
Optimal Channel Security Against
Fine-Grained State Compromise:

The Safety of Messaging

Joseph Jaeger(B) and Igors Stepanovs

Department of Computer Science and Engineering,
University of California San Diego, La Jolla, USA

{jsjaeger,istepano}@eng.ucsd.edu

Abstract. We aim to understand the best possible security of a (bidirec-
tional) cryptographic channel against an adversary that may arbitrarily
and repeatedly learn the secret state of either communicating party. We
give a formal security definition and a proven-secure construction. This
construction provides better security against state compromise than the
Signal Double Ratchet Algorithm or any other known channel construc-
tion. To facilitate this we define and construct new forms of public-key
encryption and digital signatures that update their keys over time.

1 Introduction

End-to-end encrypted communication is becoming a usable reality for the masses
in the form of secure messaging apps. However, chat sessions can be extremely
long-lived and their secrets are stored on end user devices, so they are particularly
vulnerable to having their cryptographic secrets exfiltrated to an attacker by
malware or physical access to the device. The Signal protocol [33] by Open
Whisper Systems tries to mitigate this threat by continually updating the key
used for encryption. Beyond its use in the Signal messaging app, this protocol
has been adopted by a number of other secure messaging apps. This includes
being used by default in WhatsApp and as part of secure messaging modes of
Facebook Messenger, Google Allo, and Skype.

WhatsApp alone has 1 billion daily active users [43]. It is commonly agreed
in the cryptography and security community that the Signal protocol is secure.
However, the protocol was designed without an explicitly defined security notion.
This raises the questions: what security does it achieve and could we do better?

In this work we study the latter question, aiming to understand the best
possible security of two-party communication in the face of state exfiltration.
We formally define this notion of security and design a scheme that provably
achieves it.

Security against compromise. When a party’s secret state is exposed we would
like both that the security of past messages and (as soon as possible) the security
of future messages not be damaged. These notions have been considered in a
c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10991, pp. 33–62, 2018.
https://doi.org/10.1007/978-3-319-96884-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96884-1_2&domain=pdf

34 J. Jaeger and I. Stepanovs

variety of contexts with differing terminology. The systemization of knowledge
paper on secure messaging [42] by Unger et al. evaluates and systematizes a
number of secure messaging systems. In it they describe a variety of terms for
these types of security including “forward secrecy,” “backwards secrecy,” “self-
healing,” and “future secrecy” and note that they are “controversial and vague.”
Cohn-Gordon et al. [15] study the future direction under the term of post-
compromise security and similarly discuss the terms “future secrecy,” “healing,”
and “bootstrapping” and note that they are “intuitive” but “not well-defined.”
Our security notion intuitively captures any of these informal terms, but we avoid
using any of them directly by aiming generically for the best possible security
against compromise.

Channels. The standard model for studying secure two party communication is
that of the (cryptographic) channel. The first attempts to consider the secure
channel as a cryptographic object were made by Shoup [39] and Canetti [11]. It
was then formalized by Canetti and Krawczyk [13] as a modular way to combine a
key exchange protocol with authenticated encryption, which covers both privacy
and integrity. Krawczyk [28] and Namprempre [32] study what are the necessary
and sufficient security notions to build a secure channel from these primitives.

Modern definitions of channels often draw from the game-based notion of
security for stateful authenticated-encryption as defined by Bellare et al. [4].
We follow this convention which assumes initial generation of keys is trusted.
In addition to requiring that a channel provides integrity and privacy of the
encrypted data, we will require integrity for associated data as introduced by
Rogaway [36].

Recently Marson and Poettering [30] closed a gap in the modeling of two-
party communication by capturing the bidirectional nature of practical channels
in their definitions. We work with their notion of bidirectional channels because
it closely models the behavior desired in practice and the bidirectional nature of
communication allows us to achieve a fine-grained security against compromise.

Definitional contributions. This paper aims to specify and achieve the best pos-
sible security of a bidirectional channel against state compromise. We provide
a formal, game-based definition of security and a construction that provably
achieves it. We analyze our construction in a concrete security framework [2]
and give precise bounds on the advantage of an attacker.

To derive the best possible notion of security against state compromise we
first specify a basic input-output interface via a game that describes how the
adversary interacts with the channel. This corresponds roughly to combining
the integrity and confidentiality games of [30] and adding an oracle that returns
the secret state of a specified user to the adversary. Then we specify several
attacks that break the security of any channel. We define our final security notion
by minimally extending the initial interface game to disallow these unavoidable
attacks while allowing all other behaviors. Our security definition is consequently
the best possible with respect to the specified interface because our attacks rule
out the possibility of any stronger notion.

Optimal Channel Security 35

One security notion is an all-in-one notion in the style of [37] that simulta-
neously requires integrity and privacy of the channel. It asks for the maximal
possible security in the face of the exposure of either party’s state. A surprising
requirement of our definition is that given the state of a user the adversary should
not be able to decrypt ciphertexts sent by that user or send forged ciphertexts
to that user.

Protocols that update their keys. The OTR (Off-the-Record) messaging proto-
col [10] is an important predecessor to Signal. It has parties repeatedly exchange
Diffie-Hellman elements to derive new keys. The Double Ratchet Algorithm of
Signal uses a similar Diffie-Hellman update mechanism and extends it by using
a symmetric key-derivation function to update keys when there is no Diffie-
Hellman update available. Both methods of updating keys are often referred to
as ratcheting (a term introduced by Langley [29]). While the Double Ratchet
Algorithm was explicitly designed to achieve strong notions of security against
state compromise with respect to privacy, the designers explicitly consider secu-
rity against a passive eavesdropper [21]; authenticity in the face of compromise
is out of scope.

The first academic security analysis of Signal was due to Cohn-Gordan
et al. [14]. They only considered the security of the key exchange underlying
the Double Ratchet Algorithm and used a security definition explicitly tailored
to understanding its security instead of being widely applicable to any scheme.

Work by Bellare et al. [7] sought to formally understand ratcheting as an
independent primitive, introducing the notions of (one-directional) ratcheted key
exchange and ratcheted encryption. In their model a compromise of the receiving
party’s secrets permanently and irrevocably disrupts all security, past and future.
Further they strictly separate the exchange of key update information from the
exchange of messages. Such a model cannot capture a protocol like the Double
Ratchet Algorithm for which the two are inextricably combined. On the positive
side, they did explicitly model authenticity in the face of compromise.

In [26], Günther and Mazaheri study a key update mechanism introduced
in TLS 1.3. Their security definition treats update messages as being out-of-
band and thus implicitly authenticated. Their definition is clearly tailored to
understand TLS 1.3 specifically.

Instead of analyzing an existing scheme, we strive to understand the best
possible security with respect to both privacy and authenticity in the face of state
compromise. The techniques we use to achieve this differ from those underlying
the schemes discussed above, because all of them rely on exchanging information
to create a shared symmetric key that is ultimately used for encryption. Our
security notion is not achievable by a scheme of this form and instead requires
that asymmetric primitives be used throughout.

Consequently, our scheme is more computationally intensive than those men-
tioned above. However, as a part of OTR or the Double Ratchet Algorithm, when
users are actively sending messages back and forth (the case where efficiency is
most relevant), they will be performing asymmetric Diffie-Hellman based key
updates prior to most message encryptions. This indicates that the overhead of

36 J. Jaeger and I. Stepanovs

extra computation with asymmetric techniques is not debilitating in our motivat-
ing context of secure messaging. However, the asymmetric techniques we require
are likely less efficient than Diffie-Hellman computations so we do not currently
know whether our scheme meets realistic efficiency requirements.

Our construction. Our construction of a secure channel is given in Sect. 6.1. It
shows how to generically build the channel from a collision-resistant hash func-
tion, a public-key encryption scheme, and a digital signature scheme. The latter
two require new versions of the primitives that we describe momentarily.

The hash function is used to store transcripts of the communication in the
form of hashes of all sent or received ciphertexts. These transcripts are included
as part of every ciphertext and a user will not accept a ciphertext with transcripts
that do not match those it has stored locally. Every ciphertext sent by a user is
signed by their current digital signature signing key and includes the verification
key corresponding to their next signing key. Similarly a user will include a new
encryption key with every ciphertext they send. The sending user will use the
most recent encryption key they have received from the other user and the
receiving user will delete all decryption keys that are older than the one most
recently used by the sender.

New notions of public-key encryption and digital signatures. Our construction
uses new forms of public-key encryption and digital signatures that update their
keys over time, which we define in Sect. 3. The former updates its keys with
every ciphertext. We refer to it as key-updating public-key encryption. The lat-
ter includes extra algorithms that allow the keys to be updated with respect to
an arbitrary string. We refer to it as key-updatable digital signature schemes.
In our construction a user updates their signing key with their transcript every
time they receive a ciphertext.

For public-key encryption we consider encryption with labels and require an
IND-CCA style security be maintained even if the adversary is given the decryp-
tion key after all challenge ciphertexts have been decrypted or an adversarially
generated ciphertext has been decrypted. We show how to construct such scheme
from hierarchical identity-based encryption [23].

For digital signatures, security requires that an adversary is unable to forge
a signature even given the signing key as long as the sequence of strings used to
update it is not a prefix of the sequence of strings used to update the verification
key. We additionally require that the scheme has unique signatures (i.e. for any
sequence of updates and any message an adversary can only find one signature
that will verify). We show how to construct this from a digital signature scheme
that is forward secure [5] and has unique signatures.

Related work. Several works [9,22] extended the definitions of channels to address
the stream-based interface provided by channels like TLS, SSH, and QUIC. Our
primary motivation is to build a channel for messaging where an atomic interface
for messages is more appropriate.

Numerous areas of research within cryptography are motivated by the threat
of key compromise. These include key-insulated cryptography [18–20], secret

Optimal Channel Security 37

sharing [31,38,41], threshold cryptography [16], proactive cryptography [34], and
forward security [17,25]. Forward security, in particular, was introduced in the
context of key-exchange [17,25] but has since been considered for a variety of
primitives including symmetric [8] and asymmetric encryption [12] and digital
signature schemes [5]. Green and Miers [24] propose using puncturable encryp-
tion for forward secure asynchronous messaging.

In concurrent and independent work, Poettering and Rösler [35] extend the
definitions of ratcheted key exchange from [7] to be bidirectional. Their secu-
rity definition is conceptually similar to our definition for bidirectional channels
because both works aim to achieve strong notions of security against an adversary
that can arbitrarily and repeatedly learn the secret state of either communicat-
ing party. In constructing a secure ratcheted key exchange scheme they make use
of a key-updatable key encapsulation mechanism (KEM), a new primitive they
introduce in their work. The key-updatable nature of this is conceptually sim-
ilar to that of the key-updatable digital signature schemes we introduce in our
work. To construct such a KEM they make use of hierarchical identity-based
encryption in a manner similar to how we construct key-updating public-key
encryption. The goal of their work differs from ours; they only consider security
for the exchange of symmetric keys while we do so for the exchange of messages.

2 Preliminaries

Notation and conventions. Let N = {0, 1, 2, . . .} be the set of non-negative inte-
gers. Let ε denote the empty string. If x ∈ {0, 1}∗ is a string then |x| denotes
its length. By x ‖ y we denote the concatenation of strings x and y. If X is a
finite set, we let x ←$ X denote picking an element of X uniformly at random
and assigning it to x. By (X)n we denote the n-ary Cartesian product of X. We
let x1 ← x2 ← · · · ← xn ← v denote assigning the value v to each variable xi

for i = 1, . . . , n.
If mem is a table, we use mem[p] to denote the element of the table that is

indexed by p. By mem[0, . . . ,∞] ← v we denote initializing all elements of mem
to v. For a, b ∈ N we let v ← mem[a, . . . , b] denote setting v equal to the tuple
obtained by removing all ⊥ elements from (mem[a],mem[a + 1], . . . ,mem[b]).
It is the empty vector () if all of these table entries are ⊥ or if a > b. A tuple
x = (x1, . . .) specifies a uniquely decodable concatenation of strings x1, We
say x � y if x is a prefix of y . More formally, (x1, . . . , xn) � (y1, . . . , ym) if
n ≤ m and xi = yi for all i ∈ {1, . . . , n}.

Algorithms may be randomized unless otherwise indicated. Running time is
worst case. If A is an algorithm, we let y ← A(x1, . . . ; r) denote running A
with random coins r on inputs x1, . . . and assigning the output to y. Any state
maintained by an algorithm will explicitly be shown as input and output of
that algorithm. We let y ←$ A(x1, . . .) denote picking r at random and letting
y ← A(x1, . . . ; r). We omit the semicolon when there are no inputs other than
the random coins. We let [A(x1, . . .)] denote the set of all possible outputs of
A when invoked with inputs x1, Adversaries are algorithms. The instruction
abort(x1, . . .) is used by an adversary to immediately halt with output (x1, . . .).

38 J. Jaeger and I. Stepanovs

Fig. 1. Games defining collision-resistance of function family H and signature unique-
ness of key-updatable digital signature scheme DS.

We use a special symbol ⊥ 	∈ {0, 1}∗ to denote an empty table position, and
we also return it as an error code indicating an invalid input. An algorithm may
not accept ⊥ as input. If xi = ⊥ for some i when executing (y1, . . .) ← A(x1 . . .)
we assume that yj = ⊥ for all j. We assume that adversaries never pass ⊥ as
input to their oracles.

We use the code based game playing framework of [6]. (See Fig. 1 for an
example of a game.) We let Pr[G] denote the probability that game G returns
true. In code, tables are initially empty. We adopt the convention that the run-
ning time of an adversary means the worst case execution time of the adversary
in the game that executes it, so that time for game setup steps and time to
compute answers to oracle queries is included.

Function families. A family of functions H specifies algorithms H.Kg and H.Ev,
where H.Ev is deterministic. Key generation algorithm H.Kg returns a key hk.
Evaluation algorithm H.Ev takes hk and an input x ∈ {0, 1}∗ to return an output
y, denoted by y ← H.Ev(hk, x).

Collision-resistant functions. Consider game CR of Fig. 1 associated to a function
family H and an adversary AH. The game samples a random key hk for function
family H. In order to win the game, adversary AH has to find two distinct
messages m0,m1 such that H.Ev(hk,m0) = H.Ev(hk,m1). The advantage of AH

in breaking the CR security of H is defined as AdvcrH (AH) = Pr[CRAH

H].

Digital signature schemes. A digital signature scheme DS specifies algorithms
DS.Kg, DS.Sign and DS.Vrfy, where DS.Vrfy is deterministic. Associated to
DS is a key generation randomness space DS.KgRS and signing algorithm’s
randomness space DS.SignRS. Key generation algorithm DS.Kg takes random-
ness z ∈ DS.KgRS to return a signing key sk and a verification key vk,
denoted by (sk, vk) ← DS.Kg(z). Signing algorithm DS.Sign takes sk, a message
m ∈ {0, 1}∗ and randomness z ∈ DS.SignRS to return a signature σ, denoted
by σ ← DS.Sign(sk,m; z). Verification algorithm DS.Vrfy takes vk, σ, and m to
return a decision t ∈ {true, false} regarding whether σ is a valid signature of m
under vk, denoted by t ← DS.Vrfy(vk, σ,m). The correctness condition for DS

Optimal Channel Security 39

requires that DS.Vrfy(vk, σ,m) = true for all (sk, vk) ∈ [DS.Kg], all m ∈ {0, 1}∗,
and all σ ∈ [DS.Sign(sk,m)].

We define the min-entropy of algorithm DS.Kg as H∞(DS.Kg), such that

2−H∞(DS.Kg) = max
vk

Pr [vk∗ = vk : (sk∗, vk∗) ←$ DS.Kg] .

The probability is defined over the random coins used for DS.Kg. Note that
the min-entropy is defined with respect to verification keys, regardless of the
corresponding values of the secret keys.

3 New Asymmetric Primitives

In this section we define key-updatable digital signatures and key-updating
public-key encryption. The former allows its keys to be updated with arbitrary
strings. The latter updates its keys with every ciphertext that is sent/received.
While in general one would prefer the size of keys, signatures, and ciphertexts to
be constant we will be willing to accept schemes for which these grow linearly in
the number of updates. As we will discuss later, these are plausibly acceptable
inefficiencies for our use cases.

We specify multi-user security definitions for both primitives, because it
allows tighter reductions when we construct a channel from these primitives.
Single-user variants of these definitions are obtained by only allowing the adver-
sary to interact with one user and can be shown to imply the multi-user versions
by a standard hybrid argument. Starting with [1] constructions have been given
for a variety of primitives that allow multi-user security to be proven without
the factor q security loss introduced by a hybrid argument. If analogous con-
structions can be found for our primitives then our results will give tight bounds
on the security of our channel.

3.1 Key-Updatable Digital Signature Schemes

We start by formally defining the syntax and correctness of a key-updatable
digital signature scheme. Then we specify a security definition for it. We will
briefly sketch how to construct such a scheme, but leave the details to [27].

Syntax and correctness. A key-updatable digital signature scheme is a digital
signature scheme with additional algorithms DS.UpdSk and DS.UpdVk, where
DS.UpdVk is deterministic. Signing-key update algorithm DS.UpdSk takes a sign-
ing key sk and a key update information Δ ∈ {0, 1}∗ to return a new signing
key sk, denoted by sk ←$ DS.UpdSk(sk,Δ). Verification-key update algorithm
DS.UpdVk takes a verification key vk and a key update information Δ ∈ {0, 1}∗

to return a new verification key vk, denoted by vk ← DS.UpdVk(vk,Δ).
For compactness, when Δ = (Δ1,Δ2, . . .) we sometimes write (vk, t) ←

DS.Vrfy(vk, σ,m,Δ) to denote updating the key via vk ← DS.UpdVk(vk,Δi)
for i = 1, . . . , n and then evaluating t ← DS.Vrfy(vk, σ,m).

40 J. Jaeger and I. Stepanovs

Fig. 2. Games defining correctness of key-updatable digital signature scheme DS and
correctness of key-updating public-key encryption scheme PKE.

The key-update correctness condition requires that signatures must verify
correctly as long as the signing and the verification keys are both updated with
the same sequence of key update information Δ = (Δ1,Δ2, . . .). To formalize
this, consider game DSCORR of Fig. 2, associated to a key-updatable digital
signature scheme DS and an adversary C. The advantage of an adversary C
against the correctness of DS is given by AdvdscorrDS (C) = Pr[DSCORRC

DS]. We
require that AdvdscorrDS (C) = 0 for all (even unbounded) adversaries C. See Sect. 4
for discussion on game-based definitions of correctness.

Signature uniqueness. We will be interested in schemes for which there is only
a single signature that will be accepted for any message m and any sequence
of updates Δ. Consider game UNIQ of Fig. 1, associated to a key-updatable
digital signature scheme DS and an adversary BDS. The adversary BDS can call
the oracle NewUser arbitrarily many times with a user identifier Λ and be
given the randomness used to generate the keys of Λ. The adversary ultimately
outputs a user id Λ, message m, signatures σ1, σ2, and key update vector Δ. It
wins if the signatures are distinct and both verify for m when the verification key
of Λ is updated with Δ. The advantage of BDS in breaking the UNIQ security
of DS is defined by AdvuniqDS (BDS) = Pr[UNIQBDS

DS].

Signature unforgeability under exposures. Our main security notion for signatures
asks that the adversary not be able to create signatures for any key update vector
Δ unless it was given a signature for that key update vector or given the signing
key such that the vector of strings it had been updated with was a prefix of Δ.
Consider game UFEXP of Fig. 3, associated to a key-updatable digital signature
scheme DS and an adversary ADS.

Optimal Channel Security 41

Fig. 3. Games defining signature unforgeability under exposures of key-updatable
digital signature scheme DS, and ciphertext indistinguishability under exposures of
key-updating public-key encryption scheme PKE.

42 J. Jaeger and I. Stepanovs

The adversary ADS can call the oracle NewUser arbitrarily many times for
any user identifier Λ and be given the verification key for that user. Then it can
interact with user Λ via three different oracles. Via calls to Upd with a string
Δ it requests that the signing key for the specified user be updated with Δ. Via
calls to Sign with message m it asks for a signature of m using the signing key
for the specified user. When it does so the signing key is erased so it can no
longer interact with that user and Δ∗[Λ] is used to store the vector of strings
the key was updated with.1 Via calls to Exp it can ask to be given the current
signing key of the specified user. When it does so Δ′[Λ] is used to store the
vector of strings the key was updated with.

At the end of the game the adversary outputs a user id Λ, signature σ,
message m, and key update vector Δ. The adversary has cheated if it previously
received σ as the result of calling Sign(Λ,m) and Δ = Δ∗[Λ], or if it exposed
the signing key of Λ and Δ′[Λ] is a prefix of Δ. It wins if it has not cheated and
the signature it output verifies for m when the verification key of Λ is updated
with Δ. The advantage of ADS in breaking the UFEXP security of DS is defined
by AdvufexpDS (ADS) = Pr[UFEXPADS

DS].

Construction. In [27] we use a forward secure [5] key-evolving signature scheme
with unique signatures to construct a signature scheme secure with respect to
both of the above definitions. Roughly, a key-evolving signature scheme is like
a key-updatable digital signature scheme that can only update with Δ = ε. In
order to enable updates with respect to arbitrary key update information, we
sign each update string with the current key prior to evolving the key, and then
include these intermediate signatures with our final signature.

3.2 Key-Updating Public-Key Encryption Schemes

We start by formally defining the syntax and correctness of a key-updating
public-key encryption. Then we specify a security definition for it. We will briefly
sketch how to construct such a scheme, but leave the details to [27]. We consider
public-key encryption with labels as introduced by Shoup [40].

Syntax and correctness. A key-updating public-key encryption scheme PKE spec-
ifies algorithms PKE.Kg, PKE.Enc, PKE.Dec. Associated to PKE is a key genera-
tion randomness space PKE.KgRS and encryption randomness space PKE.EncRS.
Key generation algorithm PKE.Kg takes randomness z ∈ PKE.KgRS to return an
encryption key ek and a decryption key dk, denoted by (ek,dk) ← PKE.Kg(z).
Encryption algorithm PKE.Enc takes ek, a label � ∈ {0, 1}∗, a message m ∈
{0, 1}∗ and randomness z ∈ PKE.EncRS to return a new encryption key ek
and a ciphertext c, denoted by (ek, c) ← PKE.Enc(ek, �,m; z). Decryption algo-
rithm PKE.Dec takes dk, �, c to return a new decryption key dk and a message
m ∈ {0, 1}∗, denoted by (dk,m) ←$ PKE.Dec(dk, �, c).
1 We are thus defining security for a one-time signature scheme, because a particular

key will only be used for one signature. This is all we require for our application,
but the definition and construction we provide could easily be extended to allow
multiple signatures if desired.

Optimal Channel Security 43

The correctness condition requires that ciphertexts decrypt correctly as
long as they are received in the same order they were created and with the
same labels. To formalize this, consider game PKECORR of Fig. 2, associ-
ated to a key-updating public-key encryption scheme PKE and an adversary
C. The advantage of an adversary C against the correctness of PKE is given by
AdvpkecorrPKE (C) = Pr[PKECORRC

PKE]. Correctness requires that AdvpkecorrPKE (C) = 0
for all (even computationally unbounded) adversaries C. See Sect. 4 for discussion
on game-based definitions of correctness.

Define the min-entropy of algorithms PKE.Kg and PKE.Enc as H∞(PKE.Kg)
and H∞(PKE.Enc), respectively, defined as follows:

2−H∞(PKE.Kg) = max
ek

Pr [ek∗ = ek : (ek∗,dk∗) ←$ PKE.Kg] ,

2−H∞(PKE.Enc) = max
ek,�,m,c

Pr [c∗ = c : (ek∗, c∗) ←$ PKE.Enc(ek, �,m)] .

The probability is defined over the random coins used by PKE.Kg and PKE.Enc,
respectively. Note that min-entropy does not depend on the output values dk∗

(in the former case) and ek∗ (in the latter case).

Ciphertext indistinguishability under exposures. Consider game INDEXP of
Fig. 3, associated to a key-updating public-key encryption scheme PKE and an
adversary APKE. Roughly, it requires that PKE maintain CCA security [3] even
if APKE is given the decryption key (as long as that decryption key is no longer
able to decrypt any challenge ciphertexts).

The adversary APKE can call the oracle NewUser arbitrarily many times
with a user identifier Λ and be given the encryption key of that user. Then
it can interact with user Λ via four oracles. Via calls to Enc with messages
m0,m1 and label � it requests that one of these messages be encrypted using the
specified label (which message is encrypted depends on the secret bit b). It will
be given back the new encryption key and the produced ciphertext. If m0 	= m1

we remember that a challenge query was done.
Via calls to Dec with ciphertext c and � it requests that the ciphertext be

decrypted with the specified label. Adversary APKE will only be given the result
of this decryption if the pair (c, �) was not obtained from a call to Enc. Once
the adversary queries such pair, the user Λ becomes “restricted” and the oracle
will return the true decryption of all future ciphertexts for this user.

Via calls to ExpRand it asks to be given the next randomness that will
be used for encryption. This represents the adversary exposing the randomness
while the encryption is taking place so we require that after a call to ExpRand
the adversary immediately makes the corresponding call to Enc. During this
call challenges are forbidden so it must choose m0 = m1.

Via calls to ExpDk it asks to be given the current decryption key of the user.
It may not do so if a challenge query was done but the user has not decrypted
the corresponding ciphertext yet (unless the user is restricted). Otherwise the
decryption key is returned and the user is considered to be exposed. Once a user
is exposed challenges are not allowed so for all future calls to Enc the adversary
required to choose m0 = m1.

44 J. Jaeger and I. Stepanovs

At the end of the game the adversary outputs a bit b′ representing its guess
of the secret bit b. The advantage of APKE in breaking the INDEXP security of
PKE is defined as AdvindexpPKE (APKE) = 2Pr[INDEXPAPKE

PKE] − 1.
Many of the variables used to track the behavior of the adversary in INDEXP

are analogous to variables we use and discuss in detail in Sect. 5 when defining
security of a channel. The reader interested in understand the pseudocode of
INDEXP in detail is encouraged to read that section first.

Construction. In [27] we use a hierarchical identity-based encryption (HIBE)
scheme to construct a secure key-updating encryption scheme. Roughly, a HIBE
assigns a decryption key to any identity (vector of strings). A decryption key for
an identity I can be used to create decryption keys for an identity of which I is
a prefix. Security requires that the adversary be unable to learn about encrypted
messages encrypted to an identity I even if given the decryption key for many
identities as long as none of them were prefixes of I . To create a key-updating
encryption scheme we use the vector of ciphertexts and labels a user has received
so far as the identity. The security of this scheme then follows from the security
of the underlying HIBE in a fairly straightforward manner.

4 Bidirectional Cryptographic Channels

In this section we formally define the syntax and correctness of bidirectional
cryptographic channels. Our notion of bidirectional channels will closely match
that of Marson and Poettering [30]. Compared to their definition, we allow the
receiving algorithm to be randomized and provide an alternative correctness
condition. We argue that the new correctness condition is more appropriate for
our desired use case of secure messaging. Henceforth, we will omit the adjective
“bidirectional” and refer simply to channels.

Syntax of channel. A channel provides a method for two users to exchange mes-
sages in an arbitrary order. We will refer to the two users of a channel as the
initiator I and the receiver R. There will be no formal distinction between the
two users, but when specifying attacks we follow the convention of having I send
a ciphertext first. We will use u as a variable to represent an arbitrary user and
u to represent the other user. More formally, when u ∈ {I,R} we let u denote
the sole element of {I,R} \ {u}.

A channel Ch specifies algorithms Ch.Init, Ch.Send, and Ch.Recv. Initialization
algorithm Ch.Init returns initial states stI ∈ {0, 1}∗ and stR ∈ {0, 1}∗, where
stI is I’s state and stR is R’s state. We write (stI , stR) ←$ Ch.Init. Sending
algorithm Ch.Send takes state stu ∈ {0, 1}∗, associated data ad ∈ {0, 1}∗, and
message m ∈ {0, 1}∗ to return updated state stu ∈ {0, 1}∗ and a ciphertext
c ∈ {0, 1}∗. We write (stu, c) ←$ Ch.Send(stu, ad,m). Receiving algorithm takes
state stu ∈ {0, 1}∗, associated data ad ∈ {0, 1}∗, and ciphertext c ∈ {0, 1}∗ to
return updated state stu ∈ {0, 1}∗∪{⊥} and message m ∈ {0, 1}∗∪{⊥}. We write
(stu,m) ←$ Ch.Recv(stu, ad, c), where m = ⊥ represents a rejection of ciphertext
c and stu = ⊥ represents the channel being permanently shut down from the

Optimal Channel Security 45

perspective of u (recall our convention regarding ⊥ as input to an algorithm).
One notion of correctness we discuss will require that stu = ⊥ whenever m = ⊥.
The other will require that stu not be changed from its input value when m = ⊥.

We let Ch.InitRS, Ch.SendRS, and Ch.RecvRS denote the sets of possible ran-
dom coins for Ch.Init, Ch.Send, and Ch.Recv, respectively. Note that for full
generality we allow Ch.Recv to be randomized. Prior work commonly requires
this algorithm to be deterministic.

Correctness of channel. In Fig. 4 we provide two games, defining two alternative
correctness requirements for a cryptographic channel. Lines labelled with the
name of a game are included only in that game. The games differ in whether the
adversary is given access to an oracle Robust or to an oracle Reject. Game
CORR uses the former, whereas game CORR⊥ uses the latter. The advantage
of an adversary C against the correctness of channel Ch is given by AdvcorrCh (C) =
Pr[CORRC

Ch] in one case, and Advcorr⊥Ch (C) = Pr[CORR⊥C
Ch] in the other case.

Correctness with respect to either notion requires that the advantage is equal 0
for all (even computationally unbounded) adversaries C.

Fig. 4. Games defining correctness of channel Ch. Lines labelled with the name of a
game are included only in that game. CORR requires that Ch be robust when given an
incorrect ciphertext via oracle Robust. CORR⊥ requires that Ch permanently returns
⊥ when given an incorrect ciphertext via oracle Reject.

46 J. Jaeger and I. Stepanovs

Our use of games to define correctness conditions follows the work of Marson
and Poettering [30] and Bellare et. al. [7]. By considering unbounded adversaries
and requiring an advantage of 0 we capture a typical information-theoretic per-
fect correctness requirement without having to explicitly quantify over sequences
of actions. In this work we require only the perfect correctness because it is
achieved by our scheme; however, it would be possible to capture computational
correctness by considering a restricted class of adversaries.

Both games require that ciphertexts sent by any user are always decrypted to
the correct message by the other user. This is modeled by providing adversary C
with access to oracles Send and Recv. We assume that messages from u to u are
received in the same order they were sent, and likewise that messages from u to
u are also received in the correct order (regardless Aof how they are interwoven
on both sides, since ciphertexts are being sent in both directions).

The games differ in how the channel is required to behave in the case that
a ciphertext is rejected. Game CORR (using oracle Robust) requires that the
state of the user not be changed so that the channel can continue to be used.
Game CORR⊥ (using oracle Reject) requires that the state of the user is set
to ⊥. According to our conventions about the behavior of algorithms given ⊥ as
input (see Sect. 2), the channel will then refuse to perform any further actions by
setting all subsequent outputs to ⊥. We emphasize that the adversary specifies
all inputs to Ch.Recv when making calls to Robust and Reject, so the behavior
of those oracles is not related to the behavior of the other two oracles for which
the game maintains the state of both users.

Comparison of correctness notions. The correctness required by CORR⊥ is iden-
tical to that of Marson and Poettering [30]. The CORR notion of correctness
instead uses a form of robustness analogous to that of [7]. In [27] we discuss
how these correctness notions have different implications for the security of the
channel. It is trivial to convert a CORR-correct channel to a CORR⊥-correct
channel and vice versa. Thus we will, without loss of generality, only provide a
scheme achieving CORR-correctness.

5 Security Notion for Channels

In this section we will define what it means for a channel to be secure in the
presence of a strong attacker that can steal the secrets of either party in the
communication. Our goal is to give the strongest possible notion of security in
this setting, encompassing both the privacy of messages and the integrity of
ciphertexts. We take a fine-grained look at what attacks are possible and require
that a channel be secure against all attacks that are not syntactically inherent
in the definition of a channel.

To introduce our security notion we will first describe a simple interface
of how the adversary is allowed to interact with the channel. Then we show
attacks that would break the security of any channel using this interface. Our
final security notion will be created by adding checks to the interface that pre-
vents adversary from performing any sequence of actions that leads to these

Optimal Channel Security 47

unpreventable breaches of security. We introduce only the minimal necessary
restrictions preventing the attacks, making sure that we allow all adversaries
that do not trivially break the security as per above.

5.1 Channel Interface Game

Consider game INTER in Fig. 5. It defines the interface between an adversary
D and a channel Ch. A secret bit b is chosen at random and the adversary’s
goal is to guess this bit given access to a left-or-right sending oracle, real-or-⊥
receiving oracle, and an exposure oracle. The sending oracle takes as input a
user u ∈ {I,R}, two messages m0,m1 ∈ {0, 1}∗, and associated data ad. Then it
returns the encryption of mb with ad by user u. The receiving oracle Recv takes
as input a user u, a ciphertext c, and associated data ad. It has user u decrypt this
ciphertext using ad, and proceeds as follows. If b = 0 holds (along with another
condition we discuss momentarily) then it returns the valid decryption of this
ciphertext; otherwise it returns ⊥. The exposure oracle Exp takes as input a user
u, and a flag rand. It returns user’s state stu, and it might return random coins
that will be used the next time this user runs algorithms Ch.Send or Ch.Recv
(depending on the value of rand, which we discuss below). The advantage of
adversary D against channel Ch is defined by AdvinterCh (D) = 2Pr[INTERD

Ch] − 1.
This interface gives the adversary full control over the communication

between the two users of the channel. It may modify, reorder, or block any

Fig. 5. Game defining interface between adversary D and channel Ch.

48 J. Jaeger and I. Stepanovs

communication as it sees fit. The adversary is able to exfiltrate the secret state
of either party at any time.

Let us consider the different cases of how a user’s secrets might be exposed.
They could be exposed while the user is in the middle of performing a Ch.Send
operation, in the middle of performing a Ch.Recv operation, or when the user is
idle (i.e. not in the middle of performing Ch.Send or Ch.Recv). In the last case
we expect the adversary to learn the user’s state stu, but nothing else. If the
adversary is exposing the user during an operation, they would potentially learn
the state before the operation, any secrets computed during the operation, and
the state after the operation. We capture this by leaking the state from before
the operation along with the randomness that will be used when the adversary
makes its next query to Send or Recv. This allows the adversary to compute
the next state as well. The three possible values of rand are rand = “send”
for the first possibility, rand = “recv” for the second possibility, and rand = ε
for the third. These exposures represent what the adversary is learning while
a particular operation is occurring, so we require (via nextop) that after such
an exposure it immediately makes the corresponding oracle query. Without the
use of the exposure oracle the game specified by this interface would essentially
be equivalent to the combination of the integrity and confidentiality security
notions defined by Marson and Poettering [30] in the all-in-one definition style
of Rogaway and Shrimpton [37].

The interface game already includes some standard checks. First, we require
that on any query (u,m0,m1, ad) to Send the adversary must provide equal
length messages. If the adversary does not do so (i.e. |m0| 	= |m1|) then Send
returns ⊥ immediately. This prevents the inherent attack where an adversary
could distinguish between the two values of b by asking for encryptions of differ-
ent length messages and checking the length of the output ciphertext. Adversary
D1 in Fig. 6 does just that and would achieve AdvinterCh (D1) > 1/2 against any
channel Ch if not for that check.

Second, we want to prevent Recv from decrypting ciphertexts that are sim-
ply forwarded to it from Send. So for each user u we keep track of counters su
and ru that track how many messages that user has sent and received. Then at
the end of a Send call to u the ciphertext-associated data pair (c, ad) is stored in
the table ctableu with index su. When Recv is called for user u it will compare
the pair (c, ad) against ctableu[ru] and if the pair matches return ⊥ regardless
of the value of the secret bit. If we did not do this check then for any channel
Ch the adversary D2 shown in Fig. 6 would achieve AdvinterCh (D2) = 1.

We now specify several efficient adversaries that will have high advantage for
any choice of Ch. For concreteness we always have our adversaries immediately
start the actions required to perform the attacks, but all of the attacks would
still work if the adversary had performed a number of unrelated procedure calls
first. Associated data will never be important for our attacks so we will always
set it to ε. We will typically set m0 = 0 and m1 = 1. For the following we let Ch
be any channel and consider the adversaries shown in Fig. 6.

Optimal Channel Security 49

Fig. 6. Generic attacks against any channel Ch with interface INTER.

Trivial Forgery. If the adversary exposes the secrets of u it will be able to forge
a ciphertext that u would accept at least until the future point in time when
u has received the ciphertext that u creates next. For a simple example of this
consider the third adversary, D3. It exposes the secrets of user I, then uses
them to perform its own Ch.Send computation locally, and sends the resulting
ciphertext to R. Clearly this ciphertext will always decrypt to a non-⊥ value so
the adversary can trivially determine the value of b and achieve AdvinterCh (D3) = 1.

After an adversary has done the above to trivially send a forgery to u it
can easily perform further attacks on both the integrity and authenticity of the
channel. These are shown by adversaries D3.1 and D3.2. The first displays the
fact that the attacker can easily send further forgeries to u. The second displays
the fact that the attacker can now easily decrypt any messages sent by u. We
have AdvinterCh (D3.1) = 1 and AdvinterCh (D3.2) = 1.

Trivial Challenges. If the adversary exposes the secrets of u it will necessarily be
able to decrypt any ciphertexts already encrypted by u that have not already
been received by u. Consider the adversary D4. It determines what message was
encrypted by user I by exposing the state of R, and uses that to run Ch.Recv.
We have AdvinterCh (D4) = 1.

Similarly, if the adversary exposes the secrets of u it will necessarily be able
to decrypt any future ciphertexts encrypted by u, until u receives the ciphertext
that u creates next. Consider the adversary D5. It is essentially the identical to

50 J. Jaeger and I. Stepanovs

adversary D4, except it reverses the order of the calls made to Send and Exp.
We have AdvinterCh (D5) = 1.

Exposing Randomness. If an adversary exposes user u with rand = “send” then
it is able to compute the next state of u by running Ch.Send locally with the
same randomness that u will use. So in this case the security game must act
as if the adversary exposed both the current and the next state. In particular,
the attacks above could only succeed until, first, the exposed user u updated its
secrets and, second, user u updates its secrets accordingly (which can happen
after it receives the next message from u). But if the randomness was exposed,
then secrets would need to be updated at least twice until the security is restored.

Exposing user u with rand = “send” additionally allows the attack shown in
D6. The adversary exposes the state and the sending randomness of I, encrypts
1 locally using these exposed values of I, and then calls Send to get a challenge
ciphertext sent by I. The adversary compares whether the two ciphertexts are
the same to determine the secret bit. We have AdvinterCh (D6) = 1. More broadly, if
the adversary exposes the secrets of u with rand = “send” it will always be able
to tell what is the next message encrypted by u.

Exposing with rand = “recv” does not generically endow the adversary with
the ability to do any additional attacks.

5.2 Optimal Security of a Channel

Our full security game is obtained by adding a minimal amount of code to INTER
to disallow the generic attacks just discussed. Consider the game AEAC (authen-
ticated encryption against compromise) shown in Fig. 7. We define the advantage
of an adversary D against channel Ch by AdvaeacCh (D) = 2Pr[AEACD

Ch] − 1.
We now have a total of eight variables to control the behavior of the adversary

and prevent it from abusing trivial attacks. Some of the variables are summarized
in Fig. 8. We have already seen su, ru, nextop, and ctableu in INTER. The new
variables we have added in AEAC are tables forgeu and chu, number Xu ∈ N,
and flag restrictedu ∈ {true, false}. We now discuss the new variables.

The table forgeu was added to prevent the type of attack shown in D3. When
the adversary calls Exp on user u we set forgeu to “trivial” for the indices of
ciphertexts for which this adversary is now necessarily able to create forgeries. If
the adversary takes advantage of this to send a ciphertext of its own creation to
u then the flag restrictedu will be set, whose effect we will describe momentarily.

The table chu is used to prevent the types of attacks shown by D4 and D6.
Whenever the adversary makes a valid challenge query2 to user u we set chu[su]
to “done”. The game will not allow the adversary to expose u’s secrets if there
are any challenge queries for which u sent a ciphertext that u has not received
yet. This use of chu prevents an attack like D4. To prevent an attack like D6,
we set chu[su + 1] to “forbidden” whenever the adversary exposes the state and
sending randomness of u. This disallows the adversary from doing a challenge

2 We use the term challenge query to refer to a Send query for which m0 �= m1.

Optimal Channel Security 51

Fig. 7. Game defining AEAC security of channel Ch.

52 J. Jaeger and I. Stepanovs

Fig. 8. Table summarizing some important variables in game AEAC. A “−” indicates
a way in which the behavior of the adversary is being restricted. A “+” indicates a
way in which the behavior of the adversary is being enabled.

query during its next Send call to u (the call for which the adversary knows the
corresponding randomness).

The number Xu prevents attacks like D5. When u is exposed Xu will be set
to a number that is 1 or 2 greater than the current number of ciphertexts u
has sent (depending on the value of rand) and challenge queries from u will not
be allowed until it has received that many ciphertexts. This ensures that the
challenge queries from u are not issued with respect to exposed keys of u.3

Finally the flag restrictedu serves to both allow and disallow some attacks.
The flag is initialized to false. It is set to true when the adversary forges a
ciphertext to u after exposing u. Once u has received a different ciphertext than
was sent by u there is no reason to think that u should be able to decrypt
ciphertexts sent by u or send its own ciphertexts to u. As such, if u is restricted
(i.e. restrictedu = true) we will not add its ciphertexts to ctableu, we will always
show the true output when u attempts to decrypt ciphertexts given to it by the
adversary (even if they were sent by u), and if the adversary asks to expose u we
will return all of its secret state without setting any of the other variables that
would restrict the actions the adversary is allowed to take.

The above describes how restrictedu allows some attacks. Now we discuss
how it prevents attacks like D3.1 and D3.2. Once the adversary has sent its
own ciphertext to u we must assume that the adversary will be able to decrypt
ciphertexts sent by u and able to send its own ciphertexts to u that will decrypt
to non-⊥ values. The adversary could simply have “replaced” u with itself. To
address this we prevent all challenge queries from u, and decryptions performed
by u are always given back to the adversary regardless of the secret bit.

Informal description of the security game. In [27] we provide a thorough written
description of our security model to facilitate high-level understanding of it. For
3 The symbol chi is meant to evoke the word “challenge” because it stores the next

time the adversary may make a challenge query.

Optimal Channel Security 53

intricate security definitions like ours there is often ambiguity or inconsistency in
subtle corner cases of the definition when written out fully in text. As such this
description should merely be considered an informal aid while the pseudocode
of Fig. 7 is the actual definition.

Comparison to recent definitions. The three recents works we studied while
deciding how to write our security definition were [7,14,26]. Their settings were
all distinct, but each presented security models that involve different “stages”
of keys. All three works made distinct decisions in how to address challenges
in different stages. In [27] we discuss these decisions, noting that they result in
qualitatively identical but quantitatively distinct definitions.

6 Construction of a Secure Channel

6.1 Our Construction

We are not aware of any secure channels that would meet (or could easily be mod-
ified to meet) our security notion. The “closest” (for some unspecified, informal
notion of distance) is probably the Signal Double Ratchet Algorithm. However,
it relies on symmetric authenticated encryption for both privacy and integrity
so it is inherently incapable of achieving our strong notion of security. Later,
we describe an attack against a variant of our proposed construction that uses
symmetric primitives to exhibit the sorts of attacks that are unavoidable when
using them. A straightforward variant of this attack would also apply against
the Double Ratchet Algorithm.

In this section we construct our cryptographic channel and motivate our
design decisions by giving attacks against variants of the channel. In Sect. 6.2 we
will prove its security by reducing it to that of its underlying components.

The idea of our scheme is as follows. Both parties will keep track of a tran-
script of the messages they have sent and received, τs and τr . These will be
included as a part of every ciphertext and verified before a ciphertext is accepted.
On seeing a new ciphertext the appropriate transcript is updated to be the hash
of the ciphertext (note that the old transcript is part of this ciphertext, so the
transcript serves as a record of the entire conversation). Sending transcripts
(vector of τs) are stored until the other party has acknowledged receiving a more
recent transcript.

For authenticity, every time a user sends a ciphertext they authenticate it
with a digital signature and include in it the verification key for the signing key
that they will use to sign the next ciphertext they send. Any time a user receives
a ciphertext they will use the new receiving transcript produced to update their
current signing key.

For privacy, messages will be encrypted using public-key encryption. With
every ciphertext the sender will include the encryption key for a new decryption
key they have generated. Decryption keys are stored until the other party has
acknowledged receiving a more recent encryption key. The encryption will use
as a label all of the extra data that will be included with the ciphertext (i.e. a

54 J. Jaeger and I. Stepanovs

sending counter, a receiving counter, an associated data string, a new verification
key, a new encryption key, a receiving transcript, and a sending transcript). The
formal definition of our channel is as follows.

Fig. 9. Construction of channel SCh = SCH[DS,PKE,H] from function family H, key-
updatable digital signature scheme DS, and key-updating public-key encryption scheme
PKE.

Cryptographic channel SCH[DS, PKE, H]. Let DS be a key-updatable digital sig-
nature scheme, PKE be a key-updating public-key encryption scheme, and H be
a family of functions. We build a cryptographic channel SCh = SCH[DS,PKE,H]
as defined in Fig. 9.

A user’s state stu, among other values, contains counters su, ru, r
ack
u . Here,

su is the number of messages that u sent to u, and ru is the number of messages
they received back from u. The counter racku stores the last value of ru in a

Optimal Channel Security 55

ciphertext received by u (i.e. the index of the last ciphertext that u believes u
has received and acknowledged). This counter is used to ensure that prior to
running a signature verification algorithm, the verification key vk is updated
with respect to the same transcripts as the signing key sk (at the time it was
used to produce the signature). Note that algorithm DS.Vrfy returns (vk′′, t)
where t is the result of verifying that σ is a valid signature for v with respect to
verification key vk′′ (using the notation convention from Sect. 3).

Inefficiencies of SCh. A few aspects of SCh are less efficient than one would a
priori hope. The state maintained by a user u (specifically the tables dku and
τ s,u) is not constant in size, but instead grows linearly with the number of
ciphertexts that u sent to u without receiving a reply back. Additionally, when
DS is instantiated with the particular choice of DS that we define in [27] the
length of the ciphertext sent by a user u will grow linearly in the number of
ciphertexts that u has received since the last time they sent a ciphertext. When
PKE is instantiated with the scheme we define in [27] there is an extra state being
stored that is linear in the number of ciphertexts that u has sent since it last
received a ciphertext. Such inefficiencies would be unacceptable for a protocol
like TLS or SSH, but in our motivating context of messaging is it plausible
that they are acceptable. Each message is human generated and the state gets
“refreshed” regularly if the two users regularly reply to one another. One could
additionally consider designing an app to regularly send an empty message whose
sole purpose is state refreshing. We leave as interesting future work improving
on the efficiency of our construction.

Design decisions. We will now discuss attacks against different variants of SCh.
This serves to motivate the decisions made in its design and give intuition for
why it achieves the desired security. Several steps in the security proof of this
construction can be understood by noting which of these attacks are ruled out
in the process.

The attacks are shown in Figs. 10 and 11. The first several attacks serve to
demonstrate that Ch.Send must use a sufficient amount of randomness (shown
in Da, Db, Dc) and that H needs to be collision resistant (shown in Db, Dc).
The next attack shows why our construction would be insecure if we did not use
labels with PKE (shown in Dd). Then we provide two attacks showing why the
keys of DS and PKE need to be updated (shown in De, Df). Then we show an
attack that arises if multiple valid signatures can be found for the same string
(shown in Dg). Finally, we conclude with attacks that would apply if we used
symmetric instead of asymmetric primitives to build SCh (shown in Dh, Di).

Scheme with insufficient sending entropy. Any scheme whose sending algorithm
has insufficient entropy will necessarily be insecure. For simplicity let SCh1 be a
variant of SCh such that SCh1.Send is deterministic (the details of how we are
making it deterministic do not matter). We can attack both the message privacy
and the integrity of such a scheme.

Consider the adversary Da. It exposes I, encrypts the message 1 locally,
and then sends a challenge query to I asking for the encryption of either 1 or

56 J. Jaeger and I. Stepanovs

Fig. 10. Attacks against variants of SCh.

0. By comparing the ciphertext it produced to the one returned by Send it
can determine which message was encrypted, learning the secret bit. We have
AdvaeacSCh1(Da) = 1. This attack is fairly straightforward and will be ruled out by
the security of PKE in our proof without having to be addressed directly.

The attacks against integrity are more subtle. They are explicitly addressed
in the first game transition of our proof. Let Ch = SCh1 and consider adversaries
Db and Dc. They both start by doing the same sequence of operations: expose I,
use its secret state to encrypt and send message 1 to R, then ask I to produce
an encryption of 1 for R (which will be the same ciphertext as above, because
SCh1.Send is deterministic). Now restrictedR = true because oracle Recv was
called on a trivially fogeable ciphertext that was not produced by oralce Send.
But R has received the exact same ciphertext that I sent. Different attacks are
possible from this point.

Adversary Db just asks R to send a message and forwards it along to I.
Since R was restricted the ciphertext does not get added to ctableI so it can be
used to discover the secret bit. We have AdvaeacSCh1(Db) = 1. Adversary Dc exposes
R and uses the state it obtains to create its own forgery to I. It then returns
1 or 0 depending on whether Recv returns the correct decryption or ⊥. This
attack succeeds because exposing R when it is restricted will not set any of the
variables that would typically prevent the adversary from winning by creating a
forgery. We have AdvaeacSCh1(Dc) = 1. We have not shown it, but another message
privacy attack at this point (instead of proceeding as Db or Dc) could have asked
for another challenge query from I, exposed R, and used the exposed state to
trivially determine which message was encrypted.

Optimal Channel Security 57

Scheme without collision-resistant hashing. If it is easy to find collisions in H then
we can attack the channel by causing both parties to have matching transcripts
despite having seen different sequences of ciphertexts. For concreteness let SCh2
be a variant of our scheme using a hash function that outputs 0128 on all inputs.
Let Ch = SCh2 and again consider adversaries Db and Dc. We no longer expect
the ciphertexts that they produce locally to match the ciphertexts returned by
I. However, they will have the same hash value and thus produce the same
transcript τr,R = 0128 = τs,I . Consequently, R still updates its signing key in
the same way regardless of whether it receives the ciphertext produced by I or
the ciphertext locally generated by adversary. So the messages subsequently sent
by R will still be accepted by I. We have AdvaeacSCh2(Db) = 1 and AdvaeacSCh2(Dc) = 1.

Scheme without PKE labels. Let SCh3 be a variant of SCh that uses a public-
key encryption scheme that does not accept labels and consider adversary Dd. It
exposes I and asks I for a challenge query. It then uses the state it exposed to
trivially modify the ciphertext sent from I (we chose to have it change ad from ε
to 1128) and sends it to R. Since the ciphertext sent to R has different associated
data than the one sent by I the adversary will be given the decryption of this
ciphertext. But without the use of labels this decryption by PKE is independent
of the associated data and will thus reveal the true decryption of the challenge
ciphertext to I. We have AdvaeacSCh3(Dd) = 1.

Schemes without key updating. We will now show why it is necessary to define
new forms of PKE and DS for our construction.

Let SCh4 be a variant of SCh that uses a digital signature scheme that does
not update its keys. Consider adversary De. It exposes I, then queries Send for
I to send a message to R, but uses the exposed secrets to replace it with a locally
produced ciphertext c. It calls Recv for R with c, which sets restrictedR = true.
Since the signing key is not updated in SCh4, the adversary now exposes R to
obtain a signing key whose signatures will be accepted by I. It uses this to forge
a ciphertext to I to learn the secret bit. We have AdvaeacSCh4(De) = 1.

Let SCh5 be a variant of SCh that uses a public-key encryption scheme that
does not update its keys. Consider adversary Df . It exposes I and uses this to
send R a different ciphertext than is sent by I (setting restrictedR = true). Since
the decryption key is not updated, the adversary now exposes R to obtain a
decryption key that can be used to decrypt a challenge ciphertext sent by I. We
have AdvaeacSCh5(Df) = 1.

Scheme with non-unique signatures. Let SCh6 be a variant of our scheme using a
digital signature scheme that does not have unique signatures. For concreteness,
assume that σ ‖ sk is a valid signature whenever σ is. Then consider adversary
Dg. It exposes I and has I send a challenge ciphertext. Then it modifies the
ciphertext by changing the signature and forwards this modified ciphertext on to
R. The adversary is given back the true decryption of this ciphertext (because it
was changed) which trivially reveals the secret bit of the game (here it is impor-
tant that the signature is not part of the label used for encryption/decryption).
We have AdvaeacSCh6(Dg) = 1.

58 J. Jaeger and I. Stepanovs

Fig. 11. Attacks against variants of SCh.

Scheme with symmetric primitives. Let SCh7 be a variant of our scheme that uses
a MAC instead of a digital signature scheme (e.g. vk = sk always, and vk is
presumably no longer sent in the clear with the ciphertext). Consider adversary
Dh. It simply exposes I and then uses I’s vk to send a message to I. This trivially
allows it to determine the secret bit. Here we used that PKE will decrypt any
ciphertext to a non-⊥ value. We have AdvaeacSCh7(Dh) = 1.

Similarly let SCh8 be a variant of our scheme that uses symmetric encryption
instead of public-key encryption (e.g. ek = dk always, and ek is presumably no
longer sent in the clear with the ciphertext). Adversary Di exposes user I and
then uses the corresponding ek to decrypt a challenge message encrypted by I.
We have AdvaeacSCh8(Di) = 1.

Stated broadly, a scheme that relies on symmetric primitives will not be
secure because a user will know sufficient information to send a ciphertext that
they would themselves accept or to read a message that they sent to the other
user. Our security notion requires that this is not possible.

6.2 Security Theorem

The following theorem bounds the advantage of an adversary breaking the AEAC
security of SCh using the advantages of adversaries against the CR security of

Optimal Channel Security 59

H, the UFEXP and UNIQ security of DS, the INDEXP security of PKE, and the
min-entropy of DS and PKE.

Theorem 1. Let DS be a key-updatable digital signature scheme, PKE be a
key-updating public-key encryption scheme, and H be a family of functions. Let
SCh = SCH[DS,PKE,H]. Let D be an adversary making at most qSend queries to
its Send oracle, qRecv queries to its Recv oracle, and qExp queries to its Exp
oracle. Then we can build adversaries AH, ADS, BDS, and APKE such that

AdvaeacSCh (D) ≤ 2 · (qSend · 2−μ + AdvcrH (AH) + AdvufexpDS (ADS)+

+ AdvuniqDS (BDS)) + AdvindexpPKE (APKE)

where μ = H∞(DS.Kg)+H∞(PKE.Kg)+H∞(PKE.Enc). Adversary ADS makes at
most qSend + 2 queries to its NewUser oracle, qSend queries to its Sign oracle,
and qExp queries to its Exp oracle. Adversary BDS makes at most qSend + 2
queries to its NewUser oracle. Adversary APKE makes at most qSend+2 queries
to its NewUser oracle, qSend queries to its Enc oracle, qRecv queries to its Dec
oracle, qSend + 2 queries to its ExpDk oracle, and min{qExp, qSend + 1} queries
to its ExpRand oracle. Adversaries AH, ADS, BDS, and APKE all have runtime
about that of D.

The proof is in [27]. It broadly consists of two stages. The first stage of
the proof (consisting of three game transitions) argues that the adversary will
not be able to forge a ciphertext to an unrestricted user except by exposing
the other user. This argument is justified by a reduction to an adversary ADS

against the security of the digital signature scheme. However, care must be taken
in this reduction to ensure that D cannot induce behavior in ADS that would
result in ADS cheating in the digital signature game. Addressing this possibility
involves arguing that D cannot predict any output of Send (from whence the
min-entropy term in the bound arises) and that it cannot find any collisions in
the hash function H.

Once this stage is complete the output of Recv no longer depends on the
secret bit b, so we move to using the security of PKE to argue that D cannot use
Send to learn the value of the secret bit. This is the second stage of the proof.
But prior to this reduction we have to make one last argument using the security
of DS. Specifically we show that, given a ciphertext (σ, v), the adversary will not
be able to find a new signature σ′ such that (σ′, v) will be accepted by the
receiver (otherwise since σ 	= σ′, oracle Recv would return the true decryption
of this ciphertext which would be the same as the decryption of the original
ciphertext and thus allow a trivial attack). Having done this, the reduction to
the security of PKE is straightforward.

Acknowledgments. We thank Mihir Bellare for extensive discussion on prelimi-
nary versions of this paper. We thank the CRYPTO 2018 reviewers for their com-
ments. Jaeger and Stepanovs were supported in part by NSF grants CNS-1717640 and
CNS-1526801.

60 J. Jaeger and I. Stepanovs

References

1. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 18

2. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: FOCS 1997 (1997)

3. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055718

4. Bellare, M., Kohno, T., Namprempre, C.: Breaking and provably repairing the ssh
authenticated encryption scheme: a case study of the encode-then-encrypt-and-mac
paradigm. ACM Trans. Inf. Syst. Secur. (TISSEC) 7(2), 206–241 (2004)

5. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 28

6. Bellare, M., Rogaway, P.: The security of triple encryption and a framework
for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 25

7. Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted
encryption and key exchange: the security of messaging. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 619–650. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9 21

8. Bellare, M., Yee, B.: Forward-security in private-key cryptography. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1–18. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36563-X 1

9. Boldyreva, A., Degabriele, J.P., Paterson, K.G., Stam, M.: Security of symmet-
ric encryption in the presence of ciphertext fragmentation. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 682–699. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 40

10. Borisov, N., Goldberg, I., Brewer, E.: Off-the-record communication, or, why not
to use PGP. In: ACM Workshop on Privacy in the Electronic Society (2004)

11. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS 2001 (2001)

12. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
J. Cryptol. 20(3), 265–294 (2007)

13. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28

14. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the Signal messaging protocol. In: Proceedings of IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P) (2017)

15. Cohn-Gordon, K., Cremers, C., Garratt, L.: On post-compromise security. In: IEEE
Computer Security Foundations Symposium (CSF) (2016)

16. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 28

https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-319-63697-9_21
https://doi.org/10.1007/3-540-36563-X_1
https://doi.org/10.1007/978-3-642-29011-4_40
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28

Optimal Channel Security 61

17. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Des. Codes Crypt. 2(2), 107–125 (1992)

18. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 5

19. Dodis, Y., Katz, J., Xu, S., Yung, M.: Strong key-insulated signature schemes. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 130–144. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36288-6 10

20. Dodis, Y., Luo, W., Xu, S., Yung, M.: Key-insulated symmetric key cryptography
and mitigating attacks against cryptographic cloud software. In: ASIACCS 2012
(2012)

21. Perrin, T. (ed.), Marlinspike, M.: The double ratchet algorithm, 20 November 2016.
https://whispersystems.org/docs/specifications/doubleratchet/

22. Fischlin, M., Günther, F., Marson, G.A., Paterson, K.G.: Data is a stream: security
of stream-based channels. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 545–564. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48000-7 27

23. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36178-2 34

24. Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable
encryption. In: IEEE Symposium on Security and Privacy (2015)

25. Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 5

26. Günther, F., Mazaheri, S.: A formal treatment of multi-key channels. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 587–618. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 20

27. Jaeger, J., Stepanovs, I.: Optimal Channel Security Against Fine-Grained State
Compromise: The Safety of Messaging. Cryptology ePrint Archive, Report
2018/XYZ (2018, To appear)

28. Krawczyk, H.: The order of encryption and authentication for protecting com-
munications (or: how secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 310–331. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44647-8 19

29. Langley, A.: Pond. GitHub repository, README.md (2012). https://github.com/
agl/pond/commit/7bb06244b9aa121d367a6d556867992d1481f0c8

30. Marson, G.A., Poettering, B.: Security notions for bidirectional channels. IACR
Trans. Symm. Cryptol. 2017(1), 405–426 (2017)

31. Mignotte, M.: How to share a secret? In: Beth, T. (ed.) EUROCRYPT 1982. LNCS,
vol. 149, pp. 371–375. Springer, Heidelberg (1983). https://doi.org/10.1007/3-540-
39466-4 27

32. Namprempre, C.: Secure channels based on authenticated encryption schemes: a
simple characterization. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501,
pp. 515–532. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-
2 32

33. Open Whisper Systems. Signal protocol library for Java/Android. GitHub reposi-
tory (2017). https://github.com/WhisperSystems/libsignal-protocol-java

34. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended
abstract). In: ACM PODC 1991 (1991)

https://doi.org/10.1007/3-540-46035-7_5
https://doi.org/10.1007/3-540-36288-6_10
https://whispersystems.org/docs/specifications/doubleratchet/
https://doi.org/10.1007/978-3-662-48000-7_27
https://doi.org/10.1007/978-3-662-48000-7_27
https://doi.org/10.1007/3-540-36178-2_34
https://doi.org/10.1007/3-540-46885-4_5
https://doi.org/10.1007/978-3-319-63697-9_20
https://doi.org/10.1007/3-540-44647-8_19
https://doi.org/10.1007/3-540-44647-8_19
https://github.com/agl/pond/commit/7bb06244b9aa121d367a6d556867992d1481f0c8
https://github.com/agl/pond/commit/7bb06244b9aa121d367a6d556867992d1481f0c8
https://doi.org/10.1007/3-540-39466-4_27
https://doi.org/10.1007/3-540-39466-4_27
https://doi.org/10.1007/3-540-36178-2_32
https://doi.org/10.1007/3-540-36178-2_32
https://github.com/WhisperSystems/libsignal-protocol-java

62 J. Jaeger and I. Stepanovs

35. Poettering, B., Rösler, P.: Ratcheted key exchange, revisited. Cryptology ePrint
Archive, Report 2018/296 (2018). https://eprint.iacr.org/2018/296

36. Rogaway, P.: Authenticated-encryption with associated-data. In: ACM CCS 2002
(2002)

37. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 23

38. Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11), 612–
613 (1979)

39. Shoup, V.: On formal models for secure key exchange. Cryptology ePrint Archive,
Report 1999/012 (1999). http://eprint.iacr.org/1999/012

40. Shoup, V.: A proposal for an ISO standard for public key encryption. Cryptology
ePrint Archive, Report 2001/112 (2001). https://eprint.iacr.org/2001/112

41. Tompa, M., Woll, H.: How to share a secret with cheaters. J. Cryptol. 1(2), 133–138
(1988)

42. Unger, N., Dechand, S., Bonneau, J., Fahl, S., Perl, H., Goldberg, I., Smith, M.:
SoK: secure messaging. In: IEEE Symposium on Security and Privacy (2015)

43. WhatsApp Blog. Connecting one billion users every day, 26 July 2017. https://
blog.whatsapp.com/10000631/Connecting-One-Billion-Users-Every-Day

https://eprint.iacr.org/2018/296
https://doi.org/10.1007/11761679_23
http://eprint.iacr.org/1999/012
https://eprint.iacr.org/2001/112
https://blog.whatsapp.com/10000631/Connecting-One-Billion-Users-Every-Day
https://blog.whatsapp.com/10000631/Connecting-One-Billion-Users-Every-Day

	Optimal Channel Security Against Fine-Grained State Compromise: The Safety of Messaging
	1 Introduction
	2 Preliminaries
	3 New Asymmetric Primitives
	3.1 Key-Updatable Digital Signature Schemes
	3.2 Key-Updating Public-Key Encryption Schemes

	4 Bidirectional Cryptographic Channels
	5 Security Notion for Channels
	5.1 Channel Interface Game
	5.2 Optimal Security of a Channel

	6 Construction of a Secure Channel
	6.1 Our Construction
	6.2 Security Theorem

	References

