
Proofs of Work From Worst-Case
Assumptions

Marshall Ball1, Alon Rosen2, Manuel Sabin3(B),
and Prashant Nalini Vasudevan4

1 Columbia University, New York, USA
marshall@cs.columbia.edu

2 Efi Arazi School of Computer Science, IDC Herzliya, Herzliya, Israel
alon.rosen@idc.ac.il

3 UC Berkeley, Berkeley, USA
msabin@berkeley.edu
4 MIT, Cambridge, USA
prashvas@mit.edu

Abstract. We give Proofs of Work (PoWs) whose hardness is based on
well-studied worst-case assumptions from fine-grained complexity theory.
This extends the work of (Ball et al., STOC ’17), that presents PoWs
that are based on the Orthogonal Vectors, 3SUM, and All-Pairs Shortest
Path problems. These, however, were presented as a ‘proof of concept’
of provably secure PoWs and did not fully meet the requirements of a
conventional PoW: namely, it was not shown that multiple proofs could
not be generated faster than generating each individually. We use the
considerable algebraic structure of these PoWs to prove that this non-
amortizability of multiple proofs does in fact hold and further show that
the PoWs’ structure can be exploited in ways previous heuristic PoWs
could not.

This creates full PoWs that are provably hard from worst-case
assumptions (previously, PoWs were either only based on heuristic
assumptions or on much stronger cryptographic assumptions (Bitansky
et al., ITCS ’16)) while still retaining significant structure to enable extra
properties of our PoWs. Namely, we show that the PoWs of (Ball et al.,
STOC ’17) can be modified to have much faster verification time, can be
proved in zero knowledge, and more.

Finally, as our PoWs are based on evaluating low-degree polynomi-
als originating from average-case fine-grained complexity, we prove an
average-case direct sum theorem for the problem of evaluating these poly-
nomials, which may be of independent interest. For our context, this
implies the required non-amortizability of our PoWs.

1 Introduction

Proofs of Work (PoWs), introduced in [DN92], have shown themselves to be an
invaluable cryptographic primitive. Originally introduced to combat Denial of
Service attacks and email spam, their key notion now serves as the heart of most
c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10991, pp. 789–819, 2018.
https://doi.org/10.1007/978-3-319-96884-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96884-1_26&domain=pdf

790 M. Ball et al.

modern cryptocurrencies (when combined with additional desired properties for
this application).

By quickly generating easily verifiable challenges that require some quan-
tifiable amount of work, PoWs ensure that adversaries attempting to swarm a
system must have a large amount of computational power to do so. Practical
uses aside, PoWs at their core ask a foundational question of the nature of hard-
ness: Can you prove that a certain amount of work t was completed? In the
context of complexity theory for this theoretical question, it suffices to obtain a
computational problem whose (moderately) hard instances are easy to sample
such that solutions are quickly verifiable.

Unfortunately, implementations of PoWs in practice stray from this theoret-
ical question and, as a consequence, have two main drawbacks. First, they are
often based on heuristic assumptions that have no quantifiable guarantees. One
commonly used PoW is the problem of simply finding a value s so that hashing it
together with the given challenge (e.g. with SHA-256) maps to anything with a
certain amount of leading 0’s. This is based on the heuristic belief that SHA-256
seems to behave unpredictably with no provable guarantees.

Secondly, since these PoWs are not provably secure, their heuristic sense
of security stems from, say, SHA-256 not having much discernible structure to
exploit. This lack of structure, while hopefully giving the PoW its heuristic
security, limits the ability to use the PoW in richer ways. That is, heuristic
PoWs do not seem to come with a structure to support any useful properties
beyond the basic definition of PoWs.

This work, building on the techniques and the proof of concept of our results
in [BRSV17a], addresses both of these problems by constructing PoWs that are
based on worst-case complexity theoretic assumptions in a provable way while
also having considerable algebraic structure. This simultaneously moves PoWs in
the direction of modern cryptography by basing our primitives on well-studied
worst-case problems and expands the usability of PoWs by exploiting our alge-
braic structure to create, for example, PoWs that can be proved in Zero Knowl-
edge or that can be distributed across many workers in a way that is robust to
Byzantine failures. Our biggest use of our problems’ structure is in proving a
direct sum theorem to show that our proofs are non-amortizable across many
challenges; this was the missing piece of [BRSV17a] in achieving PoWs according
to their usual definition [DN92].

1.1 On Security From Worst-Case Assumptions

We make a point here that if SHA-256 is secure then it can be made into the
aforementioned PoW whereas, if it is not, then SHA-256 is broken. While tau-
tological, we point out that this is a Win-Lose situation. That is, either we have
a PoW, or a specific instantiation of a heuristic cryptographic hash function is
broken and no new knowledge is gained.

This is in contrast to our provably secure PoWs, in which we either have
a PoW, or we have a breakthrough in complexity theory. For example, if we
base a PoW on the Orthogonal Vectors problem which we define in Sect. 1.2,

Proofs of Work From Worst-Case Assumptions 791

then either we have a PoW or the Orthogonal Vectors problem can be solved
in sub-quadratic time which has been shown [Wil05] to be sufficient to break
the Strong Exponential Time Hypothesis (SETH), giving a faster-than-brute-
force algorithm for CNF-SAT formulas and thus a major insight to the P vs NP
problem.

By basing our PoWs on well-studied complexity theoretic problems, we posi-
tion our conditional results to be in the desirable position for cryptography and
complexity theory: a Win-Win. Orthogonal Vectors, 3SUM, and All-Pairs Short-
est Path are the central problems of fine-grained complexity theory precisely
because of their many quantitative connections to many other computational
problems and so breaking any of their associated conjectures would give consid-
erable insight into computation. Heuristic PoWs like SHA-256, however, aren’t
even known to have natural generalizations or asymptotics much less connec-
tions to other computational problems and so a break would simply say that
that specific design for that specific input size happened to not be as secure as
we thought.

1.2 Our Results

In this paper we introduce PoWs based on the Orthogonal Vectors (OV), 3SUM,
and All-Pairs Shortest Path problems, which comprise the central problems of
the field of fine-grained complexity theory. Similar PoWs were introduced in
[BRSV17a], although these failed to prove non-amortizability of these PoWs –
that many challenges take proportionally more work, as is required by the def-
inition of PoWs [DN92,BGJ+16]. We show here that the PoWs of [BRSV17a]
can be extended to exploit their considerable algebraic structure to show non-
amortizability via a direct sum theorem and, thus, that they are genuine PoWs
according to the conventional definition. Further, we show that this structure to
can be used to allow for much quicker verification and zero-knowledge PoWs. We
also note that our structure plugs into the framework of [BK16b] to obtain dis-
tributed PoWs robust to Byzantine failure.

While all of our results and techniques will be analogous for 3SUM and APSP,
we will use OV as our running example for our proofs and results statements.
Namely, OV (defined in Sect. 2.2) is a well-studied problem that is conjectured to
require n2−o(1) time in the worst-case [Wil15]. Roughly, we show the following.

Informal Theorem. Suppose OV takes n2−o(1) time to decide for sufficiently
large n. A challenge c can be generated in ˜O(n) time such that:

– A valid proof π to c can be computed in ˜O(n2) time.
– The validity of a candidate proof to c can be verified in ˜O(n) time.
– Any valid proof to c requires n2−o(1) time to compute.

This can be scaled to nk−o(1) hardness for all k ∈ N by a natural generaliza-
tion of the OV problem to the k-OV problem, whose hardness is also supported
by SETH. Thus fine-grained complexity theory props up PoWs of any complexity
that is desired.

792 M. Ball et al.

Further, we show that the verification can still be done in ˜O(n) time for all of
our nk−o(1) hard PoWs, allowing us to tune hardness. The corresponding PoW
for this is interactive but we show how to remove this interaction in the Random
Oracle model in Sect. 5.

We also note that a straightforward application of [BK16b] allows our PoWs
to be distributed amongst many workers in a way that is robust to byzantine
failure or errors and can detect malicious party members. Namely, that a chal-
lenge can be broken up amongst a group of provers so that partial work can be
error-corrected into a full proof.

Further, our PoWs admit zero knowledge proofs such that the proofs can be
simulated in very low complexity – i.e. in time comparable to the verification
time. While heuristic PoWs can be proved in zero knowledge as they are NP
statements, the exact polynomial time complexities matter in this regime. We
are able to use the algebraic structure of our problem to attain a notion of zero
knowledge that makes sense in the fine-grained world.

A main lemma which may be of independent interest is a direct sum theorem
on evaluating a specific low-degree polynomial fOVk.

Informal Theorem. Suppose k-OV takes nk−o(1) time to decide. Then, for any
polynomial �, any algorithm that computes fOVk(xi)’s correctly on � uniformly
random xi’s with probability 1/nO(1) takes time �(n) · nk−o(1).

1.3 Related Work

As mentioned earlier, PoWs were introduced by Dwork and Naor [DN92].
Definitions similar to ours were studied by Jakobsson and Juels [JJ99],
Bitansky et al. [BGJ+16], and (under the name Strong Client Puzzles)
Stebila et al. [SKR+11] (also see the last paper for some candidate construc-
tions and further references).

We note that, while PoWs are often used in cryptocurrencies, the literature
studying them in that context have more properties than the standard notion of a
PoW (e.g. [BK16a]) that are desirable for their specific use within cryptocurrency
and blockchain frameworks. We do not consider these and instead focus on the
foundational cryptographic primitive that is a PoW.

In this paper we build on the work of [BRSV17a], which introduced PoWs
whose hardness is based on the same worst-case assumptions we consider here.
While [BRSV17a] introduced the PoWs as a proof-of-concept that PoWs can
be based on well-studied worst-case assumptions, they did not fully satisfy the
definition of a PoW in that the PoWs were not shown to be non-amortizable.
That is, it was not proven that many challenges could not be batch-evaluated
faster than solving each of them individually. We show here that these PoWs
are in fact non-amortizable by proving a direct sum theorem in Sect. 4. Further,
the k-OV-based PoWs of [BRSV17a] have verification times of ˜O(nk/2) whereas
we show how to achieve verification in time ˜O(n), which makes the PoWs much
more realistic for use. These are both properties that are expected of a PoW
that were not included in [BRSV17a]. Beyond that, we show that our PoWs

Proofs of Work From Worst-Case Assumptions 793

can be proved in zero knowledge and note that our PoWs can be distributed
across many worker in way that is robust to Byzantine error, both of which
are properties seemingly not achievable from the current ‘structureless’ heuristic
PoWs that are used.

Provably secure PoWs have been considered before in [BGJ+16] where PoWs
are achieved from cryptographic assumptions (even stronger than an average-
case assumption). Namely, they show that if there is a worst-case hard problem
that is non-amortizable and succinct randomized encodings exist, then PoWs are
achievable. In contrast, our PoWs are based on solely on worst-case assumptions
on well-studied problems from fine-grained complexity theory.

Subsequent to our work, Goldreich and Rothblum [GR18] have constructed
(implicitly) a PoW protocol based on the worst-case hardness of the problem
of counting t-cliques in a graph (for some constant t); they show a worst-case
to average-case reduction for this problem, a doubly efficient interactive proof,
and that the average-case problem is somewhat non-amortizable, which are the
properties needed to go from worst-case hardness to PoWs.

A previous version of this paper appeared under the title Proofs of Useful
Work [BRSV17b], where we had presented the same protocol as in this paper as
a PoW scheme where the prover’s work could be made “useful” by using it to
perform independently useful computation. However, it was pointed out to us
(by anonymous reviewers) that a naive construction satisfied our definition of a
“Useful PoW.”

2 Proofs of Work from Worst-Case Assumptions

In this section, we first define Proof of Work (PoW) schemes, and then present
our construction of such a scheme based on the hardness of Orthogonal Vectors
(OV) and related problems. In Sect. 2.1, we define PoWs; in Sect. 2.2, we intro-
duce OV and related problems; in Sect. 2.3, we describe an interactive proof for
these problems that is used in our eventual construction, which is presented in
Sect. 2.4. Our PoWs, while similar, will differ from those of [BRSV17a] in that
we allow interaction to significantly speed the verification time by exploiting
the PoWs’ algebraic structure. We will show how to remove interaction in the
Random Oracle model in Sect. 5.

2.1 Definition

Syntactically, a Proof of Work scheme involves three algorithms:

– Gen(1n) produces a challenge c.
– Solve(c) solves the challenge c, producing a proof π.
– Verify(c,π) verifies the proof π to the challenge c.

Taken together, these algorithms should result in an efficient proof system
whose proofs are hard to find. This is formalized as follows.

794 M. Ball et al.

Definition 2.1 (Proof of Work). A (t(n), δ(n))-Proof of Work (PoW) con-
sists of three algorithms (Gen,Solve,Verify). These algorithms must satisfy the
following properties for large enough n:

– Efficiency:
• Gen(1n) runs in time ˜O(n).
• For any c ← Gen(1n), Solve(c) runs in time ˜O(t(n)).
• For any c ← Gen(1n) and any π, Verify(c,π) runs in time ˜O(n).

– Completeness: For any c ← Gen(1n) and any π ← Solve(c),

Pr [Verify(c,π) = accept] = 1

where the probability is taken over Verify’s randomness.
– Hardness: For any polynomial �, any constant ε > 0, and any algorithm

Solve∗
� that runs in time �(n) · t(n)1−ε when given �(n) challenges of size n as

input,

Pr

⎡

⎣∀i : Verify(ci,πi) = acc

∣

∣

∣

∣

∣

∣

(ci ← Gen(1n))i∈[�(n)]

π ← Solve∗
� (c1, . . . , c�(n)) :

π = (π1, . . . ,π�(n))

⎤

⎦ < δ(n)

where the probability is taken over Gen and Verify’s randomness.

The efficiency requirement above guarantees that the verifier in the Proof
of Work scheme runs in nearly linear time. Together with the completeness
requirement, it also ensures that a prover who actually spends roughly t(n) time
can convince the verifier that it has done so. The hardness requirement says that
any attempt to convince the verifier without actually spending the prescribed
amount of work has only a small probability of succeeding, and that this remains
true even when amortized over several instances. That is, even a prover who
gets to see several independent challenges and respond to them together will be
unable to reuse any work across the challenges, and is effectively forced to spend
the sum of the prescribed amount of work on all of them.

In some of the PoWs we construct, Solve and Verify are not algorithms,
but are instead parties in an interactive protocol. The requirements of such
interactive PoWs are the natural generalizations of those in the definition above,
with Verify deciding whether to accept after interacting with Solve. And the
hardness requirement applies to the numerous interactive protocols being run in
any form of composition – serial, parallel, or otherwise. We will, however, show
how to remove interaction in Sect. 5.

Heuristic constructions of PoWs, such as those based on SHA-256, easily
satisfy efficiency and completeness (although not formally, given their lack of
asymptotics), yet their hardness guarantees are based on nothing but the heuris-
tic assumption that the PoW itself is a valid PoW. We will now reduce the
hardness of our PoW to the hardness of well-studied worst-case problems in
fine-grained complexity theory.

Proofs of Work From Worst-Case Assumptions 795

2.2 Orthogonal Vectors

We now formally define the problems – Orthogonal Vectors (OV) and its gen-
eralization k-OV – whose hardness we use to construct our PoW scheme. The
properties possessed by OV that enable this construction are also shared by other
well-studied problems mentioned earlier, including 3SUM and APSP as noted in
[BRSV17a], and an array of other problems [BK16b,GR17,Wil16]. Consequently,
while we focus on OV, PoWs based on the hardness of these other problems can
be constructed along the lines of the one here. Further, the security of these
constructions would also follow from the hardness of other problems that reduce
to OV, 3SUM, etc. in a fine-grained manner with little, if any, degradation of
security. Of particular interest, deciding graph properties that are statable in
first-order logic all reduce to (moderate-dimensional) OV [GI16], and so we can
obtain PoWs if any problem statable as a first-order graph property is hard.

All the algorithms we consider henceforth – reductions, adversaries, etc. – are
non-uniform Word-RAM algorithms (with words of size O(log n) where n will be
clear from context) unless stated otherwise, both in our hardness assumptions
and our constructions. Security against such adversaries is necessary for PoWs
to remain hard in the presence of pre-processing, which is typical in the case
of cyrptocurrencies, for instance, where specialized hardware is often used. In
the case of reductions, this non-uniformity is solely used to ensure that specific
parameters determined completely by instance size (such as the prime p(n) in
Definition 2.5) are known to the reductions.

Remark 2.2. All of our reductions, algorithms, and assumptions can easily be
made uniform by having an extra Setup procedure that is allowed to run in
t(n)1−ε for some ε > 0 for a (t(n), δ(n))-PoW. In our setting, this will just be
used to find a prime on which to base a field extension for the rest of the PoW
to satisfy the rest of its conditions. This makes sense for a PoW scheme to do
and, for all the problems we consider, this can be done be done so that all the
conjectures can be made uniformly. We leave everything non-uniform, however,
for exposition’s sake.

Definition 2.3 (Orthogonal Vectors). The OV problem on vectors of dimen-
sion d (denoted OVd) is to determine, given two sets U , V of n vectors from
{0, 1}d(n) each, whether there exist u ∈ U and v ∈ V such that 〈u, v〉 = 0 (over
Z). If left unspecified, d is to be taken to be

⌈

log2 n
⌉

.

OV is commonly conjectured to require n2−o(1) time to decide, for which
many conditional fine-grained hardness results are based on [Wil15], and has
been shown to be true if the Strong Exponential Time Hypothesis (SETH) holds
[Wil05]. This hardness and the hardness of its generalization to k-OV of requiring
nk−o(1) time (which also holds under SETH) are what we base the hardness of
our PoWs on. We now define k-OV.

Definition 2.4 (k-Orthogonal Vectors). For an integer k ≥ 2, the k-OV
problem on vectors of dimension d is to determine, given k sets (U1, . . . , Uk) of

796 M. Ball et al.

n vectors from {0, 1}d(n) each, whether there exist us ∈ Us for each s ∈ [k] such
that over Z,

∑

�∈[d(n)]

u1
� · · · uk

� = 0

We say that such a set of vectors is k-orthogonal. If left unspecified, d is to be
taken to be

⌈

log2 n
⌉

.

While these problems are conjectured worst-case hard, there are currently
no widely-held beliefs for distributions that it may be average-case hard over.
[BRSV17a], however, defines a related problem that is shown to be average-case
hard when assuming the worst-case hardness of k-OV. This problem is that of
evaluating the following polynomial:

For any prime number p, we define the polynomial fOVk
n,d,p : Fknd

p → Fp as
follows. Its inputs are parsed in the manner that those of k-OV are: below, for
any s ∈ [k] and i ∈ [n], us

i represents the ith vector in Us, and for � ∈ [d], us
i�

represents its �th coordinate.

fOVk
n,d,p(U1, . . . , Uk) =

∑

i1,...,ik∈[n]

∏

�∈[d]

(

1 − u1
i1� · · · uk

ik�

)

When given an instance of k-OV (from {0, 1}knd) as input, fOVk
n,d,p counts

the number of tuples of k-orthogonal vectors (modulo p). Note that the degree
of this polynomial is kd; for small d (e.g. d =

⌈

log2 n
⌉

), this is a fairly low-
degree polynomial. The following definition gives the family of such polynomials
parameterized by input size.

Definition 2.5 (FOVk). Consider an integer k ≥ 2. Let p(n) be the smallest
prime number larger than nlog n, and d(n) =

⌈

log2 n
⌉

. FOVk is the family of

functions
{

fOVk
n,d(n),p(n)

}

.

Remark 2.6. We note that most of our results would hold for a much smaller
choice of p(n) above – anything larger than nk would do. The reason we choose
p to be this large is to achieve negligible soundness error in interactive protocols
we shall be designing for this family of functions (see Protocol 1.1). Another
way to achieve this is to use large enough extension fields of Fp for smaller p’s;
this is actually preferable, as the value of p(n) as defined now is much harder to
compute for uniform algorithms.

2.3 Preliminaries

Our final protocol and its security consists, essentially, of two components – the
hardness of evaluating fOVk on random inputs, and the the ability to certify
the correct evaluation of fOVk in an efficiently verifiable manner. We explain
the former in the next subsection; here, we describe the protocol for the latter

Proofs of Work From Worst-Case Assumptions 797

(Protocol 1.1), which we will use as a sub-routine in our final PoW protocol.
This protocol is a (k − 1)-round interactive proof that, given U1, . . . , Uk ∈ F

nd
p

and y ∈ Fp, proves that fOVk
n,d,p(U1, . . . , Uk) = y.

In the special case of k = 2, a non-interactive (MA) protocol for OV was shown
in [Wil16] and this MA protocol was used to construct a PoW scheme based on
OV, 3SUM, and APSP in [BRSV17a], albeit one that only satisfies a weaker
hardness requirement (i.e. non-batchability was not considered or proved). We
introduce interaction to greatly improve the verifier’s efficiency and show how
interaction can be removed in Sect. 5. The following interactive proof is essen-
tially the sum-check protocol, but in our case we need to pay close attention to
the complexity of the prover and the verifier and so use ideas from [Wil16].

We will set up the following definitions before describing the protocol. For
each s ∈ [k], consider the univariate polynomials φs

1, . . . , φ
s
d : Fp → Fp, where φs

�

represents the �th column of Us – that is, for i ∈ [n], φs
�(i) = us

i�. Each φs
� has

degree at most (n − 1). fOVk
n,d,p can now be written as:

fOVk
n,d,p(U1, . . . , Uk) =

∑

i1,...,ik∈[n]

∏

�∈[d]

(

1 − u1
i1� · · · uk

ik�

)

=
∑

i1,...,ik∈[n]

∏

�∈[d]

(

1 − φ1
�(i1) · · · φk

� (ik)
)

=
∑

i1,...,ik∈[n]

q(i1, . . . , ik)

where q is defined for convenience as:

q(i1, . . . , ik) =
∏

�∈[d]

(

1 − φ1
�(i1) · · · φk

� (ik)
)

The degree of q is at most D = k(n−1)d. Note that q can be evaluated at any
point in F

k
p in time ˜O(knd log p), by evaluating all the φs

�(is)’s (these polynomi-
als can be found using fast interpolation techniques for univariate polynomials
[Hor72]), computing each term in the above product and then multiplying them.

For any s ∈ [k] and α1, . . . , αs−1 ∈ Fp, define the following univariate poly-
nomial:

qs,α1,...,αs−1(x) =
∑

is+1,...,ik∈[n]

q(α1, . . . , αs−1, x, is+1, . . . , ik)

Every such qs has degree at most (n − 1)d – this can be seen by inspecting
the definition of q. With these definitions, the interactive proof is described as
Protocol 1.1 below. The completeness and soundness of this interactive proof is
then asserted by Theorem 2.7, which is proven in Sect. 3.

Theorem 2.7. For any k ≥ 2, let d and p be as in Definition 2.5. Protocol 1.1
is a (k − 1)-round interactive proof for proving that y = FOVk(x). This protocol
has perfect completeness and soundness error at most

(

knd
p

)

. The prover runs

in time ˜O(nkd log p), and the verifier in time ˜O(knd2 log p).

798 M. Ball et al.

Interactive Proof for FOVk:
The inputs to the protocol are (U1, . . . , Uk) ∈ F

knd
p (a valid input to fOVk

n,d,p),
and a field element y ∈ Fp. The polynomials q are defined as in the text.

– The prover sends the coefficients of a univariate polynomial q∗
1 of degree at

most (n − 1)d.
– The verifier checks that

∑
i1∈[n] q

∗
1(i1) = y. If not, it rejects.

– For s from 1 up to k − 2:
• The verifier sends a random αs ← Fp.
• The prover sends the coefficients of a polynomial q∗

s+1,α1,...,αs
of degree

at most (n − 1)d.
• The verifier checks that

∑
is+1∈[n] q

∗
s+1,α1,...,αs

(is+1) = q∗
s,α1,...,αs−1(αs).

If not, it rejects.
– The verifier picks αk−1 ← Fp and checks that q∗

k−1,α1,...,αk−2
(αk−1) =

qk−1,α1,...,αk−2(αk−1), computed using the fact that qk−1,α1,...,αk−2(αk−1) =∑
ik∈[n] qk,α1,...,αk−1(ik). If not, it rejects.

– If the verifier hasn’t rejected yet, it accepts.

Protocol 1.1: Interactive Proof for FOVk.

As observed earlier, Protocol 1.1 is non-interactive when k = 2. We then get
the following corollary for FOV.

Corollary 2.8. For k = 2, let d and p be as in Definition 2.5. Protocol 1.1 is an
MA proof for proving that y = FOV(x). This protocol has perfect completeness
and soundness error at most

(

2nd
p

)

. The prover runs in time ˜O(n2), and the

verifier in time ˜O(n).

2.4 The PoW Protocol

We now present Protocol 1.2, which we show to be a Proof of Work scheme
assuming the hardness of k-OV.

Theorem 2.9. For some k ≥ 2, suppose k-OV takes nk−o(1) time to decide for
all but finitely many input lengths for any d = ω(log n). Then, Protocol 1.2 is
an (nk, δ)-Proof of Work scheme for any function δ(n) > 1/no(1).

Remark 2.10. As is, this will be an interactive Proof of Work protocol. In the
special case of k = 2, Corollary 2.8 gives us a non-interactive PoW. If we want
to remove interaction for general k-OV, however, we could use the MA proof in
[Wil16] at the cost of verification taking time ˜O(nk/2) as was done in [BRSV17a].
To keep verification time at ˜O(n), we instead show how to remove interaction in
the Random Oracle model in Sect. 5. This will allow us to tune the gap between
the parties – we can choose k and thus the amount of work, nk−o(1), that must
be done by the prover while always only needing ˜O(n) time for verification.

Proofs of Work From Worst-Case Assumptions 799

Proof of Work based on hardness of k-OV:

– Gen(1n):
• Output a random c ∈ F

knd
p .

– (Solve,Verify) work as follows given c:
• Solve computes z = fOVk

n,d,p(c) and outputs it.
• Solve and Verify run Protocol 1.1 with input (c, z), Solve as prover, and

Verify as verifier.
• Verify accepts iff the verifier in the above instance of Protocol 1.1 accepts.

Protocol 1.2: Proof of Work based on the hardness of k-OV.

Remark 2.11. We can also exploit this PoW’s algebraic structure on the Prover’s
side. Using techniques from [BK16b], the Prover’s work can be distributed
amongst a group of provers. While, cumulatively, they must complete the work
required of the PoW, they can each only do a portion of it. Further, this can be
done in a way robust to Byzantine errors amongst the group. See Remark 3.4
for further details.

We will use Theorem 2.7 to argue for the completeness and soundness of
Protocol 1.2. In order to prove the hardness, we will need lower bounds on
how well the problem that Solve is required to solve can be batched. We first
define what it means for a function to be non-batchable in the average-case in a
manner compatible with the hardness requirement. Note that this requirement
is stronger than being non-batchable in the worst-case.

Definition 2.12. Consider a function family F = {fn : Xn → Yn}, and a fam-
ily of distributions D = {Dn}, where Dn is over Xn. F is not (�, t, δ)-batchable
on average over D if, for any algorithm Batch that runs in time �(n)t(n) when
run on �(n) inputs from Xn, when it is given as input �(n) independent samples
from Dn, the following is true for all large enough n:

Pr
xi←Dn

[

Batch(x1, . . . , x�(n)) = (fn(x1), . . . , fn(x�(n)))
]

< δ(n)

We will be concerned with the case where the batched time t(n) is less than
the time it takes to compute fn on a single instance. This sort of statement is
what a direct sum theorem for F ’s hardness would guarantee. Theorem 2.13,
then, claims that we achieve this non-batchability for FOVk and, as FOVk is
one of the things that Solve is required to evaluate, we will be able to show
the desired hardness of Protocol 1.2. We prove Theorem 2.13 via a direct sum
theorem in Appendix A, and prove a weaker version for illustrative purposes in
Sect. 4.

Theorem 2.13. For some k ≥ 2, suppose k-OV takes nk−o(1) time to decide for
all but finitely many input lengths for any d = ω(log n). Then, for any constants

800 M. Ball et al.

c, ε > 0 and δ < ε/2, FOVk is not (nc, nk−ε, 1/nδ)-batchable on average over
the uniform distribution over its inputs.

We now put all the above together to prove Theorem 2.9 as follows.

Proof of Theorem 2.9. We prove that Protocol 1.2 satisfies the various require-
ments demanded of a Proof of Work scheme assuming the hardness of k-OV.

Efficiency:

– Gen(1n) simply samples knd uniformly random elements of Fp. As d = log2 n

and p ≤ 2nlog n (by Bertrand-Chebyshev’s Theorem), this takes ˜O(n) time.
– Solve computes fOVk

n,d,p(c), which can be done in ˜O(nk) time. It then runs
the prover in an instance of Protocol 1.1, which can be done in ˜O(nk) time
by Theorem 2.7. So in all it takes takes ˜O(nk) time.

– Verify runs the verifier in an instance of Protocol 1.1, taking ˜O(n) time, again
by Theorem 2.7.

Completeness: This follows immediately from the completeness of Protocol 1.1
as an interactive proof for FOVk, as stated in Theorem 2.7, as this is the protocol
that Solve and Verify engage in.

Hardness: We proceed by contradiction. Suppose there is a polynomial �, an
(interactive) algorithm Solve∗, and a constant ε > 0 such that Solve∗ runs in
time �(n)nk−ε and makes Verify accept on �(n) independent challenges generated
by Gen(1n) with probability at least δ(n) > 1/no(1) for infinitely many input
lengths n.

For each of these input lengths, let the set of challenges (which are fOV
inputs) produced by Gen(1n) be

{

c1, . . . , c�(n)

}

, and the corresponding set of
solutions output by Solve∗ be

{

z1, . . . , z�(n)

}

. So Solve∗ succeeds as a prover in
Protocol 1.1 for all the instances {(ci, zi)} with probability at least δ(n).

By the negligible soundness error of Protocol 1.1 guaranteed by Theorem 2.7,
in order to do this, Solve∗ has to use the correct values fOVk

n,d,p(ci) for all the zi’s
with probability negligibly close to δ(n) and definitely more than, say, δ(n)/2.
In particular, with this probability, it has to explicitly compute fOVk

n,d,p at
c1, . . . , c�(n), all of which are independent uniform points in F

knd
p for all of these

infinitely many input lengths n. But this is exactly what Theorem 2.13 says is
impossible under our assumptions. So such a Solve∗ cannot exist, and this proves
the hardness of Protocol 1.2.

We have thus proven all the properties necessary and hence Protocol 1.2 is
indeed an (nk, δ)-Proof of Work under the hypothesised hardness of k-OV for
any δ(n) > 1/no(1).

3 Verifying FOVk

In this section, we prove Theorem 2.7 (stated in Sect. 2), which is about Protocol
1.1 being a valid interactive proof for proving evaluations of FOVk. We use here

Proofs of Work From Worst-Case Assumptions 801

terminology from the theorem statement and protocol description. Recall the
the input to the protocol is U1, . . . , Uk ∈ F

nd
p and y ∈ Fp, and the prover wishes

to prove that y = fOVk
n,d,p(U1, . . . , Uk).

Completeness. If indeed y = fOVk
n,d,p(U1, . . . , Uk), the prover can make the ver-

ifier in the protocol accept by using the polynomials (q1, q2,α1 , . . . , qk,α1,...,αk
)

in place of (q∗
1 , q

∗
2,α1

, . . . , q∗
k,α1,...,αk

). Perfect completeness is then seen to fol-
low from the definitions of these polynomials and their relation to q and hence
fOVk

n,d,p.

Soundness. Suppose y
= fOVk
n,d,p(U1, . . . , Uk). We now analyze the probability

with which a cheating prover could make the verifier accept.
To start with, note that the prover’s q∗

1 has to be different from q1, as oth-
erwise the check in the second step would fail. Further, as the degree of these
polynomials is less than nd, the probability that the verifier will then choose an
α1 such that q∗

1(α1) = q1(α1) is less than nd
p .

If this event does not happen, then the prover has to again send a q∗
2,α1

that
is different from q2,α1 , which again agree on α2 with probability less than nd

p .
This goes on for (k − 1) rounds, at the end of which the verifier checks whether
q∗
k−1(αk−1) is equal to qk−1(αk−1), which it computes by itself. If at least one of

these accidental equalities at a random point has not occurred throughout the
protocol, the verifier will reject. The probability that no violations occur over
the (k − 1) rounds is, by the union bound, less than knd

p .

Efficiency. Next we discuss details of how the honest prover and the verifier are
implemented, and analyze their complexities. To this end, we will need the fol-
lowing algorithmic results about computations involving univariate polynomials
over finite fields.

Lemma 3.1 (Fast Multi-point Evaluation [Fid72]). Given the coefficients
of a univariate polynomial q : Fp → Fp of degree at most N , and N points
x1, . . . , xN ∈ Fp, the set of evaluations (q(x1), . . . , q(xN)) can be computed in
time O(N log3 N log p).

Lemma 3.2 (Fast Interpolation [Hor72]). Given N +1 evaluations of a uni-
variate polynomial q : Fp → Fp of degree at most N , the coefficients of q can be
computed in time O(N log3 N log p).

To start with, both the prover and verifier compute the coefficients of all the
φs

� ’s. Note that, by definition, they know the evaluation of each φs
� on n points,

given by {(i, us
i�)}i∈[n]. This can be used to compute the coefficients of each φs

�

in time ˜O(n log p) by Lemma 3.2. The total time taken is hence ˜O(knd log p).
The proof of the following proposition specifies further details of the prover’s

workings.

Proposition 3.3. The coefficients of the polynomial qs,α1,...,αs−1 can be com-
puted in time ˜O((nk−s+1d + nd2) log p) given the above preprocessing.

802 M. Ball et al.

Proof. The procedure to do the above is as follows:

1. Fix some value of s, α1, . . . , αs−1.
2. For each � ∈ [d], compute the evaluation of φs

� on nd points, say {1, . . . , nd}.
– Since its coefficients are known, the evaluations of each φs

� on these nd

points can be computed in time ˜O(nd log p) by Lemma 3.1, for a total of
˜O(nd2 log p) for all the φs

� ’s.
3. For each setting of is+1, . . . , ik, compute the evaluations of the polynomial

ρis+1,...,ik
(x) = q(α1, . . . , αs−1, x, is+1, . . . , ik), on the points {1, . . . , nd}.

– First substitute the constants α1, . . . , αs−1, is+1, . . . , ik into the definition
of q.

– This requires computing, for each � ∈ [d] and s′ ∈ [k] \ {s}, either φs′
� (αs)

or φs′
� (is). All of this can be done in time ˜O(knd log p) by direct polyno-

mial evaluations since the coefficients of the φs′
� ’s are known.

– This reduces q to a product of d univariate polynomials of degree less
than n, whose evaluations on the nd points can now be computed in time
˜O(knd log p) by multiplying the constants computed in the above step
with the evaluations of φs′

� on these points, and subtracting from 1.
– The product of the evaluations can now be computed in time ˜O(nd2 log p)

to get what we need.
4. Add up the evaluations of ρis+1,...,ik

pointwise over all settings of
(is+1, . . . , ik).

– There are nk−s possible settings of (is+1, . . . , ik), and for each of these we
have nd evaluations. All the additions hence take ˜O(nk−s+1d log p) time.

5. This gives us nd evaluations of qs,α1,...,αs−1 , which is a univariate polyno-
mial of degree at most (n − 1)d. So its coefficients can be computed in time
˜O(nd log p) by Lemma 3.2.

It can be verified from the intermediate complexity computations above that all
these operations together take ˜O((nk−s+1d + nd2) log p) time. This proves the
proposition.

Recall that what the honest prover has to do is compute q1, q2,α1 , . . . ,
qk,α1,...,αk−1 for the αs’s specified by the verifier. By the above proposition, along
with the preprocessing, the total time the prover takes is:

˜O(knd log p + (nkd + nd2) log p) = ˜O(nkd log p)

The verifier’s checks in steps (2) and (3) can each be done in ˜O(n log p) time
using Lemma 3.1. Step (4), finally, can be done by using the above proposition
with s = k in time ˜O(nd2 log p). Even along with the preprocessing, this leads
to a total time of ˜O(knd2 log p).

Remark 3.4. Note the Prover’s work of finding coefficients of polynomials is
mainly done by evaluating the polynomial on many points and interpolating.
Similarly to [BK16b], this opens the door to distributing the Prover’s work.

Proofs of Work From Worst-Case Assumptions 803

Namely, the individual evaluations can be split amongst a group of workers
which can then be recombined to find the final coefficients. Further, since the
evaluations of a polynomial is a Reed-Solomon code, this allows for error correc-
tion in the case that the group of provers make errors or have some malicious
members. Thus, the Prover’s work can be distributed in a way that is robust to
Byzantine errors and can identify misbehaving members.

4 A Direct Sum Theorem for FOV

A direct sum theorem for a problem roughly states that solving m independent
instances of a problem takes m times as long as a single instance. The converse
of this is attaining a non-trivial speed-up when given a batch of instances. In
this section we prove a direct sum theorem for the problem of evaluating FOV
and thus its non-batchability.

Direct sum are typically elusive in complexity theory and so our results,
which we prove for generic problems with a certain set of properties, may be
of independent interest to the study of hardness amplification. That our results
show that batch-evaluating our multivariate low-degree polynomials is hard may
be particularly surprising since batch-evaluation for univariate low-degree poly-
nomials is known to be easy [Fid72,Hor72] and, further, [BK16b,GR17,Wil16]
show that batch-evaluating multivariate low-degree polynomials (including our
own) is easy to delegate. For more rigorous definitions of direct sum and direct
product theorems, see [She12].

We now prove the following weaker version of Theorem 2.13 on FOV’s non-
batchability (Theorem 2.13 is proven in Appendix A using an extension of the
techniques employed here). The notion of non-batchability used below is defined
in Definition 2.12 in Sect. 2.

Theorem 4.1. For some k ≥ 2, suppose k-OV takes nk−o(1) time to decide for
all but finitely many input lengths for any d = ω(log n). Then, for any constants
c, ε > 0, FOVk is not (nc, nk−ε, 7/8)-batchable on average over the uniform
distribution over its inputs.

Throughout this section, F , F ′ and G are families of functions
{fn : Xn → Yn}, {f ′

n : X ′
n → Y ′

n} and
{

gn : X̂n → Ŷn

}

, and D = {Dn} is a fam-

ily of distributions where Dn is over X̂n.
Theorem 4.1 is the result of two properties possessed by FOVk. We define

these properties below, prove a more general lemma about functions that have
these properties, and use it to prove this theorem.

Definition 4.2. F is said to be (s, �)-downward reducible to F ′ in time t if
there is a pair of algorithms (Split,Merge) satisfying:

– For all large enough n, s(n) < n.
– Split on input an x ∈ Xn outputs �(n) instances from X ′

s(n).

Split(x) = (x1, . . . , x�(n))

804 M. Ball et al.

– Given the value of F ′ at these �(n) instances, Merge can reconstruct the value
of F at x.

Merge(x, f ′
s(n)(x1), . . . , f ′

s(n)(x�(n))) = fn(x)

– Split and Merge together run in time at most t(n).

If F ′ is the same as F , then F is said to be downward self-reducible.

Definition 4.3. F is said to be �-robustly reducible to G in time t if there is a
pair of algorithms (Split,Merge) satisfying:

– Split on input an x ∈ Xn (and randomness r) outputs �(n) instances from
X̂n.

Split(x; r) = (x1, . . . , x�(n))

– For such a tuple (xi)i∈[�(n)] and any function g∗ such that g∗(xi) = gn(xi)
for at least 2/3 of the xi’s, Merge can reconstruct the function value at x as:

Merge(x, r, g∗(x1), . . . , g∗(x�(n))) = fn(x)

– Split and Merge together run in time at most t(n).
– Each xi is distributed according to Dn, and the xi’s are pairwise independent.

The above is a more stringent notion than the related non-adaptive random
self-reducibility as defined in [FF93]. We remark that to prove what we need, it
can be shown that it would have been sufficient if the reconstruction above had
only worked for most r’s.

Lemma 4.4. Suppose F , F ′ and G have the following properties:

– F is (sd, �d)-downward reducible to F ′ in time td.
– F ′ is �r-robustly reducible to G over D in time tr.
– G is (�a, ta, 7/8)-batchable on average over D, and �a(sd(n)) = �d(n).

Then F can be computed in the worst-case in time:

td(n) + �d(n)tr(sd(n)) + �r(sd(n))�d(n)ta(sd(n))

We note, that the condition �a(sd(n)) = �d(n) above can be relaxed to
�a(sd(n)) ≤ �d(n) at the expense of a factor of 2 in the worst-case running
time obtained for F . We now show how to prove Theorem 4.1 using Lemma 4.4,
and then prove the lemma itself.

Proof of Theorem 4.1. Fix any k ≥ 2. Suppose, towards a contradiction, that
for some c, ε > 0, FOVk is (nc, nk−ε, 7/8)-batchable on average over the uniform
distribution. In our arguments we will refer to the following function families:

– F is k-OV with vectors of dimension d =
(

k
k+c

)2

log2 n.

Proofs of Work From Worst-Case Assumptions 805

– F ′ is k-OV with vectors of dimension log2 n.
– G is FOVk (over F

knd
p for some p that definitely satisfies p > n).

Let m = nk/(k+c). Note the following two properties :

– n
mc/k = m

– d =
(

k
k+c

)2

log2 n = log2 m

We now establish the following relationships among the above function families.

Proposition 4.5. F is (m,mc)-downward reducible to F ′ in time ˜O(mc+1).

Splitd, when given an instance (U1, . . . , Uk) ∈ {0, 1}k(n×d), first divides each
Ui into mc/k partitions Ui1, . . . , Uimc/k ∈ {0, 1}m×d. It then outputs the set of
tuples

{

(U1j1 , . . . , Ukjk
) | ji ∈ [mc/k]

}

. Each Uij is in {0, 1}m×d and, as noted
earlier, d = log2 m. So each tuple in the set is indeed an instance of F ′ of size
m. Further, there are (mc/k)c = mc of these.

Note that the original instance has a set of k-orthogonal vectors if and only
if at least one of the mc smaller instances produced does. So Merged simply
computes the disjunction of the F ′ outputs to these instances.

Both of these can be done in time O(mc · k · md + mc) = ˜O(mc+1).

Proposition 4.6. F ′ is 12kd-robustly reducible to G over the uniform distribu-
tion in time ˜O(m).

Notice that for any U1, . . . , Uk ∈ {0, 1}m×d, we have that k-OV(U1, . . . , Uk) =
fOVk

m(U1, . . . , Uk). So it is sufficient to show such a robust reduction from G to
itself. We do this now.

Given input x ∈ F
knd
p , Splitr picks two uniformly random x1,x2 ∈ F

knd
p and

outputs the set of vectors
{

x + tx1 + t2x2 | t ∈ {1, . . . , 12kd}}

. Recall that our
choice of p is much larger than 12kd and hence this is possible. The distribution of
each of these vectors is uniform over Fknd

p , and they are also pairwise independent
as they are points on a random quadratic curve through x.

Define the univariate polynomial gx,x1,x2(t) = fOVk
m(x + tx1 + t2x2). Note

that its degree is at most 2kd. When Merger is given (y1, . . . , y12kd) that are
purported to be the evaluations of fOVk

m on the points produced by Split, these
can be seen as purported evaluations of gx,x1,x2 on {1, . . . , 12kd}. This can, in
turn, be treated as a corrupt codeword of a Reed-Solomon code, which under
these parameters has distance 10kd.

The Berlekamp-Welch algorithm can be used to decode any codeword that
has at most 5kd corruptions, and if at least 2/3 of the evaluations are correct,
then at most 4kd evaluations are wrong. Hence Merger uses the Berlekamp-Welch
algorithm to recover gx,x1,x2 , which can be evaluated at 0 to obtain fOVk

n(x).
Thus, Splitr takes ˜O(12kd · kmd) = ˜O(m) time to compute all the vectors it

outputs. Merger takes ˜O((12kd)3) time to run Berlekamp-Welch, and ˜O(12kd)
time to evaluate the resulting polynomial at 0. So in all both algorithms take
˜O(m) time.

806 M. Ball et al.

By our assumption at the beginning, G is (nc, nk−ε, 7/8)-batchable on average
over the uniform distribution. Together with the above propositions, this satisfies
all the requirements in the hypothesis of Lemma 4.4, which now tells us that F
can be computed in the worst-case in time:

˜O(mc+1 + mc · m + 12kd · mc · mk−ε) = ˜O(mc+1 + mc+k−ε)

= ˜O(nk(c+1)/(k+c) + nk(k+c−ε)/(k+c))

= ˜O(nk−ε′
)

for some ε′ > 0. But this is what the hypothesis of the theorem says is not possi-
ble. So FOVk cannot be (nc, nk−ε, 7/8)-batchable on average, and this argument
applies for any c, ε > 0.

Proof of Lemma 4.4. Given the hypothesised downward reduction (Splitd,
Merged), robust reduction (Splitr,Merger) and batch-evaluation algorithm Batch
for F , fn can be computed as follows (for large enough n) on an input x ∈ Xn:

– Run Splitd(x) to get x1, . . . , x�d(n) ∈ X ′
sd(n)

.

– For each i ∈ [�d(n)], run Splitr(xi; ri) to get xi1, . . . , xi�r(sd(n)) ∈ X̂sd(n).
– For each j ∈ [�r(sd(n))], run Batch(x1j , . . . , x�d(n)j) to get the outputs

y1j , . . . , y�d(n)j ∈ Ŷsd(n).
– For each i ∈ [�d(n)], run Merger(xi, ri, yi1, . . . , yi�r(sd(n))) to get yi ∈ Y ′

sd(n)
.

– Run Merged(x, y1, . . . , y�d(n)) to get y ∈ Yn, and output y as the alleged fn(x).

We will prove that with high probability, after the calls to Batch, enough
of the yij ’s produced will be equal to the respective gsd(n)(xij)’s to be able to
correctly recover all the f ′

sd(n)
(xi)’s and hence fn(x).

For each j ∈ [�r(sd(n))], define Ij to be the indicator variable that is 1 if
Batch(x1j , . . . , x�d(n)j) is correct and 0 otherwise. Note that by the properties of
the robust reduction of F ′ to G, for a fixed j each of the xij ’s is independently
distributed according to Dsd(n) and further, for any two distinct j, j′, the tuples
(xij) and (xij′) are independent.

Let I =
∑

j Ij and m = �r(sd(n)). By the aforementioned properties and the
correctness of Batch, we have the following:

E[I] ≥ 7
8
m

Var[I] ≤ 7
64

m

Note that as long as Batch is correct on more than a 2/3 fraction of the j’s,
Merger will get all of the yi’s correct, and hence Merged will correctly compute
fn(x). The probability that this does not happen is bounded using Chebyshev’s
inequality as:

Proofs of Work From Worst-Case Assumptions 807

Pr
[

I ≤ 2
3
m

]

≤ Pr
[

|I − E[I]| ≥
(

7
8

− 2
3

)

m

]

≤ Var[I]
(5m/24)2

≤ 63
25 · m

<
3
m

As long as m > 9, this probability of failure is less than 1/3, and hence fn(x)
is computed correctly in the worst-case with probability at least 2/3. If it is the
case that �r(sd(n)) = m happens to be less than 9, then instead of using Merger

directly in the above algorithm, we would use Merge′
r that runs Merger several

times so as to get more than 9 samples in total and takes the majority answer
from all these runs.

The time taken is td(n) for the downward reduction, tr(sd(n)) for each of the
�d(n) robust reductions on instances of size sd(n), and �d(n)ta(sd(n)) for each
of the �r(sd(n)) calls to Batch on sets of �d(n) = �a(sd(n)) instances, summing
up to the total time stated in the lemma.

5 Removing Interaction

In this section we show how to remove the interaction in Protocol 1.2 via the
Fiat-Shamir heuristic and thus prove security of our non-interactive PoW in the
Random Oracle model.

Remark 5.1. Recent papers have constructed hash functions for which prov-
ably allow the Fiat-Shamir heuristic to go through [KRR17,CCRR18]. Both of
these constructions require a variety of somewhat non-standard sub-exponential
security assumptions: [KRR17] uses sub-exponentially secure indistinguishability
obfuscation, sub-exponentially secure input-hiding point function obfuscation,
and sub-exponentially secure one-way functions; while [CCRR18] needs sym-
metric encryption schemes with strong guarantees against key recovery attacks
(they specifically propose two instantiating assumptions that are variants on
the discrete-log assumption and the learning with errors assumption). While
for simplicity we present our work in the context of the random oracle model,
[KRR17,CCRR18] give evidence that our scheme can be made non-interactive
in the plain model.

We also note that our use of a Random Oracle here is quite different from its
possible direct use in a Proof of Work similar to those currently used, for instance,
in the cryptocurrency blockchains. There, the task is to find a pre-image to H
such that its image starts (or ends) with at least a certain number of 0’s. In
order to make this only moderately hard for PoWs, the security parameter of
the chosen instantiation of the Random Oracle (which is typically a hash function
like SHA-256) is necessarily not too high. In our case, however, there is no such
need for such a task to be feasible, and this security parameter can be set very
high, so as to be secure even against attacks that could break the above kind
of PoW.

808 M. Ball et al.

It is worth noting that because of this use of the RO and the soundness
properties of the interactive protocol, the resulting proof of work is effectively
unique in the sense that it is computationally infeasible to find two accepting
proofs. This is markedly different from proof of work described above, where
random guessing for the same amount of time is likely to yield an alternate
proof.

In what follows, we take H to be a random oracle that outputs an element of
Fp, where p is as in Definition 2.5 and n will be clear from context. Informally,
as per the Fiat-Shamir heuristic, we will replace all of the verifier’s random
challenges in the interactive proof (Protocol 1.1) with values output by H so
that secure challenges can be gotten without interaction. Using the definitions of
the polynomials q(i1, . . . , ik) and qs,α1,...,αs−1(x) from Sect. 2, the non-interactive
proof scheme for FOVk is described as Protocol 1.3.

Non-Interactive Proof for FOVk:
The inputs to the protocol are x = (U1, . . . , Uk) ∈ F

knd
p (a valid input to fOVk

n,d,p),
and a field element y ∈ Fp. The polynomials q are defined as in the text.

Prover(x, y):

– Compute coefficients of q1. Let τ1 = (q1).
– For s from 1 to k − 2:

• Compute αs = H(x, y, τs).
• Compute coefficients of qs+1 = qs+1,α1,...,αs , with respect to x.
• Set τs+1 = (τs, αs, qs+1).

– Output τk−1

Verifier(x, y, τ∗):
Given τ∗ = (q1, α1, q2, . . . , αk−2, qk−1), do the following:

– Check
∑

i1∈[n] q1(i1) = y. If check fails, reject.
– For s from 1 up to k − 2:

• Check that αs = H(x, y, q1, α1, . . . , αs−1, qs).
• Check that

∑
is+1∈[n] qs+1(is+1) = qs(αs). If check fails, reject.

– Pick αk−1 ← Fp.
– Check that qk−1(αk−1) =

∑
ik∈[n] qk,α1,...,αk−1(ik). If check fails, reject.

If verifier has yet to reject, accept.

Protocol 1.3: A Non-Interactive Proof for FOVk

Overloading the definition, we now consider Protocol 1.2 as our PoW as
before except that we now use the non-interactive Protocol 1.3 as the the basis
of our Solve and Verify algorithms. The following theorem states that this sub-
stitution gives us a non-interactive PoW in the Random Oracle model.

Theorem 5.2. For some k ≥ 2, suppose k-OV takes nk−o(1) time to decide for
all but finitely many input lengths for any d = ω(log n). Then, Protocol 1.2, when

Proofs of Work From Worst-Case Assumptions 809

using Protocol 1.3 in place of Protocol 1.1, is a non-interactive (nk, δ)-Proof of
Work for k-OV in the Random Oracle model for any function δ(n) > 1/no(1).

Efficiency and completeness of our now non-interactive Protocol 1.2 are easily
seen to follow identically as in the proof of Theorem 2.9 in Sect. 2. Hardness also
follow identically to the proof of Theorem 2.9’s hardness except that the proof
there required the soundness of Protocol 1.1, the interactive proof of FOVk

that was previously used to implement Solve and Verify. To complete the proof
of Theorem 5.2, then, we prove the following lemma that Protocol 1.3 is also
sound.

Lemma 5.3. For any k ≥ 2, if Protocol 1.1 is sound as an interactive proof,
then Protocol 1.3 is sound as a non-interactive proof system in the Random
Oracle model.

Proof Sketch. Let P be a cheating prover for the non-interactive proof (Protocol
1.3) that breaks soundness with non-negligible probability ε(n). We will con-
struct a prover, P ′, that then also breaks soundness in the interactive proof
(Protocol 1.1) with non-negligible probability.

Suppose P makes at most m = poly(n) queries to the random oracle, H; call
them ρ1, . . . , ρm, and call the respective oracle answers β1, . . . , βm.

For each s ∈ [k − 2], in order for the check on αs to pass with non-negligible
probability, the prover P must have queried the point (x, y, q1, α1, . . . , qs).
Hence, when P is able to make the verifier accept, except with negligible
probability, there are j1, . . . , jk−2 ∈ [m] such that the query ρjs

is actually
(x, y, q1, α1, . . . , qs), and βjs

is αs.
Further, for any s < s′, note that αs is part of the query whose answer is

αs′ . So again, when P is able to make the verifier accept, except with negligible
probability, j1 < j2 < · · · < jk−2. The interactive prover P ′ now works as follows:

– Select (k − 1) of the m query indices, and guess these to be the values of
j1 < · · · < jk−1.

– Run P until it makes the jth1 query. To all other queries, respond uniformly
at random as an actual random oracle would.

– If ρj1 is not of the form (x, y, q1), abort. Else, sent q1 to the verifier.
– Set the response to this query βj1 to be the message α1 sent by the verifier.
– Resume execution of P until it makes the jth2 query from which q2 can be

obtained, and so on, proceeding in the above manner for each of the (k − 1)
rounds of the interactive proof.

As the verifier’s messages α1, . . . , αk−2 are chosen completely at random, the
oracle that P ′ is simulating for P is identical to the actual random oracle. So P
would still be producing accepting proofs with probability ε(n). By the earlier
arguments, with probability nearly ε(n), there are (k − 1) oracle queries of P
that contain all the qs’s that make up the proof that it eventually produces.
Whenever this is the case, if P ′ guesses the positions of these oracle queries
correctly, the transcript of the interactive proof that it produces is the same as
the proof produced by P , and is hence an accepting transcript.

810 M. Ball et al.

Hence, when all of the above events happen, P succeeds in fooling the verifier.
The probability of this happening is Ω(ε(n)/mk−1), which is still non-negligible
as k is a constant. This contradicts the soundness of the interactive proof, proving
our lemma.

6 Zero-Knowledge Proofs of Work

In this section we show that the algebraic structure of the protocols can easily be
exploited with mainstream cryptographic techniques to yield new protocols with
desirable properties. In particular, we show that our Proof of Work scheme can
be combined with ElGamal encryption and a zero-knowledge proof of discrete
logarithm equality to get an non-repudiatable, non-transferable proof of work
from the Decisional Diffie-Hellman assumption on Schnorr groups.

It should be noted that while general transformations are known for zero-
knowledge protocols, many such transformations involve generic reductions with
(relatively) high overhead. In the proof of work regime, we are chiefly concerned
with the exact complexity of the prover and verifier. Even efficient transforma-
tions that go through circuit satisfiability must be adapted to this setting where
no efficient deterministic verification circuit is known. That all said, the chief aim
of this section is to exhibit the ease with which known cryptographic techniques
used in conjunction the algebraic structure of the aforementioned protocols.

For simplicity of presentation, we demonstrate a protocol for FOV2, however
the techniques can easily be adapted to the protocol for general FOVk.

Preliminaries. We begin by introducing a notion of honest verifier zero-
knowledge scaled down to our setting. As the protocols under consideration have
polynomial time provers, they are, in traditional sense, trivially zero-knowledge.
However, this is not a meaningful notion of zero-knowledge in this setting,
because we are concerned with the exact complexity of the verifier. In order
to achieve a meaningful notion of zero-knowledge, we must restrict ourselves to
considering simulators of comparable complexity to the verifier (in this case,
running in quasi-linear time). Similar notions are found in [Pas03,BDSKM17]
and perhaps elsewhere.

Definition 6.1. An interactive protocol, Π = 〈P, V 〉, for a function family, F =
{fn}, is T(n)-simulatable, if for any fn ∈ F there exists a simulator, S, such
that any x in the domain of fn the following distributions are computationally
indistinguishable,

ViewP,V (x) S(x),

where ViewP,V (x) denotes the distribution interactions between (honest) P and
V on input x and S is randomized algorithm running in time O(T (n)).

Given the exposition above it would be meaningful to consider such a defi-
nition where we instead simply require the distributions to be indistinguishable
with respect to distinguishers running in time O(T (n)). However, given that our

Proofs of Work From Worst-Case Assumptions 811

protocol satisfies the stronger, standard notion of computational indistinguisha-
bility, we will stick with that.

Recall that El Gamal encryption consists of the following three algorithms
for a group G of order pλ with generator g.

Gen(λ; y) = (sk = y, pk = (g, gy)).
Enc(m, (a, b); r) = (ar,mbr).
Dec((c, d), y) = dc−y

El Gamal is a semantically secure cryptosystem (encryptions of different mes-
sages are computationally indistinguishable) if the Decisional Diffie-Hellman
assumption (DHH) holds for the group G. Recall that DDH on G with generator g
states that the following two distributions are compuationally indistinguishable:

– (ga, gb, gab) where a, b are chosen uniformly,
– (ga, gb, gc) where a, b, c are chosen uniformly.

Protocol. Let Zp be a Schnorr group such of size p = qm + 1 such that DDH
holds with generator g.

Let (E,D) denote an ElGamal encryption system on G.
In what follows, we will take RU,V (or R∗ for the honest prover) to be q (or

q1) as defined in Sect. 2.3

– Challenge is issued as before: (U, V) ← Z
2nd
q .

– Prover generates a secret key x ← Zp−1, and sends encryptions of the coeffi-
cients of the challenge response over the subgroup size q to Verifier with the
public key (g, h = gx):

E(R∗(·);S(·)) = E(mr∗
0 ; s0), . . . ,E(mr∗

nd−1; snd−1)

= (gs0 , gr∗
0 hxs0), . . . , (gsnd−1 , gmr∗

nd−1hxsnd−1).

Prover additionally draws t ← Zp−1 and sends a1 = gt, a2 = ht.
– Verifier draws random z ← Zq and challenge c ← Z

∗
p and sends to Prover.

– Prover sends w = t + cS(z) to verifier.
– Verifier evaluates y = fOVV (φ1(z), . . . , φd(z)) to get gmy. Then, homomor-

phically evaluates E(R∗;S) on z so that E(R∗(z);S(z)) equals
(

(gs0)(gs1)z · · · (gsnd−1)zd

, (gr∗
0 hs0)(gmr∗

1 hs1)z · · · (gmr∗
nd−1hsnd−1)zd

)

= (u1, u2)

Then, Verifier accepts if and only if

gw = a1(u1)c & hw = a2(u2/gmy)c.

Recall that the success probability of a subquadratic prover (in the non-zero-
knowledge case) does not have negligible success probability.

812 M. Ball et al.

Remark 6.2. Note that the above protocol is public coin. Therefore, we can
apply the Fiat-Shamir heuristic, and use a random oracle on partial transcripts
to make the protocol non-interactive.

More explicitly, let H be a random oracle. Then:

– Prover computes

(g, h),
E(R∗;S),

a1 = gt, a2 = ht,

z = H(U, V, g, h,E(R∗;S), a1, a2),
c = H(U, V, g, h,E(R∗;S), a1, a2, z),
w = t + cS(z)

and sends (g, h,E(R∗;S), a1, a2, w).
– Verifier calls random oracle twice to get

z = H(U, V, g, h,E(R∗;S), a1, a2), c = H(U, V, g, h,E(R∗;S), a1, a2, z).

Then, the verifier homomorphically evaluates E(R∗;S)(z) = (u1, u2), it then
computes the value y = fOVV (φ1(z), . . . , φd(z)). Finally, accepts if and only if

gw = a1(u1)c & hw = a2(u2/gmy)c.

Theorem 6.3. Suppose OV takes n2 time to decide for all but finitely many
input lengths for any d = ω(log n) and the DDH the holds in Schnorr groups,
then the above protocol is a Õ(n)-simulatable (n2, δ)-interactive Proof of Work
scheme for any function δ(n) > 1/no(1).

Proof. Completeness. From before, if R∗ ≡ RU,V as is the case for an honest
prover, then for any z ∈ Zq we have R∗(z) = RU,V (z) = fOVV (φ1(z), . . . , φd(z)).
Moreover

gw = gt+cS(z) = gt(gS(z))c = a1

(

(gs0)(gs1)z · · · (gsnd−1)zd
)c

,

and

hw = ht+cS(z)

= ht(g0hS(z))c

= a2

(

(gr∗
0 hs0)(gmr∗

1 hs1)z · · · (gmr∗
nd−1hsnd−1)zd

g−fOVV (φ1(z),...,φd(z))
)c

.

Hardness. Suppose a cheating prover runs in subquadratic time, then by the
hardness of Protocol 1.2 with high probability R∗
≡ RU,V , and so for random z,
R∗(z)
= fOVV (φ1(z), . . . , φd(z)) with overwhelming probability. Suppose this is
the case in what follows, namely: R∗(z) = y∗
= y = fOVV (φ1(z), . . . , φd(z)). In
particular,

logg u1
= logh u2/gfOVV (φ1(z),...,φd(z)).

Proofs of Work From Worst-Case Assumptions 813

Note that u1, u2/gfOVV (φ1(z),...,φd(z)) can be calculated from the Prover’s first
message.

As is standard, we will fix the prover’s first message and (assuming y
= y∗)
rewind any two accepting transcripts with distinct challenges to show that
logg u1 = logh u2/gy. Fix a1, a2 as above and let (c, w), (c′, w′) be the two tran-
scripts. Recall that if a transcript is accepted, gw = a1u

c
1 and hw = a2(u2/gy)c.

Then,

gw−w′
= uc−c′

1 ⇒ logg u1 =
w − w′

c − c′ = logh u2/gy ⇐ hw−w′
= (u2/gy)c−c′

.

Therefore, because u1
= u2/gy there can be at most one c for which a Prover
can convince the verifier. Such a c is chosen with negligible probability.

Õ(nd)-simulation. Given the verifier’s challenge z, c, (which can simply be sam-
pled uniformly, as above) we can efficiently simulate the transcript with respect
to an honest prover as follows:

– Draw public key (g, h).
– Compute the ElGamal Encryption Eg,h(R′;S) where R′ is the polynomial

with constant term fOVV (φ1(z), . . . , φd(z)) and zeros elsewhere.
– Draw random w.
– Compute a1 = gw

gcS(z) and aw = hw

hcS(z) .
– Output ((g, h), a1, a2, z, c, w).

Notice that do to the semantic security of ElGamal, the transcript output is
computationally indistinguishable from that of an honest Prover. Moreover, the
simulator runs in Õ(nd) time, the time to compute R′, encrypt, evaluate S and
exponentiate. Thus, the protocol is Õ(nd)-simulatable.

Efficiency. The honest prover runs in time Õ(n2), because the nd encryptions can
be performed in time polylog(n) each. The verifier takes Õ(nd) time as well. Note
that the homomorphic evaluation requires O(d log zd) = O(d2 log z) = polylog(d)
exponentiations and d = polylog(n) multiplications.

Acknowledgements. We are grateful to Oded Goldreich and Guy Rothblum for clar-
ifying definitions of direct sum theorems, and for the suggestion of using interaction
to increase the gap between solution and verification in our PoWs. We would also like
to thank Tal Moran and Vinod Vaikuntanathan for several useful discussions. We also
thank the anonymous reviewers for comments and references.

The bulk of this work was performed while the authors were at IDC Her-
zliya’s FACT center and supported by NSF-BSF Cyber Security and Privacy grant
#2014/632, ISF grant #1255/12, and by the ERC under the EU’s Seventh Framework
Programme (FP/2007-2013) ERC Grant Agreement #07952. Marshall Ball is sup-
ported in part by the Defense Advanced Research Project Agency (DARPA) and Army
Research Office (ARO) under Contract #W911NF-15-C-0236, NSF grants #CNS-
1445424 and #CCF-1423306, the Leona M. & Harry B. Helmsley Charitable Trust,
ISF grant no. 1790/13, and the Check Point Institute for Information Security. Alon
Rosen is also supported by ISF grant no. 1399/17. Manuel Sabin is also supported by

814 M. Ball et al.

the National Science Foundation Graduate Research Fellowship under Grant #DGE-
1106400. Prashant Nalini Vasudevan is also supported by the IBM Thomas J. Watson
Research Center (Agreement #4915012803), by NSF Grants CNS-1350619 and CNS-
1414119, and by the Defense Advanced Research Projects Agency (DARPA) and the
U.S. Army Research Office under contracts W911NF-15-C-0226 and W911NF-15-C-
0236.

References

BDSKM17. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable
codes from average-case hardness: AC0, decision trees, and streaming
space-bounded tampering. Cryptology ePrint Archive, Report 2017/1061
(2017). https://eprint.iacr.org/2017/1061

BGJ+16. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V.,
Waters, B.: Time-lock puzzles from randomized encodings. In: Sudan, M.
(ed.) Proceedings of the 2016 ACM Conference on Innovations in Theo-
retical Computer Science, Cambridge, MA, USA, 14–16 January 2016, pp.
345–356. ACM (2016)

BK16a. Biryukov, A., Khovratovich, D.: Egalitarian computing. In: Holz, T., Sav-
age, S. (eds.) 25th USENIX Security Symposium, USENIX Security 16,
Austin, TX, USA, 10–12 August 2016, pp. 315–326. USENIX Association
(2016)

BK16b. Björklund, A., Kaski, P.: How proofs are prepared at Camelot. In: Proceed-
ings of the 2016 ACM Symposium on Principles of Distributed Computing,
pp. 391–400. ACM (2016)

BRSV17a. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Average-case fine-grained
hardness. In: Hatami, H., McKenzie, P., King, V. (eds.) Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, 19–23 June 2017, pp. 483–496. ACM (2017)

BRSV17b. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Proofs of useful work.
IACR Cryptology ePrint Archive 2017:203 (2017)

CCRR18. Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and cor-
relation intractability from strong KDM-secure encryption. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 91–122.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 4

CPS99. Cai, J., Pavan, A., Sivakumar, D.: On the hardness of permanent. In:
Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 90–99.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49116-3 8

DN92. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In:
Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 10

FF93. Feigenbaum, J., Fortnow, L.: Random-self-reducibility of complete sets.
SIAM J. Comput. 22(5), 994–1005 (1993)

Fid72. Fiduccia, C.M.: Polynomial evaluation via the division algorithm: the fast
Fourier transform revisited. In: Fischer, P.C., Zeiger, H.P., Ullman, J.D.,
Rosenberg, A.L. (eds.) Proceedings of the 4th Annual ACM Symposium
on Theory of Computing, 1–3 May 1972, Denver, Colorado, USA, pp.
88–93. ACM (1972)

https://eprint.iacr.org/2017/1061
https://doi.org/10.1007/978-3-319-78381-9_4
https://doi.org/10.1007/3-540-49116-3_8
https://doi.org/10.1007/3-540-48071-4_10

Proofs of Work From Worst-Case Assumptions 815

GI16. Gao, J., Impagliazzo, R.: Orthogonal vectors is hard for first-order proper-
ties on sparse graphs. In: Electronic Colloquium on Computational Com-
plexity (ECCC), vol. 23, p. 53 (2016)

GR17. Goldreich, O., Rothblum, G.: Simple doubly-efficient interactive proof sys-
tems for locally-characterizable sets. Electronic Colloquium on Computa-
tional Complexity Report TR17-018, February 2017

GR18. Goldreich, O., Rothblum, G.N.: Counting t-cliques: worst-case to average-
case reductions and direct interactive proof systems. In: Electronic Collo-
quium on Computational Complexity (ECCC), vol. 25, p. 46 (2018)

Hor72. Horowitz, E.: A fast method for interpolation using preconditioning. Inf.
Process. Lett. 1(4), 157–163 (1972)

JJ99. Jakobsson, M., Juels, A.: Proofs of work and bread pudding protocols
(extended abstract). In: Preneel, B. (ed.) Secure Information Networks.
ITIFIP, vol. 23, pp. 258–272. Springer, Boston (1999). https://doi.org/10.
1007/978-0-387-35568-9 18

KRR17. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the
security of Fiat-Shamir for proofs. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 224–251. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63715-0 8

Pas03. Pass, R.: Simulation in quasi-polynomial time, and its application to pro-
tocol composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.
2656, pp. 160–176. Springer, Heidelberg (2003). https://doi.org/10.1007/
3-540-39200-9 10

RR00. Roth, R.M., Ruckenstein, G.: Efficient decoding of Reed-Solomon codes
beyond half the minimum distance. IEEE Trans. Inf. Theory 46(1), 246–
257 (2000)

She12. Sherstov, A.A.: Strong direct product theorems for quantum communica-
tion and query complexity. SIAM J. Comput. 41(5), 1122–1165 (2012)

SKR+11. Stebila, D., Kuppusamy, L., Rangasamy, J., Boyd, C., Gonzalez Nieto,
J.: Stronger difficulty notions for client puzzles and denial-of-service-
resistant protocols. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558,
pp. 284–301. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19074-2 19

Wil05. Williams, R.: A new algorithm for optimal 2-constraint satisfaction and
its implications. Theor. Comput. Sci. 348(2–3), 357–365 (2005)

Wil15. Williams, V.V.: Hardness of easy problems: basing hardness on popular
conjectures such as the strong exponential time hypothesis. In: Proceed-
ings of International Symposium on Parameterized and Exact Computa-
tion, pp. 16–28 (2015)

Wil16. Williams, R.R.: Strong ETH breaks with Merlin and Arthur: short non-
interactive proofs of batch evaluation. In: 31st Conference on Computa-
tional Complexity, CCC 2016, 29 May to 1 June 2016, Tokyo, Japan, pp.
2:1–2:17 (2016)

A A Stronger Direct Sum Theorem for FOV

In this section, we prove a stronger direct sum theorem (and, thus, non-batchable
evaluation) for FOVk. That is, we prove Theorem 2.13.

https://doi.org/10.1007/978-0-387-35568-9_18
https://doi.org/10.1007/978-0-387-35568-9_18
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/3-540-39200-9_10
https://doi.org/10.1007/3-540-39200-9_10
https://doi.org/10.1007/978-3-642-19074-2_19
https://doi.org/10.1007/978-3-642-19074-2_19

816 M. Ball et al.

In particular, it is sufficient to define a notion of batchability for parametrized
families of functions with a monotonicity constraint. In our case, monotonicity
will essentially say “adding more vectors of the same dimension and field size
does not make the problem easier.” This is a natural property of most algorithms.
Namely, it is the case if for any fixed d, p, FOVk

n,d,p is (n, t, δ) − batchable.
Instead, we generalize batchability in a parametrized fashion for FOVk

n,d,p.

Definition A.1. A parametrized class, Fρ, is not (�, t, δ)-batchable on average
over Dρ, a parametrized family of distributions if, for any fixed parameter ρ
and algorithm Batchρ that runs in time �(ρ)t(ρ) when it is given as input �(ρ)
independent samples from Dρ, the following is true for all large enough n:

Pr
xi←Dρ

[

Batch(x1, . . . , x�(ρ)) = (fρ(x1), . . . , fρ(x�(ρ)))
]

< δ(ρ).

Remark A.2. We use a more generic parameterization of Fρ by ρ rather than
just n since we need the batch evaluation procedure to have the property that
it should still run quickly as n shrinks, as we use downward self-reducibility of
FOVk

n,d,p, even when p and d remain the same.

We now show how a generalization of the list decoding reduction of
[BRSV17a] yields strong batch evaluation bounds. Before we begin, we will
present a few Lemmas from the literature to make certain bounds explicit.

First, we present an inclusion-exclusion bound from [CPS99] on the polyno-
mials consistent with a fraction of m input-output pairs, (x1, y1), . . . , (xm, ym).
We include a laconic proof here with the given notation for convenience.

Lemma A.3. ([CPS99]). Let q be a polynomial over Fp, and define
Graph(q) := {(i, q(i)) | i ∈ [p]}. Let c > 2, δ/2 ∈ (0, 1), and m ≤ p such
that m > c2(d−1)

δ2(c−2) for some d. Finally, let I ⊆ [p] such that |I| = m. Then, for
any set S = {(i, yi) | i ∈ I}, there are less than �c/δ� polynomials q of degree at
most d that satisfy |Graph(q) ∩ S| ≥ mδ/2.

Corollary A.4. Let S be as in Lemma A.3 with I = {m + 1, . . . , p}, for any
m < p. Then for m > 9d/δ2, there are at most 3/δ polynomials, q, of degree at
most d such that |Graph(q) ∩ S| ≥ mδ/2.

Proof. Reproduced from [CPS99] for convenience; see original for exposition.
Suppose there exist at least �c/δ� such polynomials. Consider a subset of

exactly N = �c/δ� such polynomials, F . Define Sf := {(i, f(i)) ∈ Graph(f)∩S},

Proofs of Work From Worst-Case Assumptions 817

for each f ∈ F .

m ≥
∣

∣

∣

∣

∣

∣

⋃

f∈F
Sf

∣

∣

∣

∣

∣

∣

≥
∑

f∈F
|Sf | −

∑

f,f ′∈F :f �=f ′
|Sf ∩ Sf ′ |

≥ N
mδ

2
− N(N − 1)(d − 1)

2
>

N

2

(

mδ − c(d − 1)
δ

)

≥ c

2δ

(

mδ − c(d − 1)
δ

)

=
cm

2
− c2(d − 1)

2δ2

= m +
1
2

(

(c − 2)m − c2(d − 1)
δ2

)

> m.

Now, we give a theorem based on an efficient list-decoding algorithm, related
to Sudan’s, from Roth and Ruckenstein [RR00].

Lemma A.5. ([RR00]). List decoding for [n, k] Reed-Solomon (RS) codes over
Fp given a code word with almost n−√

2kn errors (for k > 5), can be performed
in

O
(

n3/2k−1/2 log2 n + (n − k)2
√

n/k + (
√

nk + log q)n log2(n/k)
)

operations over Fq.

Plugging in specific parameters and using efficient list decoding, we get the
following corollary which will be useful below.

Corollary A.6. For parameters n ∈ N and δ ∈ (0, 1), list decoding for [m, k]
RS over Fp where m = Θ(d log n/δ2), k = Θ(d), p = O(n2), and d = Ω(log n)
can be performed in time

O

(

d2 log5/2 nArith(n)
δ5

)

,

where Arith(n) is a time bound on arithmetic operations over prime fields size
O(n).

Theorem A.7. For some k ≥ 2, suppose k-OV takes nk−o(1) time to decide for
all but finitely many input lengths for any d = ω(log n). Then, for any positive
constants c, ε > 0 and 0 < δ < ε/2, FOVk is not

(ncpoly(d, log(p)), nk−εpoly(d, log(p)), n−δpoly(d, log(p)))

-batchable on average over the uniform distribution over its inputs.

Proof. Let k = 2c′ + c and p > nk. Suppose for the sake of contradiction
that FOVn,d,p is (ncpoly(d, log(p)), n2c′+c−εpoly(d, log(p)), n−c′

poly(d, log(p)))-
batchable on average over the uniform distribution.

818 M. Ball et al.

Let m = nk/(k+c), as before. By Proposition 4.5, k-OV with vectors of dimen-
sion d = (k

k+c))2 log2 n is (m,mc)-downward reducible to k-OV with vectors of
dimension log2(n), in time Õ(mc+1).

For each j ∈ [mc] Xj = (U j1, . . . , U jk) ∈ {0, 1}kmd is the instance of boolean-
valued orthogonal vectors from the above reduction. Now, consider splitting these
lists in half, U ji = (U ji

0 , U ji
1) (i ∈ [k]), such that (U j1

a1
, . . . , U jk

ak
) ∈ {0, 1}kmd/2

for a ∈ {0, 1}k. Interpret a as binary number in {0, . . . , 2k − 1}. Then, define
the following 2k sub-problems:

Aa = ((U j1
a1

, . . . , U jk
ak

)),∀a ∈ {0, . . . , 2k − 1}

Notice that given solutions to fOVk
d on {Aa}a∈{0,1}k we can trivially construct

a solution to OVk
d on Xj .

Now, draw random Bj , Cj ∈ F
kmd/2
p and consider the following degree 2k

polynomial in x:

Dj(x) =
2k
∑

i=1

δi(x)Ai−1 + (Bj + xCj)
2k
∏

i=1

(x − i),

where δi is the unique degree 2k − 1 polynomial over Fp that takes value 1 at
i ∈ [2k] and 0 on all other values in [2k]. Notice that Dj(i) = Ai−1 for i ∈ [2k].

Let r > 2k+1d/δ2 log m. Dj(2k + 1),Dj(6), . . . , Dj(r + 2k). By the proper-
ties of Batch and because the Dj(·)’s are independent, D1(i), . . . ,Dmc(i) are
independent for any fixed i. Thus,

Batch(D1(i), . . . , Dmc(i)) = fOVk(D1(i)), . . . , fOVk(Dmc(i))

for δr/2 i’s with probability at least 1 − 4
δr = 1 − 1/polylog(m), by Chebyshev.

Now, because δr/2 >
√

16dr, we can run the list decoding algorithm of Roth
and Ruckenstein, [RR00], to get a list of all polynomials with degree ≤ 2k+1d
that agree with at least δr/2 of the values. By Corollary A.4, there are at most
L = 3/δ such polynomials.

By a counting argument, there can be at most 2kd
(

L
2

)

= O(dL2) points in
Fp on which any two of the L polynomials agree. Because p > nk > 2kd

(

L
2

)

, we
can find such a point, �, by brute-force in O(L · dL2 log3(dL2) log p) time, via
batch univariate evaluation [Fid72]. Now, to identify the correct polynomials
fOVk(Dj(·)), one only needs to determine the value fOVk(Dj(�)). To do so, we
can recursively apply the above reduction to all the Dj(�)s until the number of
vectors, m, is constant and fOVk can be evaluated in time O(d log p).

Because each recursive iteration cuts m in half, the depth of recursion is
log(m). Additionally, because each iteration has error probability < 4/(δr), tak-
ing a union bound over the log(m) recursive steps yields an error probability
that is ε < 4 log m/(δr).

We can find the prime p via O(log m) random guesses in {mk + 1, . . . , 2mk}
with overwhelming probability. By Corollary A.6, taking r = 8d log m/δ2, Roth

Proofs of Work From Worst-Case Assumptions 819

and Ruckenstein’s algorithm takes time O(d2/δ5 log5/2 m Arith(mk)) in each
recursive call. The brute force procedure takes time O(d/δ3 log3(d/δ2) log m),
which is dominated by list decoding time. Reconstruction takes time O(log m)
in each round, and is also dominated. Thus the total run time is

T = O(mc(mk−εd log2 m/δ2 + d2/δ5 log7/2 m Arith(mk))),

with error probability ε < 4 log mδ/d.

	Proofs of Work From Worst-Case Assumptions
	1 Introduction
	1.1 On Security From Worst-Case Assumptions
	1.2 Our Results
	1.3 Related Work

	2 Proofs of Work from Worst-Case Assumptions
	2.1 Definition
	2.2 Orthogonal Vectors
	2.3 Preliminaries
	2.4 The PoW Protocol

	3 Verifying FOVk
	4 A Direct Sum Theorem for FOV
	5 Removing Interaction
	6 Zero-Knowledge Proofs of Work
	References
	A A Stronger Direct Sum Theorem for FOV

