
over 4.8M steps. For detailed statistics, see Mistral technical report [23]. One
of the observations from the statistics is coherent with usual state of the art
reports - failed steps are usually more complex [22]. These statistics represent a
convincing motivation for generating savings with the early termination of jobs
that are predicted to fail. An average failed job consumes many more CPU hours
than completed one and it also decreases resources availability.
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4.1 Most Meaningful Features for Prediction of Job States

Extraction of Features. We generate DTs [14] to reveal job and step features
explaining a job state. These ML models learn if-then-else rules, for either clas-
sification or regression task. An advantage of using a DT is the fact that it is a
white-box model so that a human can easily understand a trained tree. We use
all the features from each dataset for generation of a DT. To decide the opti-
mal size of DTs, we consider (1) over-fitting and (2) readability of a model to a
human. Firstly, we split our set into three sets using random stratified sampling.
We create the training set containing 70% of jobs (samples), the validation set
that has 10% of jobs (samples), and the test set with 20% of jobs. During the
training, we measure accuracy on the validation set, while increasing depth of
a tree. We set 100 as the minimum number of instances each node’s child must
have after a split. Trees with depth 5 obtain satisfactory performance. For larger
DTs, the accuracy increase is low (0.03%), and the increase of the number of
nodes is high. For instance, a tree with depth 9 has 275 nodes, and it is 84 nodes
more than a DT with depth 8. Thus, we choose the optimal depth of the DT to
be 5, which has 63 nodes. To check if models are not over-fitting, we evaluate
random forests (RF) for each dataset. RF create DTs and train them with dif-
ferent training sets that are subsets of the main training set. Then, results from
each DT are combined. Created RF's improve neither classification nor prediction
quality when compared to the above DTs.

The test evaluations shows the fitness of generated models of either classifi-
cation (having all information about a finished job), or prediction (having only
information at the time of submission). We present the results of evaluations in
Tables 1 and 2, including only features with importance over 3%.

Table 1. Decision trees — evaluation of different combinations of data sets - jobs

Data set Important features Job state| Completed | Failed | Cancelled | Timeout | Node fail
Configuration (C) Time limit (74%) Precision |0.91 0.0 0.0 0.0 0.0
Daytime (24%) Recall |1.0 0.0 |0.0 0.0 0.0
F1l-score [0.96 0.0 0.0 0.0 0.0
Configuration + Previous job state for a|Precision|0.97 0.75 |0.52 0.68 0.0
user’s history (C + user (96%)
v Number of allocated  |Recall  |0.98 0.70 |0.44 0.30 0.0
nodes (3%) Fl-score [0.98 0.72 |0.48 0.42 0.0
Statistics + Previous job state (87%) | Precision |0.97 0.77 |0.63 0.81 0.0
configuration + Duration (9%)
user’s history (S + C |Number of allocated Recall 0.99 0.74 0.36 0.35 0.0
+ U) nodes (4%) Fl-score |0.98 0.75 0.46 0.49 0.0
Duration > 120 s Previous job state (85%) | Precision |0.97 0.81 |0.62 0.80 0.0
statistics, Duration (8%)
configuration, user’s |Number of allocated Recall 0.99 0.74 ]0.31 0.33 0.0
history (S + C + U) |nodes (6%) Fl-score 0.98 0.77 |0.41 0.47 0.0

Jobs. The above results show that the size of resource reservation is a principal
factor determining the final state of a job. Also, the results expose that final
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Table 2. Decision trees — evaluation of different combinations of data sets - steps

Data set Important features Job state| Completed |Failed | Cancelled
Configuration (C) Number of allocated nodes (98%) | Precision |0.95 0.50 |0
Recall 0.99 0.07 |0
Fl-score |0.97 0.12 |0
Configuration, statistics |Number of allocated nodes (47%) | Precision | 0.98 0.83 |0.58
(C+9) Averag,e disk W (40%) Recall 0.99 0.76 |0.04
Duration (4%)
Fl-score |0.99 0.79 ]0.79
Duration > 120 s Average disk W (47%) Precision |0.95 0.59 |0.89
configuration, statistics |Number of allocated nodes (36%)
(C+9) Average CPU frequency (9%); Recall 0.98 0.23 ]0.83
Duration (4%) Fl-score |0.97 0.33 |0.86
Configuration, topology, | Number of allocated nodes (79%) | Precision |0.97 0.75 ]0.49
hardware information Number of nodes 36C 64 GB RAM
(C+ T+ H) (15%) Recall 0.98 0.41 |0.01
Number of nodes 36C 128 GB
RAM (3%) F1l-score [0.98 0.53 |0.01
Configuration, Number of allocated nodes (46%) | Precision|0.98 0.85 |0.52
statistics, topology, Average disk W (41%); Average
hardware information, |disk R (5%)
power statistics (C + S |Average VM size (4%) Recall 0.99 0.75 |0.10
+ T + H + P) F1-score |0.98 0.80 [0.17
Duration > 120 s, (C + |Average disk W (49%) Precision |0.94 0.93 |0.81
S+ T+ H+P) Number of allocated nodes (35%) Recall 0.99 0.79 |0.13
Average CPU frequency (10%)
F1l-score [0.97 0.85 |0.22

states are highly correlated with a user’s history. In general, this correlation is
weaker for longer jobs.

Steps. Generated DTs reveal that the sum of disk RW is often higher for com-
pleted jobs than failed ones. Since the mean duration of failed steps is much
higher than completed ones [23], higher storage usage can be explained by less
active nodes in failed steps. We can state a hypothesis, that some nodes in failed
steps stay in idle state, see Sect. 4.2. The evaluation shows the high importance of
anumber of allocated nodes with 36 cores. An investment done in DKRZ explains
this phenomenon. The dataset includes the period when Broadwell nodes started
their service in the production environment. That time, users were translating
their software and scripts to the recently installed hardware. It is the primary
cause of many job failures.

Conclusions. The evaluation of DT classification tasks shows that a DT model
is unable to learn and recognize cancelled, node failed, or timeout jobs based
only on configuration data. These data are the only information known to the
scheduler after a job is submitted. The fl-score is 0 for all of the mentioned
states. Augmenting this set with past user’s submissions improves recall of failed
jobs to 72% and lifts precision of predicting cancellations to 52% and timeouts
to 68%. This result shows a strong correlation inside a sequence of final job
states. Adding to the training dataset metrics which are known after a job is
finished increases the precision of a classifier. The recall does not change for any
of the states. Regarding steps, precision and recall are lower than those for job
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submissions. It is a reasonable result considering that steps have a lower number
of features available for these evaluations. The number of allocated nodes is an
important feature to predict the final state of a job even when used with hardware
metrics features. Other important features are knowledge on past submissions
and their states. According to the hardware statistics, average disk W is a highly
important feature in the classification task of final job states, while general power
statistics are features with low importance.
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Fig. 1. Plots presenting power series of 198 nodes running in parallel a job from the
same, user, project, and application. Two jobs were run in different points of time.
First one is failed, the next one is completed.

4.2 Node-Power Analysis

We want to investigate the power statistics of failed jobs in comparison with
completed ones, to detect idle states. Each computing blade is controlled and
monitored by an isolated blade management controller which delivers power
metrics. A controller is an external unit, and acquiring measurements does not
infer with the workload of a blade. Power metrics of these blades perfectly depict
their CPU load. Although in Subsect.4.1 we evaluate the usefulness of power
statistics in prediction, we might also evaluate whether these series can improve
job state prediction during the run-time. We correlate power series of nodes
allocated for a step with this step’s final state and types of nodes. We analyze
power statistics for steps longer than 1000s, grouped by hardware profile to
extract average values of power metrics in the last 300s of the duration of a job.
This value is at least 10% lower than for completed ones, when considering all
hardware groups, and failed steps. The most probable explanation can be the
fact that once a software failure occurs some of the nodes go to an idle state.
For instance, Fig. 1 presents power series of 1-step jobs, both executed with the
same configuration by the same user. This scenario represents a typical case
where one node is in an idle state, and the rest are executing some workload. On
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the contrary, power series of nodes executing a completed step do not show any
node in an idle state. This phenomenon appears in other cases in the dataset
and suggests that using power metrics would be relevant for classification of
a job state. Moreover, this observation matches with the expert knowledge at
DKRZ. In words of one of its system engineers: “We check the idle state of a
node during a problematic job, looking at InfiniBand traffic of nodes. If it is low,
a job is likely to fail”.

5 Prevention of Failures

Prior data exploration and evaluation of DT's show that power metrics and DT's
can be used for prediction of final job state. Predictions contain probabilities
for each step state. During prediction, we classify a step as failed, when the
probability of failure is higher than a defined threshold and all other probabilities
associated with other classes. Therefore, we propose two types of policies to
be taken: a static and dynamic one. A static policy uses predictions based
on a step configuration data, topology, and hardware information (C + 7T + H)
through DTs. A dynamic policy uses predictions during run-time which are
produced by a convolutional neural network (CNN), introduced in Sect. 5.1. The
inputs to this model are power metrics, which are analyzed in Sect.4.2. While
using a dynamic policy, a job is killed when it is classified as failed for the first
time — the earliest prediction over the given threshold.

The use of different types of models, one as a white-box and the other as
a black-box has several advantages over, for instance, one complex NN model
trained with both static and dynamic data. Firstly, the use of DTs enables to
easily explain phenomena observed in a data center to system administrators.
Since a model can evolve by repeating the training, changes in trends and user
behavior occurred in a data center are observed as results of the comparison
of models. Also, a failure prevention system gains performance during the run-
time because of splitting evaluation to offline (time of submission only) and
online (evaluation of a job during its runtime) one.

5.1 Convolutional Neural Networks

CNNs are a type of deep neural network following a design of biological vision
systems [11]. They are widely used for image classification, natural language
processing, and recommendation systems, and they have also been successfully
used for time series classification and prediction. We propose to use a CNN for
classification and prediction of multivariate time series, which are the power
metrics of nodes (overall energy consumption of a computing blade) used in a
step. Therefore, CNN learns “how a multivariate time series of nodes execut-
ing a step look like”. A major advantage of using CNNs over neural nets with
fully connected (dense) layers only, is that they need much fewer neurons and
parameters to solve a particular classification or prediction problem.
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In Fig. 3, we present the best CNN model trained for this task. We create the
final model after a few iterations, through dropping layers from more complex
models which over-fit during the training and do not increase the accuracy. The
model presented in Fig.3 comprises a few types of layers. Each convolutional
layer comprises filters with size 3 x 3, and during the training, each filter learns
weights. This layer is used to extract specific features, in this case from 2D
matrices. Another important layer type used is a drop-out, which regularizes
weights and through dropping neurons and connections, prevent overfitting [16].
A max pooling layer and dense layer are used to aggregate extracted features
and classify them into defined classes and give probabilities. The input data are
2D matrices of size M = 512 (number of nodes) x T'= 120 (length of time series).
For steps with matrices which shape is less than M x T, we pad a sample with
zeros - which are ignored by CNN during the training. For these matrices which
are larger than that size, we downsample a matrix by averaging power metrics.
The value for T' is chosen so that it is large enough to represent the complete
series of most of the steps (only 1.3% of steps are longer than 120 min) and at
the same time it is small enough for the NN training to be practical. The dataset
with steps is split randomly (the same split as in Sect. 4) into three sets: training
(70% of the data), validation (10%), and test (20%) respectively.

The CNN is trained using tensorflow® and keras* libraries by means of 2x
GPU GeForce 1080 Ti. Also, after a few trails and examining a shape of the
loss curve, the learning rate is set to 0.001, and we choose a stochastic gradient
descent optimizer. The final model, which contains 32261 parameters to train,
is trained in 67 epochs with approximately 1h per epoch. We stop training after
lack of significant improvement in the loss curve, and when the model does not
improve more than 1% in 5 epochs. We show results of the trained CNN in
Table 3.

Table 3. CNN test results - classification. Data set: steps — power metrics, dura-
tion > 120s

Completed | Failed | Cancelled

Precision | 0.93 0.85 |0.79
Recall 0.98 0.66 |0.15
Fl-score | 0.96 0.74 10.25

test set | 168875 28605 | 4457

5.2 Evaluation — Static and Dynamic Job-Killing Policies

The primary goal of the evaluation is to explore possible savings and losses
depending on the aggressiveness of job-killing policy. We measure the aggres-

3 https://www.tensorflow.org/.
* https://keras.io/.
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siveness of a policy as the threshold of class prediction probability. For instance,
a threshold of 60% means that a job is classified as failed when the probability
of predicting failed is higher than 60%. An aggressive policy is the one with a
low threshold, and the less aggressive one is the one with a high threshold, e.g.,
greater than 90%. We evaluate the trained CNN model and DT to predict the
final states of steps. We use a test set which contains jobs with total CPU time
of 84.7M h. CNN predicts a final job state and outputs probabilities for each
timestamp during the run of a job. We evaluate proposed policies by depicting
lost and gained CPU time, expressed in hours. Lost CPU time stands for the
resources consumed by a step that is labeled as completed, but it is killed (false
positive). Saved CPU time represents resources that would be used until a step
ends but are saved due to a decision of early step termination. Approximate
performance of CNN evaluation is 5000 samples/s which is considered sufficient
for these experiments.

Table 4. Summary of the dynamic policy evaluation over a test set containing 11M
CPU hours of failed jobs

Dynamic policy metric CPU h | Probability threshold
Maximum savings achievable 7.9M | From 0 to 0.42
Maximum loss (false positive) 4.1M ]0.52

Global maximum (savings - loss) 4.0M | From 0 to 0.42

Local maximum of (savings - loss) |0.7M |0.82
with the highest value of threshold

Considering the dynamic policy, the maximum value of true positives is
0.9, and for false positives, the maximum value is 0.45. Both metrics decrease
smoothly when the threshold grows. Figure 2 shows true and false positive rates
depending on the probability threshold for failure prediction with the CNN. On
the other hand, the static policy is characterized by the maximum value of the
true positive rate of 0.47 and a small value of 0.02 for the false positive rate.
The static policy is more accurate in predictions comparing to the dynamic one,
but the maximum number of predicted steps to fail are almost two times lower.

Wastes. When it comes to the CPU time, the static policy allows for maximum
savings of 0.8M CPU h, and the dynamic one of 8M CPU h. In Table4, we
present a summary of the evaluation of the dynamic policy taking into account
CPU hours of jobs. Note, that the earlier we kill a failed job, the bigger savings
are. On the other hand, the confidence of prediction increases with time a job
is running as we gather more data. Regarding this trade-offs, there is a global
maximum of losses for threshold 0.52. For instance, applying a dynamic policy
with a threshold of 0.82 (local maximum with the highest threshold value) to
the test dataset saves 1.6M CPU h with 0.9M CPU h lost and the total profit
of 0.7M CPU h. For instance, a less aggressive policy would be the application
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of a threshold equal to 0.96. In this case, we save 210k CPU h, and we lose 24k
CPU h, with the total profit of 190k CPU h. In contrast, executing static policy
allows for maximum savings of 870k CPU h by killing 13k failed jobs with a side
effect of killing 3.8k completed ones. Also, the application of the static policy,
which is more conservative, does not cause a loss in CPU time, because it reacts
after job submission.

Figure 4 presents the distribution of job time at which the dynamic policy
will react and terminate a job. We can see that most of the jobs are killed during
the first 30% of their total execution time (the time they take if they are not
killed earlier). Then, for the remaining steps, prediction abilities increase after
60th percentile of their duration. Figure4 shows that the dynamic policy can
predict failures early.

Users and system administrators may use policies with different aggressive-
ness levels. For instance, a user might choose a very aggressive policy, both static
and dynamic with a very low threshold, when the project budget is highly lim-
ited. On the other hand, a less aggressive policy, e.g., a dynamic policy with a
high threshold, above 0.9, can be appropriate for long jobs, where user time is
the most expensive factor to consider. Also, such a policy can maximize savings
comparing to use of a static policy. A static policy used by system administrators
can help eliminating problematic jobs, which may be causing the overload of a
system. However, use of dynamic policy can cause dissatisfaction of users, since
this policy can unexpectedly terminate their jobs without a known reason.

Also, supervised learning through interaction with a user can help improving
the proposed policies. Firstly, users should receive a notification when their jobs
are repeatedly killed after re-submissions. A user or a system administrator could
label such a problematic job. This action provides a model with additional infor-
mation for incremental improvement. Also, system administrators can decide to
perform supervised learning, to set up the optimal aggressiveness of the policy
(threshold).
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Fig. 2. Plot presents the evaluation of CNN model for different values of prediction
probability threshold. The lower is the threshold, the more aggressive is the job termi-
nating policy, greater savings, but we kill more good jobs as a consequence of inaccurate
predictions. Total CPU Hours of failed jobs in a set: 11M
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6 Conclusions and Future Work

In this paper, we analyzed a dataset containing metrics, topology and job sched-
uler data for the Mistral supercomputer. We showed important features in a
classification and prediction task of a job state. The number of allocated nodes,
the state of a previous job submitted by a user, average storage writes are the
most important ones. DTs detect specific node types as an important feature
due to migration process from the old to the new computing nodes. DTs perform
well as a classifier, with a recall nearly 80% and a precision of 93% for failed
steps. As a predictor, DTs can point failed steps, using configuration and allo-
cated hardware data exclusively, with a recall of 41% and a precision of 75%. In
the case of CNNs, these scores increase to 66% and 85% respectively. This paper
shows that one of the biggest influence on the next state of a job in a super-
computer like Mistral lies in the diversity and spatial distribution of allocated
nodes, place of a job in a user sequence and number of disk operations.

We evaluated dynamic and static job-killing policies, pointing out possible
savings related to the aggressiveness of both policies. For instance, using medium-
aggressive approach, we can kill more than 28% of failed jobs. Through CNN
predictions, the proposed dynamic policy kills 40% of jobs in the first 20% of
their duration. These effects can be improved by utilizing feedback from users
and system administrators and adjusting weights of CNN by supervised learning.

As future work, we would like to improve prediction capabilities of the created
solution and focus on Lustre FS. Firstly, we can achieve more accurate analysis
of final job states by adding OS logs to the analyzed dataset. Also, this would
help to build prediction algorithm of final job states, which is not limited by
Slurm job state but uses the utility of a job. For instance, the utility can be
measured by analyzing users’ actions after a job finishes, e.g., a user copied
output data, re-run the same code with different parameters, changed the code.
Therefore, this approach can differentiate jobs with a non-zero return code from



176 M. Zasadzinski et al.

these which were run unnecessary and these which can provide any utility to a
user, e.g., development progress, part of results. Then, we can consider a more
complex model which takes into account step sequence for a job. Also, we would
like to consider additional input information such as real-time metrics from the
data center, e.g., Lustre 1/O, overall system load and IB traffic. Finally, we would
like to focus more on the deep learning algorithms for prediction of failures and
Root Cause Analysis.
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