
Non-malleable Secret Sharing for General
Access Structures

Vipul Goyal1 and Ashutosh Kumar2(B)

1 CMU, Mount Pleasant, USA
goyal@cs.cmu.edu

2 UCLA, Los Angeles, USA
a@ashutoshk.com

Abstract. Goyal and Kumar (STOC’18) recently introduced the notion
of non-malleable secret sharing. Very roughly, the guarantee they seek
is the following: the adversary may potentially tamper with all of the
shares, and still, either the reconstruction procedure outputs the origi-
nal secret, or, the original secret is “destroyed” and the reconstruction
outputs a string which is completely “unrelated” to the original secret.
Prior works on non-malleable codes in the 2 split-state model imply con-
structions which can be seen as 2-out-of-2 non-malleable secret sharing
(NMSS) schemes. Goyal and Kumar proposed constructions of t-out-of-n
NMSS schemes. These constructions have already been shown to have a
number of applications in cryptography.

We continue this line of research and construct NMSS for more general
access structures. We give a generic compiler that converts any statistical
(resp. computational) secret sharing scheme realizing any access struc-
ture into another statistical (resp. computational) secret sharing scheme
that not only realizes the same access structure but also ensures statis-
tical non-malleability against a computationally unbounded adversary
who tampers each of the shares arbitrarily and independently. Instan-
tiating with known schemes we get unconditional NMMS schemes that
realize any access structures generated by polynomial size monotone span
programs. Similarly, we also obtain conditional NMMS schemes realiz-
ing access structure in monotone P (resp. monotone NP) assuming
one-way functions (resp. witness encryption).

Towards considering more general tampering models, we also propose
a construction of n-out-of-n NMSS. Our construction is secure even if
the adversary could divide the shares into any two (possibly overlap-
ping) subsets and then arbitrarily tamper the shares in each subset. Our
construction is based on a property of inner product and an observation
that the inner-product based construction of Aggarwal, Dodis and Lovett
(STOC’14) is in fact secure against a tampering class that is stronger
than 2 split-states. We also show applications of our construction to the
problem of non-malleable message transmission.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10991, pp. 501–530, 2018.
https://doi.org/10.1007/978-3-319-96884-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96884-1_17&domain=pdf

502 V. Goyal and A. Kumar

1 Introduction

Secret sharing is a fundamental primitive in cryptography which allows a dealer
to distribute shares of a secret among several parties, such that only authorized
subsets of parties can recover the secret; the secret is “hidden” from all the
unauthorized set of parties. Shamir [Sha79] and Blakley [Bla79] initiated the
study of secret sharing by constructing threshold secret sharing schemes that
only allows at least t-out-of-n parties to reconstruct the secret. A rich line of
works have studied the construction of secret sharing schemes for more advanced
access structures [KW93,Bei,Bei11,KNY14].

A number of works have studied the setting where the primary goal of the
adversary is to instead tamper with the secret. This relates to the line of works
on error detecting codes such as algebraic manipulation detection(AMD) codes
[CDF+08], and, verifiable secret sharing [RBO89]. A more detailed overview of
the related works can be found later in this section.

Non-malleable Secret Sharing. Very recently, Goyal and Kumar [GK18] initiated
a systematic study of what they call non-malleable secret sharing. Very roughly,
the guarantee is the following: the adversary may potentially tamper with all
of the shares, and still, either the reconstruction procedure outputs the original
secret, or, the original secret is “destroyed” and the reconstruction outputs a
string which is completely “unrelated” to the original secret. This is a natural
guarantee which is inspired by applications in cryptography.

As noted by [GK18], 2-out-of-2 non-malleable secret sharing (NMSS) is equiv-
alent to non-malleable codes in the 2 split-state model. Constructing such split
state non-malleable codes has proven to be surprisingly hard. Though a bril-
liant line of works [DPW10,LL12,DKO13,ADL14,CGL16,Li17], such 2-split-
state codes have been constructed. However such an implication does not hold if
the number of shares is more than 2. To see this, consider a (contrived) example
of a 3 split-state non-malleable code where the encoding functions encodes the
message using a 2 split-state non-malleable code to obtain the first two states
and outputs the message (in the clear) in the third state. The decoding func-
tion simply ignores the third state and uses the first two states to decode the
message. Such a construction is a valid 3 split-state non-malleable code that is
not a 3-out-of-3 secret sharing scheme (in fact, it has no secrecy at all). Towards
that end, Goyal and Kumar proposed a construction of t-out-of-n NMSS scheme
where reconstruction could be done given any t shares, any set of less than
t shares has no information about the original secret, and, non-malleability is
guaranteed even if an adversary may tamper with each share.

Even though a relatively new primitive, non-malleable coding in the split
state model (or 2-out-of-2 NMSS) has already found a number of applications
in cryptography including in tamper-resilient cryptography [DPW10], designing
multi-prover interactive proof systems [GJK15] and obtaining efficient encryp-
tion schemes [CDTV16]. Very recently, non-malleable codes in the split-state
model were used as 2-out-of-2 non-malleable secret sharing scheme to obtain
3-round protocol for non-malleable commitments [GPR16].

Non-malleable Secret Sharing for General Access Structures 503

Our Question. We study the following natural question in this work:
Can we get non-malleable secret sharing schemes for access structures beyond

threshold?
As noted before, known results on split state non-malleable codes provide

2-out-of-2 NMSS. Goyal and Kumar [GK18] recently took a significant step
forward by constructing t-out-of-n NMSS schemes. However to our knowledge,
NMSS are not known access structures beyond threshold. For example, can we
get NMSS schemes for access structures which can be represented using log
depth circuits or polynomial sized boolean formulas? Can we get a NMSS for all
of monotone P? Or even better, can we get a NMSS for all of monotone NP?

Existing Secret-Sharing Schemes. As noted by Goyal and Kumar, most of the
secret sharing schemes known are linear [Bei, Chap. 4] and have nice algebraic
and geometric properties, which are harnessed to obtain efficient sharing and
reconstruction procedures. Non-malleable secret sharing schemes on the other
hand cannot be linear. As the secret is a linear combination of the shares in a
linear secret sharing scheme, the adversary can perform local operations on each
of the shares and encode any linear function of the secret. Indeed, the malleabil-
ity of linear secret sharing schemes, such as polynomials based Shamir’s secret
sharing scheme [Sha79], forms the basis of secure multi-party computation pro-
tocols [BOGW88]. For the purpose of constructing NMMS, any such alteration
is an “attack” and the goal is to build secret sharing schemes that necessarily
prohibit any such attacks.

1.1 Our Results

Generic Compiler for Individual Tampering. Recall that an access structure A
is a monotone collection of subsets of parties (such that every subsets of parties
in this set are authorized to reconstruct the secret; other subset of parties are
unauthorized). Our first main result is the following:

Theorem 1 (informal). For any access structure A that does not contain sin-
gletons1, if there exists an efficient statistical (resp. computational) secret shar-
ing scheme realizing access structure A, then there exists an efficient statistical
(resp. computational) secret sharing scheme realizing A that is statistically non-
malleable against an adversary who tampers each of the shares arbitrarily and
independently.

Karchmer and Wigderson [KW93] gave an efficient2 secret sharing scheme for
access structures that can be described by a polynomial-size monotone span pro-
gram. This is a general class for which efficient secret sharing schemes are known
1 We note that this is a necessary assumption, as otherwise the notion of non mal-

leability becomes meaningless. A single authorized party can recover the message
and trivially encode any related message.

2 A statistical secret sharing scheme is efficient if the sharing and reconstruction func-
tions run in poly

(
n, k, log(1/ε)

)
time where k is the size of the message and ε > 0

is the statistical error.

504 V. Goyal and A. Kumar

and includes undirected connectivity in a graph. Instantiating our compiler with
their scheme, we obtain the following corollary.

Corollary 1 (informal). For any access structure that can be described by a
polynomial-size monotone span program and does not contain a singleton, there
exists an efficient statistical secret sharing scheme that is statistically non-
malleable against an adversary who arbitrarily tampers each of the shares inde-
pendently.

In an unpublished work (mentioned in [Bei11,KNY14]), Yao constructed an
efficient computational secret-sharing scheme for access structures whose charac-
teristic function are computable by monotone circuit of polynomial-size (assum-
ing just one-way functions). Using this scheme, we get,

Corollary 2 (informal). If one-way functions exist, then for any access struc-
ture A that does not contain singletons and is computable by monotone boolean
circuits of polynomial size, there exists an efficient computational secret sharing
scheme that realizes A and is statistically non-malleable against an adversary
who arbitrarily tampers each of the shares independently.

Observe that the secret sharing scheme resulting from the above theorem
has statistical non-malleability (even though the secrecy is computational).
Furthermore, Komargodski et al. [KNY14], constructed efficient computational
secret sharing scheme for every monotone NP access structure assuming one
way functions and witness-encryption for NP [GGSW13]. This gives us the
following:

Corollary 3 (informal). If one-way functions and witness-encryption for
NP exist, then for every monotone NP access structure A that does not con-
tain singletons and supports efficient membership queries, there exists an effi-
cient computational secret sharing scheme that realizes A and is statistically
non-malleable against an adversary who arbitrarily tampers each of the shares
independently.

We say that an access structure supports efficient membership queries, if it
is possible to efficiently decide whether a given subset of parties is authorized
or not. For t-out-of-n, this is trivial. Similarly, for access structures based on
polynomial sized monotone boolean circuits, one can execute the corresponding
circuit to decide whether the input subset is authorized or not.

Towards Stronger Tampering Models. In addition to the individual tampering
model, Goyal and Kumar [GK18] also considered joint tampering where an
adversary may divide the set of shares into two disjoint sets and may tamper
with the shares in each set jointly. They additionally required the two subsets
to have different cardinalities (i.e., both of them must not have equal number
of shares). This holds even for the basic case of n-out-of-n secret sharing. We
present a new construction of n-out-of-n NMSS against a significantly more gen-
eral class of tampering functions. In particular, the adversary may partition the

Non-malleable Secret Sharing for General Access Structures 505

shares into any two (possibly overlapping) sets having up to n − 1 shares. For
example, the adversary may use the first n − 1 shares to produce the tampered
version of first n

2 shares, and uses the last n − 1 shares to produce the last n
2

shares.

Theorem 2 (informal). For any integer n ≥ 2, there exists an efficient sta-
tistical secret sharing scheme that encodes a secret into n shares, allows for
reconstruction of the secret only when all the n shares are available, and is also
statistically non-malleable against an adversary who partitions the n shares into
any two (possibly overlapping) non-empty subsets of its choice having up to n−1
shares each, and then, arbitrarily tampers the shares in each of the subsets (inde-
pendently of the shares in the other subset).

Our techniques in fact extend to allow the tampering of each share to depend
on all the n shares in a limited way (see Sect. 4 for more details).

Ito et al. [ISN89] showed that every access structure has a (possibly ineffi-
cient) secret sharing scheme. In a manner similar to their construction, we can
use the above n-out-of-n NMSS scheme for every minimal authorized set and
obtain the following existential result.

Corollary 4. For any access structure A that does not contain singletons, there
exists a (possibly inefficient) statistical secret sharing scheme that realizes A
and is statistically non-malleable against an adversary who chooses any minimal
authorized set, partitions it into two subset and arbitrarily tampers shares in
each of the subsets independently.

Interesting Corollaries of Our Techniques. We observe that the inner-product
construction of non-malleable codes of Aggarwal et al. [ADL14] can in fact with-
stand tampering which is stronger than 2 split state tampering.

Corollary 5 (informal). The 2 split-state non-malleable code of Aggarwal et al.
[ADL14] encodes a message as two vectors L and R of length λ over prime field
Zp. This scheme is even secure against an adversary

˜L ← f1(L) � g1(R)

˜R ← f2(L) � g2(R)

where (f1, f2, g1, g2) are arbitrary tampering functions and � represents
coordinate-wise multiplication of two vectors (that is L � R = (L1 × R1, L2 ×
R2, . . . , Lλ × Rλ)).

Compared to leakage-resilient non-malleable codes where the tampering of
the left share can depend on a bounded amount of information about the right
share, in the above, the tampered left share can be exactly equal to the right share.

As an application of NMSS, [GK18] initiated the study of non-malleable mes-
sage transmission. This guarantees that the receiver either receives the original
message, or, the original message is essentially destroyed and the receiver receives

506 V. Goyal and A. Kumar

an “unrelated” message, when the network is under the influence of an adver-
sary who can execute arbitrary protocol on each of the nodes in the network
(apart from the sender and the receiver). The adversary is even allowed to add
a bounded number of arbitrary hidden links which it can use in addition to the
original links for communicating amongst corrupt nodes.

Our techniques allow us to obtain a strict improvement over the results in
[GK18]. In fact, our result is tight. We first informally define the notion of non-
malleable paths. For a network represented by an undirected graph G, let G′ be
the induced subgraph of G with sender S and R removed. We define a collection
of paths from S to R to be non-malleable if in the induced subgraph G′ any
node is reachable by nodes present on at most one of these paths.

Corollary 6. In any network, with a designated sender S and receiver R, if
there exists a collection of n non-malleable paths from S to R, then non-malleable
secure message transmission protocol is possible with respect to an adversary
which adds at most n − 2 arbitrary hidden links in the network and byzantinely
corrupts all nodes other than S and R. Moreover, the bound of n − 2 is tight.

1.2 Our Techniques

First we briefly recall the construction of t-out-of-n NMSS secure against an
adversary which tampers each share independently [GK18].

Construction of [GK18]. Assume t ≥ 3. First they encode the secret m using a
2 split-state non-malleable code to obtain l, r ← NMEnc(m). Then they share
l using any t-out-of-n secret-sharing scheme to obtain l1, . . . , ln, and, encode r
using a 2-out-of-n leakage-resilient secret-sharing scheme to obtain r1, . . . , rn.
Final shares are of the form sharei = (li, ri). Given an adversary A who tam-
pers with each share sharei arbitrarily and independently, we would like to con-
struct a split state adversary (f, g) against the underlying non-malleable code.
A (somewhat oversimplified) high level structure of their proof is as follows:

1. Fix shares l1, . . . , lt−1 independent of the secret m. This can be done since l
is shared using a t-out-of-n secret-sharing and t ≥ 3. Shares l1, . . . , lt−1 are
hardcoded in the description of f and g.

2. The function g gets r as input and must output r̃, the tampered version
of r. Given r, g samples r1, r2 and hence now has share1 = (l1, r1) and
share2 = (l2, r2) (since l1 and l2 are hardcoded). Use adversary A to compute
˜share1 and ˜share2, and hence, r̃1 and r̃2. Reconstruct r̃ using r̃1 and r̃2 (recall
r was shared using a 2-out-of-n scheme) and output it.

3. The function f gets l as input and must output ˜l. As the first step, f uses
l to sample lt which is consistent with the fixed shares l1, . . . , lt−1. Next, f

must run adversary A to compute tampered shares ˜share1, . . . , ˜sharet which
would allow for recovery of ˜l1, . . . , ˜lt and hence ˜l. However note that f does
not have (r1, . . . , rt) and therefore cannot even compute share1. In fact, it
cannot have any two shares of r, as the tampering function f needs to be

Non-malleable Secret Sharing for General Access Structures 507

independent of r. Towards that end, [GK18] rely on the leakage resilience of
the secret sharing scheme to compute ˜l1, . . . , ˜lt.

Note that the above proof structure does not work when t = 2. For this case,
they device a (completely separate) 2-out-of-n NMSS scheme by giving every
pair an independent non-malleable encoding of the secret m.

Getting NMSS for General Access Structures. The natural starting point would
be to replace the t-out-of-n secret sharing used to share l by the given secret
sharing for the access structure in question. Instantiating this with various com-
putational and information theoretic secret sharing schemes would presumably
lead to NMSS for a variety of access structures including monotone P. However
this idea fails because of the following two basic issues.

Firstly, we have to deal with authorized sets of size two (‘pairs’) in the given
access structure (in case there are any). In case of [GK18], this was achieved by
simply giving an entirely different construction (with a separate proof) for the
case of t = 2. However in the setting of general access structures, the authorized
set of size two may coexist with authorized sets of larger size. We solve this issue
by efficiently constructing another access structure that has all authorized sets
that contain an authorized subset of size two, in addition to the original access
structure. Our hope would be to run NMSS for both these access structures
in “parallel” for the same message. However this leads to additional difficulties
in the proof of security related to composition: any authorized pair of parties
will now have the same message encoded under two different schemes, and the
split-state reduction to non-malleable codes fails.

Secondly, the construction in [GK18] heavily makes use of the fact that one
can sample some of the shares without having knowledge of the secret at all. Then
once the secret is available, you can “adjust” the remaining shares such that the
resulting set of shares altogether is sampled from the correct distribution. As
an example, see how the share lt is sampled in step 3 (see the summary of
[GK18] construction above). Indeed, such sampling is not just done once but at
multiple steps in the [GK18] construction. In the computational case however,
such an approach inherently breaks down. Since each share may have complete
information about the secret (the secret may only be computationally hidden),
one may not be able to sample a few shares independently of the secret and
then “adjust” the rest so that overall, they come from the correct distribution.
One could try to argue that even if the shares are sampled incorrectly, since
the tampering function does not get all of them as input, it may anyway be
indistinguishable to the tampering functions. However, such a guarantee is not
sufficient for non-malleability. The tampering functions individually may not be
able to distinguish correct shares from incorrect ones, and yet, the distribution
of their joint output might change completely.

To solve these issues, we use two additional ideas to make our construction
work.

1. Introduce “limited” information theoretic secrecy: We first compile the
underlying statistical (resp. computational) secret sharing scheme into

508 V. Goyal and A. Kumar

another which additionally guarantees that any two shares hide the secret
information theoretically (even if the secret sharing scheme was computa-
tional to begin with). This not only solves the first issue, but also paves a
way to the solution of the second issue. For the first issue, this approach
allows us to use non-malleable codes in a black-box way, as opposed to an
alternative approach, where we could have strengthened the underlying split-
state code to ensure non-malleability against “parallel” tamperings. For the
second issue, we are now allowed to fix up to two shares of l even for com-
putational schemes.

2. We use a secret sharing scheme with stronger leakage resilience properties:
For any two secrets, suppose an adversary is given some valid shares of each
of the secrets (potentially enough even to reconstruct the secret). Addition-
ally, the adversary is given individual leakage from the rest of the shares of
one secret. It should be statistically impossible for the adversary to iden-
tify whether the leakage corresponds to the first or the second secret. This
property is significantly stronger than the one needed by Goyal and Kumar
[GK18]. Unlike the proof of [GK18], this allows our reduction to generate t
shares that are statistically quite far from any valid set of t shares, and still
achieve statistical non-malleability.

Towards Stronger Tampering Models. Let us try to construct n-out-of-n secret
sharing schemes that are non-malleable against an adversary that arbitrarily
partitions the n shares into two non-empty subsets and jointly tampers the
shares in each of the these subsets independently.

First Attempt. Let us try to use a 2 split-state non-malleable code that encodes
the message into two parts, say l and r. We let l be the first share, and obtain
the last n − 1 shares by secret sharing r using a traditional (n-1)-out-of-(n-1)
secret sharing scheme. However, if the adversary tampers the first and last shares
together, the tampered versions of last share (in particular r) may depend of the
first share l and we will be not be able to obtain a split-state reduction to the
underlying non-malleable code.

Second Attempt. What about a tree-based construction? Consider, for example,
a complete binary tree with 2k leaves corresponding to 2k parties. To share a
secret, we put the secret at the root of this tree, and encode it using a non-
malleable code to obtain the value of nodes at level 1 (children of root). We can
recursively apply this process using several non-malleable codes to obtain the
value of all the 2k leaves, and these values correspond to the shares of 2k parties.
While this seems like a promising approach, the share size increases exponentially
with the depth of the tree (as constant rate statistical split-state non-malleable
codes are not yet constructed). Even more fundamentally, it is not clear how
to prove that such a construction is secure against arbitrary joint tampering.
As a concrete example, consider a simple depth 2 tree having 4 leaves. Suppose
adversary tampers the first and the last leaf together, and independently tampers
the second and the third leaf. It seems that stronger notions of non-malleable

Non-malleable Secret Sharing for General Access Structures 509

codes (while maintaining constant rate) are needed. Moreover, it appears that
different properties might be needed for different choices of partitioning.

Third Attempt. Can we extend the techniques of [GK18]? Unfortunately, when
the two subsets are of equal cardinality, their technique of using different degree
polynomials no longer seems to work.

Our Construction: We take a step back and construct n-out-of-n scheme in a
manner similar to the first attempt described above. Recall that we were struck
while trying to obtain a split-state reduction to the underlying non-malleable
code. Nevertheless, we observe an underlying ‘multiplicative structure’ present
in the code of Aggarwal et al. [ADL14] (hereby refered to as ADL construction) to
achieve split-state reduction avoiding the problem mentioned in the first attempt.

We begin by recalling the elegant inner-product based ADL construction.
They prove an amazing property of inner product, which roughly states that
any independent tampering of left and right vector can be translated to an
affine tampering of the output of inner product. This observation, reduces the
problem to creating non-malleable codes against split-state arbitrary tampering
functions to creating non-malleable codes against an affine function. To this end,
they introduce affine evasive function, which ensures non-malleability against
tampering by affine functions. Their proof relies on the linearity property satis-
fied by inner-product and is highly non-trivial relying on new results proved in
additive combinatorics.

Given two equal length vectors over some finite field, the decoder of ADL
computes inner-product and then applies the affine-evasive function to the out-
put. Instead of viewing the first step as inner-product, we take a more fine-
grained approach, and consider coordinate-wise multiplication of vectors to be
the first step, followed by an addition of the coordinates. Our main observation is
that the set of equal length vectors containing non-zero coordinates forms a finite
abelian group under the operation of coordinate-wise multiplication of vectors.
Next, we recall that Karnin et al. [KGH83] have shown how to use any abelian
group to construct a n-out-of-n secret sharing scheme. The resulting scheme is
quite simple, the reconstruction function will perform coordinate-wise multipli-
cation of all the n vectors to obtain the secret vector, and we can proceed as
in ADL, by computing sum of coordinates and then applying the affine evasive
function to the sum.

We elaborated our scheme in the above fashion, instead of directly stating
that we will use generalized inner-product instead of inner-product, because it
is more insightful in conveying our proof ideas. In particular, we essentially use
the associativity and commutativity of the mentioned abelian group (formed by
coordinate-wise multiplication of non-zero field elements) to handle arbitrary
partitions. Given any partitioning of n vectors into two subsets, we can use the
commutativity of the abelian group to collect all the vectors of the first subset,
and independently collect all the vectors of the second subset together. After
which we can use the associativity of the same group to coordinate-wise multiply
all the vectors in the first subset together, and independently coordinate-wise

510 V. Goyal and A. Kumar

multiply all the vectors of the second subset. Notice, that now we are left with
exactly two vectors corresponding to each of the two subsets, and we might be
able to utilize the non-malleability of the ADL construction which works for two
vectors. If we did not rely on this structure, we would have had to generalize the
entire additive-combinatorics based proof of the ADL construction.

Paper Organization. We define various primitives in Sect. 2. We give our generic
compiler in Sect. 3. We give the construction of n-out-of-n schemes supporting
joint-tampering in Sect. 4.

Related Works. A number of works in the literature ensure that the correct
secret is recovered even when some number of shares are arbitrarily corrupted.
Concepts from error correcting codes have been useful in obtaining such schemes
[Sha79,MS81]. In a seminal work [RBO89], Rabin and Ben-Or introduced ver-
ifiable secret sharing, which allowed the adversary to tamper almost half the
shares, and still ensured that the adversary cannot cause the reconstruction pro-
cedure to output an incorrect message (except with exponentially small error
probability). Cramer et al. [CDF+08], in a beautiful work introduced algebraic
manipulation detection(AMD) codes and gave almost optimal constructions for
them. These codes allow the adversary to “blindly” add any value to the code-
word, and ensure that any such algebraic tampering will be detected with high
probability. They used such codes to construct robust secret sharing schemes,
which allowed adversary to tamper with any unauthorized subset of shares.

As already noted, 2 split state non-malleable codes can be seen as 2-out-
of-2 non-malleable secret sharing schemes in which both the shares can be
independently tampered. Though a brilliant line of works, such split-state non-
malleable codes have been constructed [DPW10,LL12,DKO13,ADL14,CGL16,
Li17]. [GK18] construct t-out-of-n non-malleable secret sharing schemes.

2 Definitions

We use capital letters to denote distributions and their support, and correspond-
ing small letters to denote a sample from the distribution. Let [m] denote the set
{1, 2, . . . ,m}, and Ur denote the uniform distribution over {0, 1}r. Unless other-
wise stated, Fp is a finite field of order prime (power) p. For any set B ∈ [n], let
⊗i∈BSi denote the Cartesian product Si1 × Si2 × . . . × Si|B| , where i1, i2 . . . i|B|
are ordered elements of B, such that ij < ij+1.

Definition 1 (min-entropy). The min-entropy of a source X is defined as

H∞(X) = min
x∈Support(X)

{

1
log(Pr[X = x])

}

A (n, k)-source is a distribution on {0, 1}n with min-entropy k. A distribution
D is flat if it is uniform over a set S.

Non-malleable Secret Sharing for General Access Structures 511

Definition 2 (Statistical Distance). Let D1 and D2 be two distributions on
a set S. The statistical distance between D1 and D2 is defined to be:

|D1 − D2| = max
T⊆S

|D1(T) − D2(T)| =
1
2

∑

s∈S

|Pr[D1 = s] − Pr[D2 = s]|

We say D1 is ε-close to D2 if |D1 − D2| ≤ ε. Sometimes we represent the same
using D1 ≈ε D2.

2.1 Non-malleable Codes

Definition 3 (Coding Schemes) ([ADL14]). A coding scheme consists of two
functions: an encoding function (possibly randomized) Enc : M → C, and a
deterministic decoding function Dec : C → M∪{⊥} such that, for each m ∈ M,
Pr(Dec(Enc(m)) = m) = 1 (over the randomness of the encoding function).

Definition 4 (Non-Malleable Codes) ([ADL14]). Let F be some family of
tampering functions. For each f ∈ F , and m ∈ M, define the tampering experi-
ment

Tamperfm =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

c ← Enc(m)
c̃ ← f(c)

m̃ ← Dec(c̃)
Output : m̃

⎫

⎪

⎪

⎬

⎪

⎪

⎭

which is random variable over the randomness of the encoding function Enc.
We say a coding scheme (Enc,Dec) is ε-non-malleable w.r.t F if for each
f ∈ F , there exists a distribution Df (corresponding to the simulator) over
M ∪ {same∗,⊥} such that, for all m ∈ M, we have that the statistical distance
between Tamperf

m and

Simf
m =

{

m̃ ← Df

Output : mif m̃ = same∗, or m̃, otherwise

}

is at most ε. Additionally, Df should be efficiently samplable given oracle access
to f(.).

2.2 Secret Sharing Schemes

The following definition is inspired from the survey [Bei11].

Definition 5 (Access Structure and Sharing function). A collection A is
called monotone if B ∈ A and B ⊆ C, then C ∈ A. Let [n] = {1, 2, . . . , n} be
a set of identities of n parties. An access structure is a monotone collection
A ⊆ 2{1,...,n} of non-empty subsets of [n]. Sets in A are called authorized, and
sets not in A are called unauthorized.

For any access structure A, we define minimal basis access structure
of A, denoted by Amin, as the minimal subcollection of A, such that for all

512 V. Goyal and A. Kumar

authorized set T ∈ A, there exists an authorized subset B ⊆ T which is an
element of Amin.

Let M be the domain of secrets. A sharing function Share is a randomized
mapping from M to S1 × S2 × . . . × Sn, where Si is called the domain of shares
of party with identity j. A dealer distributes a secret m ∈ M by computing the
vector Share(m) = (s1, . . . , sn), and privately communicating each share sj to
the party j. For a set S ⊆ {p1, . . . , pn}, we denote Share(m)S to be a restriction
of Share(m) to its S entries.

Definition 6 (Secret Sharing Scheme [Bei11]). Let M be a finite set of
secrets, where |M| ≥ 2. A sharing function Share with domain of secrets M
is a (n, ε)-Secret Sharing Scheme realizing an access structure A if the fol-
lowing two properties hold:

1. Correctness. The secret can be reconstructed by any authorized set of par-
ties. That is, for any set B ∈ A, where B = {i1, . . . , i|B|}, there exists a
deterministic reconstruction function RecB : ⊗i∈BSi → M such that for
every m ∈ M,

Pr[RecB(Share(m)B) = m] = 1

(over the randomness of the Sharing function)
2. Statistical Privacy. Any collusion of unauthorized parties should have

“almost” no information about the underlying secret. More formally, for any
unauthorized set T ∈ A, and for every pair of secrets a, b ∈ M, for any
distinguisher D with output in {0, 1}, the following holds:

|Prshares←Share(a)[D(sharesT)=1]−Prshares←Share(b)[D(sharesT)=1]| ≤ ε

The special case of ε = 0, is known as Perfect Privacy.

We use the definition of leakage-resilience from [GK18].

Definition 7 (Leakage-Resilient Secret Sharing Schemes). Let L be some
family of leakage functions. We say that the (n, ε)-secret sharing scheme,
(Share,Rec), realizing access structure A is ε′-leakage-resilient w.r.t L if for
each f ∈ L, and for any two messages a, b ∈ M, any distinguisher D with output
in {0, 1}, the following holds:

|Prshares←Share(a)[D(f(shares))=1]−Prshares←Share(b)[D(f(shares))=1]|≤ε′

We generalize the definition of non-malleable secret sharing schemes of
[GK18] to general access structures.

Definition 8 (Non-Malleable Secret Sharing Schemes). Let A be some
access structure. Let Amin be its corresponding minimal basis access structure.
Let F be some family of tampering functions. For each f ∈ F , m ∈ M and
authorized T ∈ Amin, define the tampering experiment

STamperf ,Tm =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

shares ← Share(m)
˜shares ← f(shares)
m̃ ← Rec(˜sharesT)

Output : m̃

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

Non-malleable Secret Sharing for General Access Structures 513

which is a random variable over the randomness of the sharing function Share.
We say that the (n, ε)-secret sharing scheme, (Share,Rec), realizing access
structure A is ε′-non-malleable w.r.t F if for each f ∈ F and authorized
T ∈ Amin, there exists a distribution SDf,T (corresponding to the simulator)
over M ∪ {same∗,⊥} such that, for all m ∈ M and all authorized T ∈ Amin,
we have that the statistical distance between STamperf,T

m and

SSimf ,T
m =

{

m̃ ← SDf,T

Output : m if m̃ = same∗, or m̃, otherwise

}

is at most ε′.

2.3 Threshold Access Structure At
n

Apart from general access structure we will be interested in a special access
structure which allows any t-out-of-n parties to pool their secret and reconstruct
the secret. This threshold access structure can be formally represented as At

n =
{B ⊆ [n] : |B| ≥ t}. We use the notation of (t, n, ε)-secret sharing sharing
schemefor denoting (n, ε)-secret sharing scheme realizing access structure At

n.

3 Non-malleable Secret Sharing Against Individual
Tampering

In this section we show how to convert any secret sharing scheme into a non-
malleable one against an adversary who arbitrarily tampers each of the shares
independently. We begin recalling the tampering family from [GK18]:

Split-State Tampering Family Fsplit
n

Let Share be a sharing function that takes as input a message m ∈ M and
outputs a shares shares ∈ ⊗i∈[n]Si. Parse the output shares into n blocks,
namely share1, share2, . . . , sharen where each sharei ∈ Si. For each i ∈ [n], let
fi : Si → Si be an arbitrary tampering function, that takes as input sharei, the
ith share. Let Fsplit

n be a family of such n functions (f1, f2, . . . , fn).
Note that above definition is written with respect to a sharing function. It

is just for ease of presentation, we can use this family of tampering functions
with respect to a coding scheme, by treating the encoding procedure as a sharing
function. We also recall a lemma, which can be used to show that every 2 split-
state non-malleable code is a 2-out-of-2 non-malleable secret sharing scheme.

Lemma 1 ([ADKO15]). Let Enc : M → C2 be the encoding function, and
Dec : C2 → M ∪ {⊥} be a deterministic decoding function. If a coding scheme
(Enc,Dec) is ε-non-malleable w.r.t Fsplit

2 then (Enc,Dec) is also a (2, 2ε)-
secret sharing scheme that is ε-non-malleable w.r.t Fsplit

2 , where Enc acts as a
sharing function.

514 V. Goyal and A. Kumar

Access Structures Based Definitions. As our building blocks, we will use secret-
sharing schemes that allow any authorized “pair” to reconstruct the secret.
We formally define such “paired” access structures below, and construct these
schemes in the full version.

Definition 9 (Paired Access Structures). An access structure A is called a
paired access structure, if each authorized set contains an authorized subset
of size two. Formally, for all B ∈ A, there exists a subset C ⊆ B such that C is
authorized and has cardinality two.

Notice that, if A is a paired access structure then its corresponding minimal
basis access structure Amin will only contain authorized sets of size two.

Definition 10 (Authorized Paired Access Structures). For any access
structure A, we call a paired access structure Apairs an authorized paired
access structure corresponding to A if Apairs is the maximal subcollection of
A. Formally,

Apairs = {B ∈ A : ∃C ⊆ B, (C ∈ A) ∧ (|C| = 2)}

Notice that Amin
pairs will be equal to the set of all the authorized sets of size two

in A.

Leakage Family. We also use a 2-out-of-n leakage-resilient secret sharing scheme.
While in [GK18] split state family of leakage-resilience was needed, we require
leakage-resilience against the following stronger leakage family.

Leakage Family Lpair
µ

Let (LRShare,LRRec) be any (2, n, ε)-secret sharing scheme with message
space M. For any i, j ∈ [n], for each k ∈ [n] \ {i, j}, let fk be an arbitrary
function that takes sharei as input and outputs μ bits of information about its
input. For any collection of such functions, any pair of message a0, a1 ∈ M, any
independently chosen bit b ∈ {0, 1}, we define the leakage experiment as,

Leaka0,a1

b =

⎧

⎨

⎩

a0
1, . . . , a

0
n ← LRShare(a0)

a1
1, . . . , a

1
n ← LRShare(a1)

Output : a0
i , a

0
j , a

1
i , a

1
j ,⊗k∈[n]\{i,j}fk(ab

k)

⎫

⎬

⎭

We say that the scheme (LRShare,LRRec) is ε-leakage-resilient w.r.t. Lpair
μ if

for every pair of message a0, a1 ∈ M, we have that

Leaka0,a1

0 ≈ε Leaka0,a1

1

In full version, we prove that the construction of [GK18] is in fact leakage-
resilient against Lpair

μ .

Building Blocks. In our constructions for general access structure, we need a
method to find a minimal authorized set, when given any authorized set. For any

Non-malleable Secret Sharing for General Access Structures 515

access structure A not containing singletons, we define a deterministic procedure
FindMinSet : A → Amin, which takes an authorized set and outputs a minimal
authorized set contained in that set. The description follows:

Procedure FindMinSetA(S)
On input an authorized set S for an access structure A, if there exists an i ∈ S
and j ∈ S such that i = j and {i, j} ∈ A, then return the lexicographical
smallest pair {i, j} satisfying these conditions, otherwise initialize T ← D and
execute the following loop: let T be an ordered set of t elements i1, i2, . . . , it.
For j ∈ [t], check if T \ {ij} belongs to A, in which case set T ← T \ {ij} and
go the beginning of the loop. If no such j exists, then break from the loop and
output T .

The runtime of the above procedure is O(n2), because in each step of the
loop it removes one element from the set T , whose size is upper bounded by the
number of parties n. Note that, we assumed a membership query oracle, which
decides whether the given set is authorized or not.

Pruning Compiler. As a building block towards our generic compiler, we need
another compiler that given any statistical (resp. computational) secret sharing
scheme realizing any access structure, outputs another secret sharing scheme
that deauthorizes all authorized pairs while preserving the underlying statis-
tical/computational secrecy. That is, it additionally guarantees that any two
shares perfectly hide the secret.

Lemma 2. For any efficient statistical (resp. computational) secret sharing
scheme (AShare,ARec) realizing access structure A that does not contain sin-
gletons, there exists another efficient statistical (resp. computational) secret shar-
ing scheme (APShare,APRec) which satisfies the following properties.

1. (APShare,APRec) realizes the access structure A with authorized pairs
removed. The statistical error remains the same if the input is a statistical
scheme.

2. (APShare,APRec) ensures that given any two shares, the secret is perfectly
hidden.

Proof. We give the construction of (APShare,APRec), deferring the proof
to full version. Let n be the number of parties, and F be the secret space. Let
AShare share an element of F into n elements of field F1. Let (TShare3n,TRec3n)
and (TShare22,TRec22) be two threshold secret sharing scheme instantiated
with Shamir’s Secret Sharing scheme [Sha79] mapping an element of F1 into
shares in F1 having threshold 2 and 3 respectively.

– Sharing function APShare. On input m ∈ F , share m using AShare
to obtain m1, . . . ,mn ← AShare(m). For each i ∈ [n], share mi using
TShare22 to obtain li, ri ← TShare22(mi) and share ri using TShare3n to
obtain r1i , . . . , rn

i ← TShare3n (ri). For each i ∈ [n] construct sharei as
li, r

i
1, . . . , r

i
n. Output share1, . . . , sharen.

516 V. Goyal and A. Kumar

– Reconstruction Function APRec. On input the shares ⊗i∈T sharei corre-
sponding to authorized set T ∈ A with |T | ≥ 3, for each i ∈ T , parse sharei

as li, r
i
1, . . . , r

i
n. For each i ∈ [n], reconstruct ri ← TRec3n (⊗i∈T ri). For each

i ∈ T , reconstruct mi ← TRec22(li, ri). Reconstruct m ← ARec(⊗i∈T mi).
Output m.

As our compiler also works with computational schemes, we first define them.
Please refer to the book by Goldreich [Gol07] for definition of computational
indistinguishability.

Definition 11 (Computational Secret Sharing). Let M be a finite set of
secrets, where |M| ≥ 2. An efficient sharing function Share with domain of
secrets M is a Computational Secret Sharing Scheme realizing an access
structure A if the following two properties hold:

1. Correctness. The secret m can be reconstructed by any authorized set of
parties. That is, for any set B ∈ A(where B = {pi1 , . . . , pi|B|}), there exists
an efficient deterministic reconstruction function ReconstructB : Si1 × Si2 ×
. . . Si|B| → M such that for every m ∈ M,

Pr[ReconstructB(Share(m)B) = m] = 1

(over the randomness of the Sharing function)
2. Computational Privacy. An unauthorized set of parties should be unable

to distinguish whether the hidden secret is m0 or m1 for all m0,m1 ∈ M.
More formally, for any set T /∈ A, for every two secrets a, b ∈ M, any PPT
adversary should not be able to distinguish between,

Share(a)T ≈ Share(b)T

where the two distributions are computationally indistinguishable.

Main Result for General Access Structures. We are now in position to give our
main result.

Theorem 3. For any number of parties n, and any access structure A that does
not contain singletons. If we have the following primitives:

1. For any ε1 ≥ 0, let (NMEnc,NMDec) be any coding scheme that is ε1-
non-malleable wrt Fsplit

2 , which encodes an element of the set F0 into two
elements of the field F1.

2. For any ε2 ≥ 0, let (AShare,ARec) be any (n, ε2)-secret sharing scheme
(resp. computational) realizing access structure A, which shares an element
of field F1 into n elements of the field F2.

3. Let μ ← log |F2|. For any ε3 ≥ 0, let (LRShare,LRRec), be any (2, n, ε3)-
secret sharing scheme that is ε3-leakage-resilient w.r.t. Lpair

μ , which shares
an element of the field F1 into n elements of the field F3.

Non-malleable Secret Sharing for General Access Structures 517

4. For any ε4 ≥ 0, let (PNMShare,PNMRec), be any (n, ε4)-secret sharing
scheme realizing the authorized paired access structure Apairs that is ε4-non-
malleable wrt Fsplit

n , which shares an element of the set F0 into n elements
of the field F4.

then there exists (n, 2ε1 + ε2 + ε4)-secret sharing scheme (resp. computational)
realizing access structure A that is (2ε1 + ε2 + ε3 + ε4)-non-malleable w.r.t Fsplit

n .
The resulting scheme, (NMShare,NMRec), shares an element of the set F0

into n shares where each share is an element of (F2 × F3 × F4). Further, if the
four primitives have efficient construction (polynomial time sharing and recon-
struction functions), then the constructed scheme is also efficient.

Proof. We begin with the construction of the desired non-malleable secret
sharing scheme. Apply Lemma 2 to the computational secret sharing
scheme (AShare,ARec) to obtain a pruned secret sharing scheme
(APShare,APRec).

– Sharing function NMShare: Encode the secret input m ∈ F1 using the
encoding function of the non-malleable code. Let l, r ← NMEnc(m). Share
l using a APShare to obtain l1, . . . , ln ← APShare(l). Share r using a 2-
out-of-n leakage-resilient secret sharing scheme. Let r1, . . . , rn ← LRRec(r).
Use the sharing procedure PNMShare to share m. Let (p1, . . . , pn) ←
PNMShare(m). Then for each i ∈ [n], construct sharei as li, ri, pi.

– Reconstruction function NMRec: On input the shares ⊗i∈Dsharei corre-
sponding to authorized set D, for each i ∈ D, parse sharei as (li, ri, pi). Find
the minimal authorized set T ∈ Amin by running the procedure findMinSet
with input D. Let T be a set containing t indices {i1, i2, . . . , it} such that
ij < ij+1 for each j ∈ [t − 1]. If D ∈ Apairs, use the decoding procedure
PNMRec{i1,i2} to obtain the hidden secret m ← PNMRec{i1,i2}(pi1 , pi2).
Otherwise, run the reconstruction procedure APRec on t shares of l, to
obtain l ← APRec(⊗i∈T li). Run the reconstruction procedure of the
leakage-resilient secret sharing scheme on the first 2 shares of r, to obtain
r ← LRRec{i1,i2}(ri1 , ri2). Decode l and r using decoding process of under-
lying non-malleable code to obtain: m ← NMDec(l, r). Output m.

Correctness and Efficiency: Trivially follows from the construction.

Statistical (resp. Computational Privacy): We prove statistical privacy
using hybrid argument. For ease of understanding, let sharei be of the form
ali, ari, api when the secret a is encoded by the sharing procedure NMShare.
Similarly, let sharei be of the form bli, bri, bpi when the secret b is encoded. Let
T be an unauthorized set containing t indices {i1, i2, . . . , it} such that ij < ij+1

for each j ∈ [t − 1]. We describe the hybrids below:

1. Hybrid1: for each i ∈ T , sharei is of the form ali, ari, api. The distribution of
these t shares is identical to distribution obtained on running the NMShare
on input a. Output ⊗i∈T sharei.

518 V. Goyal and A. Kumar

2. Hybrid2: Sample the shares as in Hybrid1, the previous hybrid. For each
i ∈ T , replace ali with bli to obtain share of the form bli, ari, api. Output
⊗i∈T sharei.

3. Hybrid3: Sample the shares as in Hybrid2, the previous hybrid. For each
i ∈ T , replace ari with bri to obtain share of the form bli, bri, api. Output
⊗i∈T sharei.

4. Hybrid4: Sample the shares as in Hybrid3, the previous hybrid. For each
i ∈ T , replace api with bpi to obtain share of the form bli, bri, bpi. Output
⊗i∈T sharei. The distribution of these t shares is identical to distribution
obtained on running the NMShare on input b. Output ⊗i∈T sharei.

Claim: For any pair of secrets a, b ∈ F0, any unauthorized T ∈ A, the statistical
distance between Hybrid1 and Hybrid2 is at most ε2 (resp. Hybrid1 and
Hybrid2 are computationally indistinguishable).
Proof: The two hybrids only differ in the shares of l. As T is unauthorized in A,
the claim follows from the statistical (resp. computational) privacy of the secret
scheme (AShare,ARec). �
Claim: For any pair of secrets a, b ∈ F0, any unauthorized T ∈ A, the statistical
distance between Hybrid2 and Hybrid3 is at most 2ε1.
Proof: As in [GK18], the two hybrids are statistically indistinguishable by the
(2, 2ε1)-secrecy satisfied by the non-malleable code (NMEnc,NMDec) (as in
Lemma 1), by utilizing that fact knowing only r reveals nothing about the under-
lying message m. �

Claim: For any pair of secrets a, b ∈ F0, any unauthorized T ∈ A, the statistical
distance between Hybrid3 and Hybrid4 is at most ε4.
Proof: T ∈ A, implies that T ∈ Apairs. The two hybrids only differ in the shares
corresponding to output of PNMShare. The claim follows from the statistical
privacy of (PNMShare,PNMRec). �

By repeated application of triangle inequality, we get that for any a, b ∈
F0, any unauthorized T ∈ A, the statistical distance between Hybrid1 and
Hybrid4 is at most 2ε1 + ε2 + ε4 (resp. the hybrids Hybrid1 and Hybrid4 are
computationally indistinguishable). This proves the statistical (resp. computa-
tional) privacy of our scheme.

Statistical Non Malleability: To prove non-malleability of the current secret
sharing scheme, we give a simulator for every admissible tampering attack on
our scheme by using the simulator of the underlying non-malleable code after
we have given an equivalent split-state tampering attack.

Let us begin with the intuition for the procedure FindMinSet. Notice that
for general access structures, it is possible that the given authorized set has an
authorized subset of size two, and another disjoint (minimal) authorized set of
size three. Moreover, in our construction different schemes are being used to
encode for these subsets. In case our output depends on all these five shares,
we cannot hope to achieve a reduction to the underlying non-malleable code
(because by definition, non-malleability holds only when the adversary is given

Non-malleable Secret Sharing for General Access Structures 519

one encoding of the message, and it tampers to produce only one encoding.
In the present case it gets two encodings of the same message). We solve such
an issue by giving the procedure FindMinSet in Subsect. 3, which prunes the
given authorized set efficiently and ensures that no proper subset of the output
(minimal) authorized set is authorized. It is easy to see that this procedure needs
to be deterministic for us to be able to argue that share reconstructed in real
experiment is equal to the one in reduction. Given this observation, without loss
of generality we can assume that adversary chooses an authorized set T ∈ Amin

to be used for reconstruction of the secret, as otherwise we can use the function
FindMinSet to compute T ∈ Amin from any D ∈ A. As the adversary belongs
to Fsplit

n , it also specifies a set of n tampering functions {fi : i ∈ [n]}. All
these functions act on their respective shares independently of the other shares,
i.e. every fi takes sharei as input and outputs the tampered ˜sharei. We can
also assume without loss of generality that all these tampering functions are
deterministic, as the computationally unbounded adversary can compute the
optimal randomness. Unlike [GK18], depending on the cardinality of T , we use
these tampering functions to create explicit split-state function to tamper with
either non-malleable code or paired non-malleable secret-sharing.

Case 1 (|T | = 2)
Let i1 and i2 be the two indices of T such that i1 < i2. In this case, we
use the tampering functions fi1 and fi2 for the scheme (NMShare,NMRec)
to create explicit tampering functions Fi1 and Fi2 for the underlying scheme
(PNMShare,PNMRec). The reduction is described below:

1. (Initial Setup): Randomly choose a message m$ ∈ M, and run the shar-
ing function NMShare with input m$ to obtain temporary shares. That is,
(tShare1, . . . , tSharen) ← NMShare(m$). For each i ∈ [n], parse tSharei

as tli, tri, tpi.
2. The tampering function Fi1 is defined as follows: On input pi1 ∈ F4, replace

tpi1 by pi1 in tSharei1 to obtain sharei1 . Run fi1 on sharei1 to obtain ˜sharei1 .
Parse ˜sharei1 as ˜li1 , r̃i1 , p̃i1 . Output p̃i1 .

3. The tampering function Fi2 is defined as follows: On input pi2 ∈ F4, replace
tpi2 by pi2 in tSharei2 to obtain sharei2 . Run fi2 on sharei2 to obtain ˜sharei2 .
Parse ˜sharei2 as ˜li2 , r̃i2 , p̃i2 . Output p̃i2 .

The functions Fi1 and Fi2 have been defined in this way to ensure that the
secret hidden by the shares li1 and li2 of the scheme (PNMShare,PNMRec) is
the same as the secret hidden by sharei1 and sharei2 of the scheme (NMShare,
NMRec). We also need to argue that the reduction generates sharei1 and
share2 from the right distribution, as otherwise the functions fi1 and fi2 may
detect the change in distribution and stop working. Similar to the proof of statis-
tical privacy, we can use hybrid argument to show that, for any pi1 and pi2 encod-
ing message m ← PNMRec{i1,i2}(pi1 , pi2), the statistical distance between the
distribution of sharei1 , sharei2 generated while executing NMShare(m) and

520 V. Goyal and A. Kumar

the two shares generated by the reduction is at most 2ε1. We rely on 2-out-
of-2 secrecy property satisfied by non-malleable codes to show that even after
learning r from the two shares, we learn nothing about the underlying secret.
We also relied on the fact that two shares of l reveal nothing about l by the
property of the pruning compiler (as in Lemma2). Note that here we relied on
the pruning compiler to ensure that any authorized pair will only get the encod-
ing of the message under the pair-wise scheme (PNMShare,PNMRec) and
not the other scheme.

For all i ∈ [n] \ {i1, i2}, let Fi be the identity function. The created set of
functions {Fi : i ∈ [n]} belongs to Fsplit

n . Therefore, the tampering experiments
of the two non-malleable secret-sharing scheme (see Definition 8) are statistically
indistinguishable, specifically,

STamperf ,Tm ≈2ε1 STamperF,T
m

By the ε4-non malleability of the scheme (PNMShare,PNMRec), there
exists a simulator SSimF,T

m such that STamperF,T
m ≈ε4 SSimF,T

m . We use the
underlying simulator as our simulator, and let SSimf ,T

m ≡ SSimF,T
m . Applying

triangle inequality to the above relations we prove the statistical non malleability
for this case.

STamperf ,Tm ≈2ε1+ε4 SSimf ,T
m

Case 2 (|T | ≥ 3)
Let T = {i1, i2 . . . it} be an ordered set of t indices, such that ij < ij+1. In
this case, we use the tampering functions {fi : i ∈ T} that tamper the shares
of the scheme (NMShare,NMRec) to create explicit tampering functions F
and G which tamper the two parts of non-malleable code. Note that as Fsplit

2

allows arbitrary computation, the functions F and G are allowed to brute force
over any finite subset. The reduction giving explicit (F,G) ∈ Fsplit

2 is described
below.

1. (Initial Setup): Fix an arbitrary m$ and let l$, r$ ← NMEnc(m$). Run
the sharing function APShare with input l$ to obtain ⊗i∈[n]tli. Run the
sharing function LRShare2n(r$) to obtain ⊗i∈[n]tri. Run the sharing function
PNMShare(m$) to obtain ⊗i∈[n]tpi. For each i ∈ [n], create tsharei as
tli, tri, tpi. For all i ∈ T , fix pi ← tpi. For each i ∈ {i1, i2}, run fi on tSharei

to obtain ˜tSharei ← fi(tSharei). Parse ˜tsharei as ˜tli, ˜tri, ˜tpi. Fix li ← tli
and ˜li ← ˜tli. For i ∈ {i3, . . . , it}, fix ri ← tri. (Note that, here we rely
on our pruning compiler for a different purpose: fixing li1 , li2 is allowed by
property 2 of lemma 2. We would not have been able to do the same with a
computational secret sharing directly. Also note that we depart significantly
from initial step of [GK18], where t − 1 shares of l and only the last share of
r was fixed. This was allowed because any t− 1 shares (resp. one share) does
not reveal anything about the underlying l (resp. r). We on the other hand
have fixed t − 2 shares of r, which encode a random value of r$).

Non-malleable Secret Sharing for General Access Structures 521

2. The tampering function F is defined as follows: On input l, sample the
value of li3 , . . . , lit

such that the shares {li : i ∈ T} hide the secret l under
(APShare,APRec) and the distribution of sampled lit

is identical to the
distribution produced on running APShare with input l conditioned on
fixing {li : i ∈ {i1, i2}}. In case such a sampling is not possible, then abort.
Otherwise, for each i ∈ T \ {i1, i2}, construct sharei as li, ri, pi using the
fixed values of ri and pi. Run the tampering function fi on sharei to obtain
tampered ˜sharei. Parse ˜sharei as ˜li, r̃i, p̃i. Run the reconstruction function
APRec with input ⊗i∈T

˜li to obtain ˜l. Output ˜l. (Note that unlike [GK18]
we invoked the tampering functions with ‘incorrect’ shares of r).

3. The tampering function G is defined as follows: On input r, sample the
values of first two shares of r, namely {ri1 , ri2} satisfying the following con-
straints:

– The two shares {ri1 , ri2} encode the secret r under the (LRShare,LRRec).
Moreover, the two shares should be distributed according to the output dis-
tribution of scheme (LRShare,LRRec).

– For each i ∈ {i1, i2}, let Sharei be li, ri, pi, run fi on sharei to obtain ˜sharei.
Parse ˜sharei as ˜nli, ñri, ñpi. The value of ˜nli should be equal to ˜li (the value
that was fixed in the initial step of reduction). This can be achieved via brute
force over the all the possibilities.
In case such a sampling is not possible, then abort. Otherwise, run the
reconstruction procedure of the leakage-resilient scheme to obtain r̃, using the
tampered values of first 2 shares of r. That is r̃ ← LRRec{i1,i2}(ñri1 , ñri2).
Output r̃. (Unlike [GK18], we now only ensure that the first two shares are
from the correct distribution.)

The reduction given above creates t shares corresponding to indices in T .
Unlike the proof of [GK18], here the distribution of the t shares is not close to
the distribution of the t shares during actual sharing (in fact statistically it is
quite far). Nevertheless, we show that an adversary cannot notice this change
without violating the leakage resilience of the (LRShare, LRRec).

We achieve this using hybrid argument, however, instead of outputting t
shares ⊗i∈T sharei as in [GK18], we output NMRec(⊗i∈T fi(sharei)), the out-
put of the tampering experiment. For ease of understanding, let sharei be of the
form ali, ari, api when the shares are produced by the reduction on input l and
r, with the fixing of l$ and r$. Similarly, let sharei be of the form bli, bri, bpi

when the secret m is encoded by the sharing procedure NMShare conditioned
on output of NMEnc(m) being l, r.

1. Hybrid1: for each i ∈ T , sharei is of the form ali, ari, api. The distribu-
tion of these t shares is identical to distribution of the shares produced
by the reduction on input l and r, with the fixing of l$ and r$. Output
NMRec(⊗i∈T fi(sharei)).

2. Hybrid2: In the initial setup phase of the reduction, for each i ∈ T , fix
bpi instead of api. Proceed with the reduction to create t shares of the form
ali, ari, bpi. Output NMRec(⊗i∈T fi(sharei)).

522 V. Goyal and A. Kumar

3. Hybrid3: Fix l$ ← l in the initial setup phase. Fix shares of p like Hybrid2.
Output NMRec(⊗i∈T fi(sharei)).

4. Hybrid4: Fix l$ ← l and fix r$ ← r in the initial setup phase. Fix the shares
of p as in previous hybrid Hybrid3. Proceed with the reduction to create
the t shares. Output NMRec(⊗i∈T fi(sharei)).

5. Hybrid5: For each i ∈ [n], let sharei be of the form bli, bri, bpi. The dis-
tribution of these t shares is identical to distribution obtained on running
the NMShare conditioned on output of NMEnc(m) being l, r. Output
NMRec(⊗i∈T fi(sharei)).

Claim: For any authorized T ∈ Amin with cardinality greater than 2, the statis-
tical distance between Hybrid1 and Hybrid2 is at most ε4.
Proof: As |T | ≥ 3, T does not belong to Apairs. The two hybrids only differ in
the shares corresponding to output of PNMShare. The claim follows from the
statistical privacy of (PNMShare,PNMRec). �
Claim: For any l, l$, any authorized T ∈ Amin, Hybrid2 is identical to
Hybrid3.
Proof: The two hybrids differ in the initial setup phase. In Hybrid2, 2 shares of
l$ are fixed, while in Hybrid3 2 shares of l are fixed. Lemma 2 ensures that the
secret is perfectly hidden even when two shares of APShare are revealed. �

The above also shows that the function F in the reduction never aborts.
Claim: For any r, r$, any authorized T ∈ Amin with cardinality greater than 2,
the statistical distance between Hybrid3 and Hybrid4 is at most ε3.
Proof: Assume towards contradiction that there exists r, r$ ∈ F1, T ∈ Amin and
a distinguisher D that is successful in distinguishing Hybrid3 and Hybrid4

with probability greater than ε3. We use distinguisher D to construct another
distinguisher D1 and a leak function g ∈ Lpair

μ which violates the property of
leakage-resilience satisfied by the scheme (LRShare2n,LRRec2n) for the secrets
r, r$. The reduction is described below:

1. (Initial Setup): Run the sharing function APRec with input l to obtain
⊗i∈[n]tli. Run the sharing function PNMShare(m) to obtain ⊗i∈[n]tpi. For
all i ∈ T , fix pi ← tpi and li ← tli.
Give r, r$ to the adversary, who then specifies r1, r2, r

$
1, r

$
2. Use l1, r1, p1

and l2, r2, p2 to create the first two shares share1 and share2. Tamper
the shares using f1 and f2 to obtain l̃1, r̃1, p̃1 and l̃2, r̃2, p̃2. Compute r̃ ←
LRRec(r̃1, r̃2). Fix l̃1, l̃2.

2. (Leak function g): We define a specific leakage function g = {gi : i ∈
T \ {i1, i2}} which leaks μ bits independently from each of the t − 2 shares.
– For each i ∈ T \ {i1, i2}, define gi as the following function which takes

ri as input. Create tSharei as li, ri, pi. Run fi on tSharei to obtain
˜tSharei ← fi(tSharei). Parse ˜tsharei as ˜tli, ˜tri, ˜tpi. Output ˜tli.

As ˜tli is an element of F2, it can be represented by at most log |F2| bits,
which is equal to μ. This shows that the above leak function g belongs to the
class Lpair

μ .

Non-malleable Secret Sharing for General Access Structures 523

3. (Distinguisher D1): The distinguisher D1 is defined as follows: On input
g(r3, . . . , rt), parse it as ˜tli3 , . . . ,

˜tlit
. Compute l̃ ← APRec(l̃1, . . . , l̃t). Com-

pute m̃ ← NMDec(l̃, r̃). Invoke the distinguisher D with m̃ and output its
output.

Notice, in the case the secret hidden by the leakage-resilient scheme was r$, D
will be invoked with input distributed according to Hybrid2. In the other case,
in which r was hidden, D will be invoked with distributed according to Hybrid3.
Therefore the success probability of D1 will be equal to the advantage of D in
distinguishing these two hybrids, which is greater than ε3 by assumption. Hence,
we have arrived at a contradiction to statistical leakage-resilience property of the
scheme (LRShare, LRRec). �

The above also shows that the function G in the reduction aborts with prob-
ability less than ε3.
Claim: For any l, r, Hybrid4 is identical to Hybrid5.
Proof: In Hybrid4, the shares of r$ (resp. l$) that are sampled in the initial
setup already encode the value r (resp. l). Therefore, all the t shares created in
Hybrid4 will be identically distributed to the ones produced while executing
NMShare with the output of NMEnc being (l, r). �

By repeated application of triangle inequality, we get that for any a, b ∈ F0,
the statistical distance between Hybrid1 and Hybrid5 is at most ε2 + ε3 + ε4.
This proves that the set of shares created by our reduction is statistically close
the set of shares created during the real sharing by the scheme, and thus the
tampering functions f = {fi : i ∈ T} can be successfully invoked.

From our construction of F and G, it is clear that for any l and r, if the
reduction is successful in creating the t shares, then the secret hidden is these
t shares is the same as the message encoded by l and r (under non-malleable
code). That is,

NMRec({sharei : i ∈ T}) = NMDec(l, r)

Similarly, we can say that the secret hidden is the t tampered shares is the same
as the message encoded by tampered l̃ and tampered r̃. That is,

NMRec({fi(sharei) : i ∈ T}) = NMDec(F(l),G(r))

Therefore, the tampering experiments of non-malleable codes (see Defini-
tion 4) and non-malleable secret-sharing schemes (see Definition 8) are statisti-
cally indistinguishable, specifically,

STamperf ,Tm ≈ε2+ε3+ε4 TamperF,G
m

By the ε1-non malleability of the scheme (NMEnc,NMDec), there exists
a simulator SimF,G

m such that TamperF,G
m ≈ε1 SimF,G

m . We use the underly-
ing simulator as our simulator and let SSimf ,T

m ≡ SimF,G
m . Applying triangle

inequality to the above relations we prove the statistical non malleability.

STamperf ,Tm ≈ε1+ε2+ε3+ε4 SSimf ,T
m

524 V. Goyal and A. Kumar

As the statistical distances between STamperf ,Tm and SSimf ,T
m in the two

cases are (2ε1 + ε4) and (ε1 + ε2 + ε3 + ε4), we take (2ε1 + ε2 + ε3 + ε4) as the
worst case statistical error of our scheme (NMShare,NMRec). ��

4 n-out-of-n NMSS Against Joint Tampering

Tampering Family. We now formally define the supported tampering family, in
which, we allow the tampered value of each share to depend on all the n shares
in a restricted fashion.

Tampering Family Fgeneral
n

Assume that input shares are of equal length vectors over some finite
field of prime order. The adversary specifies four subsets of [n], namely
Bin

f , Bout
f , Bin

g , Bout
g and also specifies four arbitrary tampering functions

f1, g1, f2, g2 such that

f1 : {sharei : i ∈ Bin
f } → { ˜fsharei : i ∈ Bout

f }
g1 : {sharei : i ∈ Bin

g } → { ˜gsharei : i ∈ Bout
f }

f2 : {sharei : i ∈ Bin
f } → { ˜fsharei : i ∈ Bout

g }
g2 : {sharei : i ∈ Bin

g } → { ˜gsharei : i ∈ Bout
g }

such that for all i ∈ [n], the final tampered share is of the form

˜sharei ← ˜fsharei � ˜gsharei

where � represents element wise multiplication of the two vectors over the given
finite field. Here Bin

f ⊂ [n] denotes the set of identities of parties whose shares
are available as input to function f1 and f2. Similarly, Bout

f denotes the set of
identities of parties whose tampered shares are produced by functions f1 and g1.
Bin

g and Bout
f are analogous. The four subsets can be arbitrarily chosen by the

adversary as long as they satisfy the following natural constraints:

– The input to tampering function f1 contains atleast one share, which does
not occur as the input of the tampering function g1 and vice versa. That is,
|Bin

f \ Bin
g | ≥ 1 and |Bin

g \ Bin
f | ≥ 1.

– The output sets Bout
f and Bout

g are disjoint. For the sake of simplicity, we
further assume w.l.o.g that Bout

f ∪ Bout
g = [n].

Construction of [ADL14]. As we use the construction of Aggarwal et al. [ADL14]
in a non-black-box way, we recall it for convenience:

Definition 12 ([ADL14]). Affine Evasive Function: A surjective function
h : Fp → M ∪ {⊥} is called (γ, δ)-affine-evasive if for any a, b ∈ Fp such that
a = 0, and (a, b) = (1, 0), and for any m ∈ M,

Non-malleable Secret Sharing for General Access Structures 525

– Pr(h(aU + b) = ⊥) ≤ γ
– Pr(h(aU + b) = ⊥|h(U) = m) ≤ δ
– A uniformly random X such that h(X) = m is efficiently samplable.

Using these affine evasive functions, they arrive at the construction of split-
state non-malleable codes by composing it with inner product. For L,R ∈ Fλ

p ,
let 〈L,R〉 represent the inner product 〈L,R〉 =

∑λ
i=1 L[i] × R[i]. Their scheme

is as follows:

– The decoding function ADLDec : Fλ
p × Fλ

p → M ∪ {⊥} is defined using
affine evasive function h as follows: ADLDec(L,R) := h(〈L,R〉)

– The encoding function ADLEnc : M → Fλ
p × Fλ

p is defined as
ADLEnc(m) = (L,R) where L,R are chosen uniformly at random from
Fλ

p × Fλ
p conditioned on the fact that ADLDec(L,R) = m.

Theorem 4 ([ADL14]). Let M = {1, 2, . . . ,K} and let p ≥ (4K
ε)ρ log log(4K/ε)

be a prime. Let λ be (� 2 log p
c �)6. Let ADLEnc : M → Fλ

p × Fλ
p ,ADLDec :

Fλ
p ×Fλ

p → M∪{⊥} be as defined above. Then the scheme (ADLEnc,ADLDec)
is ε-non-malleable w.r.t Fsplit

2 .

Multiplicative Secret Sharing Scheme of [KGH83]. We recall the result of Karnin
et al. [KGH83], in which they construct (n, 0)-secret sharing scheme realizing
access structure An

n over arbitrary Abelian group. Let (Fp,+,×) be a finite
field. Let F

∗
p be the set of non zero elements of the field Fp, and this set along

with the operation × forms an abelian group.

– MultSharen: Let MultSharen : F

∗
p → ⊗i∈[n]F

∗
p be a randomized sharing

function. On input a secret s ∈ F

∗
p, sample the first n − 1 shares, namely

s1, s2, . . . , sn−1, randomly from F

∗
p. Compute the last share using the secret

s and the sampled shares as sn ← x/
∏n−1

i=1 si Output s1, . . . , sn.
– MultRecn: Let MultRecn : ⊗i∈[n]F

∗
p → F

∗
p be a deterministic function

for reconstruction. On input n shares, namely s1, s2, . . . , sn, compute s ←
∏n

i=1 si and output the result s.

Theorem 5 ([KGH83]). MultSharen,MultRecn is an (n, 0)-secret sharing
scheme realizing access structure An

n.

Our n-out-of-n Non-malleable Secret Sharing Scheme

Theorem 6. Let the message space M, prime p and vector length λ be as in
the construction of (ADLEnc,ADLDec), the coding scheme of Aggarwal et al.
[ADL14] that is ε-non-malleable against Fsplit

n . Then for any number of parties
n ≥ 2, there exists an efficient construction of

(

n, n, 2ε + 2λ
p

)

-secret sharing
scheme that is

(

ε + 2λ
p

)

-non-malleable w.r.t Fgeneral
n .

Corollary 7. The coding scheme of Aggarwal et al. [ADL14] is also statistically-
non-malleable w.r.t. Fgeneral

2 . (which allows the tampering of left share to par-
tially depend on the right share).

526 V. Goyal and A. Kumar

Proof. (of theorem)
We begin with the description of our secret sharing scheme:

– The reconstruction function JNMRecn : Fλ×n
p → M ∪ {⊥} is defined

using affine evasive function h as follows:

JNMRecn(sh1, sh2 . . . shn) := h(〈sh1, sh2 . . . shn〉)
where 〈a1, a2 . . . an〉 =

∑λ
i=1

∏n
j=1 aj [i] is the generalized inner product func-

tion.
– The sharing function JNMSharen : M → Fλ×n

p is defined as fol-
lows. On input m, output (sh1, sh2 . . . shn) where sh1, sh2 . . . shn are
chosen uniformly at random from Fλ×n

p conditioned on the fact that
JNMRecn(sh1, sh2 . . . shn) = m.

Correctness, Efficiency, and Statistical Privacy: Correctness and efficiency
trivially follows from the construction. Statistical privacy follows from the non-
malleability proved below (in a manner similar to Lemma1).

Statistical Non Malleability: We transform an attack on our scheme to
an attack on the underlying split-state non-malleable code. Let the adversary
choose a four tampering functions (f1, g1, f2, g2) and corresponding four subsets
(Bin

f , Bout
f , Bout

g , Bin
g) from the allowed tampering class Fgeneral

n . Let nf ← |Bin
f |

and ng ← |Bin
g | denote the cardinality of input set of indices of function f and

g respectively. Similarly, let nout
f ← |Bout

f | and nout
g ← |Bout

g | denote the car-
dinality of output set of indices of function f and g respectively. Using these
tampering functions, we give explicit pair of tampering function (F,G) ∈ Fsplit

2 .
The description of the reduction follows:

– (Initial Setup): Start with fixing the shares which occurs as input of both
the tampering functions. Let Bfix ← Bin

f ∩Bin
g . Let nfix ← |Bfix| denote the

cardinality of this common set. For each i ∈ Bfix, fix sharei ← ai
1, a

i
2, . . . , a

i
λ

randomly such that each aj
i ∈ F

∗
p.

– The tampering function F(l)
• On input a vector l ∈ Fλ

p , parse it as l1, l2 . . . lλ such that li ∈ Fp for
each i ∈ [λ]. If there exists an i ∈ [λ] such that li = 0, then abort.
Otherwise, for each i ∈ [λ], calculate prodi ← (li/(

∏

j∈Bout
f ∩Bfix

aj
i)) and

use multiplicative sharing to share prodi into nf − nfix shares. That is,
let {aj

i : j ∈ Bin
f \ Bfix} ← MultSharenf−nfix

(prodi). Construct sharei

as ai
1, a

i
2, . . . , a

i
λ for each i ∈ Bin

f \Bfix. (We are excluding shares in Bfix

as they have already been fixed earlier)
• Tamper the shares by executing the adversary specified function f1.

{ ˜fsharej : j ∈ Bout
f } ← f1({sharej : j ∈ Bin

f })

Similarly, compute the tampered shares using f2.

{ ˜fsharej : j ∈ Bout
g } ← f2({sharej : j ∈ Bin

f })

Non-malleable Secret Sharing for General Access Structures 527

• Parse the tampered shares as ˜fsharei = (ãi
1, ã

i
2 . . . ãi

λ) for each i ∈ [n]
(recall [n] = Bin

f ∪Bout
f by assumption). Reconstruct the tampered value

of li for each i ∈ [λ] using the reconstruction function of multiplicative
sharing. Let ˜li ← MultRecnout

f
({ãj

i : j ∈ [n]}).
• Then construct the tampered vector ˜l as (˜l1,˜l2, . . . ,˜lλ) and output ˜l.

– The tampering function G(r)
• On input a vector r ∈ Fλ

p , parse it as r1, r2 . . . rλ such that ri ∈ Fp for
each i ∈ [λ]. If there exists an i ∈ [λ] such that ri = 0, then abort.
Otherwise, for each i ∈ [λ], calculate prodi ← (ri/(

∏

j∈Bout
f ∩Bfix

aj
i)) and

use multiplicative sharing to share prodi into ng − nfix shares. That is,
let {aj

i : j ∈ Bin
g \ Bfix} ← MultShareng−nfix

(prodi). Construct sharei

as ai
1, a

i
2, . . . , a

i
λ for each i ∈ Bin

g \Bfix. (We are excluding shares in Bfix

as they have already been fixed earlier)
• Tamper the shares by executing the adversary specified function g1.

{ ˜gsharej : j ∈ Bout
g } ← g1({sharej : j ∈ Bin

g })

Similarly, compute the tampered shares using g2.

{ ˜gsharej : j ∈ Bout
f } ← g2({sharej : j ∈ Bin

g })

• Parse the tampered shares as ˜gsharei = ˜bi
1,

˜bi
2 . . .˜bi

λ for each i ∈ [n].
Reconstruct the tampered value of ri for each i ∈ [λ] using the recon-
struction function of multiplicative sharing. Let r̃i ← MultRecnout

g
({˜bj

i :
j ∈ [n]}).

• Then construct the tampered vector r̃ as (r̃1, r̃2, . . . , r̃λ) and output r̃.

It is easy to see that the reduction does not terminate with probability at
least

(

1 − 2λ
p

)

.

Claim: For any l and r, if the reduction is successful in creating the n shares,
then the secret hidden is these n shares is the same as the message encoded by
l and r.
Proof: The reduction constructs an instance of the secret sharing scheme using
l and r in a split-state manner. Basically, for all i ∈ [λ], it creates parts of
shares such that

(
∏

j∈Bout
f

aj
i

)

= li and
(
∏

j∈Bout
g

aj
i

)

= ri. In this way, it is
ensured that the secret hidden by n shares is the same as the message encoded
by challenge shares l and r of the underlying non-malleable code. This can be
seen by the following calculation:

JNMRecn
({sharei : i ∈ [n]}) = h

(

λ
∑

i=1

n
∏

j=1

aj
i

)

= h

(λ
∑

i=1

(
∏

j∈Bout
f

aj
i

) × (
∏

j∈Bout
g

aj
i

)

)

528 V. Goyal and A. Kumar

= h
(

λ
∑

i=1

li × ri

)

= h(〈l, r〉)

= ADLDec(l, r)

�
Claim: For any l and r, if the reduction is successful in creating the t shares, then
the secret hidden is the t tampered shares is the same as the message encoded
by the tampered l and the tampered r.
Proof: Let {˜sharei : i ∈ [n]} be the disjoint union of outputs of two tampering
functions f({sharei : i ∈ Bin

f }) and g({sharei : i ∈ Bin
g }). Now the reduction

transforms the tampered shares back to two tampered parts of non-malleable
code. Let (F,G) be as defined in the reduction.

ADLDec
(

F(l),G(r)
)

= h
(〈F(l),G(r)〉)

= h
(〈˜l, r̃〉)

= h
(

λ
∑

i=1

˜li × r̃i

)

= h

(λ
∑

i=1

(
∏

j∈[n]

ãj
i

) × (
∏

j∈[n]

˜bj
i

)

)

= h
(

λ
∑

i=1

n
∏

j=1

(ãj
i ×˜bj

i)
)

= h
(

λ
∑

i=1

n
∏

j=1

(˜sharej [i])
)

= JNMRecn
({˜sharej : j ∈ [n]})

�
By design the tampering functions F and G belongs to Fsplit

2 . By the ε-non
malleability of the scheme (ADLEnc,ADLDec), we know that there exists a
distribution DF,G such that

SimF,G
m ≈ε TamperF,G

m

Using the observation about the equivalence of tampering, and assuming that
the adversary succeeds in case the reduction terminates by executing abort, we
get that

STamperf ,Tm ≈ε+ 2λ
p

SSimf ,T
m

This proves the non malleability of our scheme. ��

Acknowledgments. We thank the anonymous reviewers, as their detailed and
insightful reviews significantly helped in improving the presentation of this article.

Non-malleable Secret Sharing for General Access Structures 529

The first author is supported by a grant from Northrop Grumman.
A part of this work was done while the second author was at Microsoft Research,

India. Work done at UCLA is supported in part from NSF grant 1619348, NSF frontier
award 1413955, US-Israel BSF grants 2012366, 2012378, and by the Defense Advanced
Research Projects Agency (DAPRA) SAFEWARE program through the ARL under
Contract W911NF-15-C-0205 and through a subcontract with Galois, inc. The views
expressed are those of the authors and do not reflect the official policy or position of
the Department of Defense, the National Science Foundation, or the U.S. Government.

References

[ADKO15] Dodis, Y., Nielsen, J.B. (eds.): TCC 2015. LNCS, vol. 9014. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6

[ADL14] Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive
combinatorics. In: Proceedings of the 46th Annual ACM Symposium on
Theory of Computing, pp. 774–783. ACM (2014)

[Bei] Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D.
thesis (1996)

[Bei11] Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., et al. (eds.)
IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20901-7 2

[Bla79] Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS National Com-
puter Conference (NCC 1979), pp. 313–317. IEEE Computer Society, Los
Alamitos (1979)

[BOGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In: Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing, pp.
1–10. ACM (1988)

[CDF+08] Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of alge-
braic manipulation with applications to robust secret sharing and fuzzy
extractors. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
471–488. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78967-3 27

[CDTV16] Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryp-
tion: simpler, shorter, stronger. In: Kushilevitz, E., Malkin, T. (eds.) TCC
2016. LNCS, vol. 9562, pp. 306–335. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49096-9 13

[CGL16] Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes,
with their many tampered extensions. In: STOC (2016)

[DKO13] Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from
two-source extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 239–257. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1 14

[DPW10] Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Inno-
vations in Computer Science - ICS 2010, Tsinghua University, Beijing,
China, 5–7 January 2010, Proceedings, pp. 434–452 (2010)

[GGSW13] Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its
applications. In: Proceedings of the Forty-Fifth Annual ACM Symposium
on Theory of Computing, pp. 467–476. ACM (2013)

https://doi.org/10.1007/978-3-662-46494-6
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/978-3-540-78967-3_27
https://doi.org/10.1007/978-3-540-78967-3_27
https://doi.org/10.1007/978-3-662-49096-9_13
https://doi.org/10.1007/978-3-662-49096-9_13
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-40084-1_14

530 V. Goyal and A. Kumar

[GJK15] Goyal, V., Jain, A., Khurana, D.: Non-malleable multi-prover interac-
tive proofs and witness signatures. Cryptology ePrint Archive, Report
2015/1095 (2015). http://eprint.iacr.org/2015/1095

[GK18] Goyal, V., Kumar, A.: Non-malleable secret sharing. In: Proceedings of
the Fiftieth ACM STOC. ACM (2018, to appear)

[Gol07] Goldreich, O.: Foundations of Cryptography: Volume 1, Basic Tools. Cam-
bridge University Press, Cambridge (2007)

[GPR16] Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commit-
ments. In: Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2016, Cambridge, MA, USA, 18–21 June
2016, pp. 1128–1141 (2016)

[ISN89] Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general
access structure. Electron. Commun. Jpn. (Part III Fundam. Electron.
Sci.) 72(9), 56–64 (1989)

[KGH83] Karnin, E., Greene, J., Hellman, M.: On secret sharing systems. IEEE
Trans. Inf. Theory 29(1), 35–41 (1983)

[KNY14] Komargodski, I., Naor, M., Yogev, E.: Secret-sharing for NP. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 254–273.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8 14

[KW93] Karchmer, M., Wigderson, A.: On span programs. In: 1993, Proceedings
of the Eighth Annual Structure in Complexity Theory Conference, pp.
102–111. IEEE (1993)

[Li17] Li, X.: Improved non-malleable extractors, non-malleable codes and inde-
pendent source extractors. In: STOC. ACM (2017)

[LL12] Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-
state model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 517–532. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32009-5 30

[MS81] McEliece, R.J., Sarwate, D.V.: On sharing secrets and Reed-Solomon
codes. Commun. ACM 24(9), 583–584 (1981)

[RBO89] Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols
with honest majority. In: STOC 1989, pp. 73–85. ACM, New York (1989)

[Sha79] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

http://eprint.iacr.org/2015/1095
https://doi.org/10.1007/978-3-662-45608-8_14
https://doi.org/10.1007/978-3-662-45608-8_14
https://doi.org/10.1007/978-3-642-32009-5_30
https://doi.org/10.1007/978-3-642-32009-5_30

	Non-malleable Secret Sharing for General Access Structures
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 Definitions
	2.1 Non-malleable Codes
	2.2 Secret Sharing Schemes
	2.3 Threshold Access Structure Atn

	3 Non-malleable Secret Sharing Against Individual Tampering
	4 n-out-of-n NMSS Against Joint Tampering
	References

