
Tight Tradeoffs in Searchable
Symmetric Encryption

Gilad Asharov1, Gil Segev2, and Ido Shahaf2(B)

1 Cornell Tech, New York, NY, USA
asharov@cornell.edu

2 School of Computer Science and Engineering,
Hebrew University of Jerusalem, 91904 Jerusalem, Israel

{ido.shahaf,segev}@cs.huji.ac.il

Abstract. A searchable symmetric encryption (SSE) scheme enables a
client to store data on an untrusted server while supporting keyword
searches in a secure manner. Recent experiments have indicated that the
practical relevance of such schemes heavily relies on the tradeoff between
their space overhead, locality (the number of non-contiguous memory loca-
tions that the server accesses with each query), and read efficiency (the
ratio between the number of bits the server reads with each query and
the actual size of the answer). These experiments motivated Cash and
Tessaro (EUROCRYPT ’14) and Asharov et al. (STOC ’16) to construct
SSE schemes offering various such tradeoffs, and to prove lower bounds
for natural SSE frameworks. Unfortunately, the best-possible tradeoff
has not been identified, and there are substantial gaps between the exist-
ing schemes and lower bounds, indicating that a better understanding of
SSE is needed.

We establish tight bounds on the tradeoff between the space over-
head, locality and read efficiency of SSE schemes within two general
frameworks that capture the memory access pattern underlying all exist-
ing schemes. First, we introduce the “pad-and-split” framework, refining
that of Cash and Tessaro while still capturing the same existing schemes.
Within our framework we significantly strengthen their lower bound,
proving that any scheme with locality L must use space Ω(N log N/ log L)
for databases of size N . This is a tight lower bound, matching the tradeoff
provided by the scheme of Demertzis and Papamanthou (SIGMOD ’17)
which is captured by our pad-and-split framework.

Then, within the “statistical-independence” framework of Asharov
et al. we show that their lower bound is essentially tight: We construct
a scheme whose tradeoff matches their lower bound within an addi-
tive O(log log log N) factor in its read efficiency, once again improving

G. Asharov—Supported by a Junior Fellow award from the Simons Foundation.
G. Segev and I. Shahaf—Supported by the European Union’s Horizon 2020
Framework Program (H2020) via an ERC Grant (Grant No. 714253), by the Israel
Science Foundation (Grant No. 483/13), by the Israeli Centers of Research Excellence
(I-CORE) Program (Center No. 4/11), and by the US-Israel Binational Science Foun-
dation (Grant No. 2014632).

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10991, pp. 407–436, 2018.
https://doi.org/10.1007/978-3-319-96884-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96884-1_14&domain=pdf

408 G. Asharov et al.

upon the existing schemes. Our scheme offers optimal space and locality,
and nearly-optimal read efficiency that depends on the frequency of the
queried keywords: For a keyword that is associated with n = N1−ε(n) doc-
ument identifiers, the read efficiency is ω(1) · ε(n)−1 + O(log log log N)
when retrieving its identifiers (where the ω(1) term may be arbitrar-
ily small, and ω(1) · ε(n)−1 is the lower bound proved by Asharov et
al.). In particular, for any keyword that is associated with at most
N1−1/o(log log log N) document identifiers (i.e., for any keyword that is not
exceptionally common), we provide read efficiency O(log log log N) when
retrieving its identifiers.

1 Introduction

A searchable symmetric encryption (SSE) scheme [11,27] enables a client to
store data on an untrusted server and later perform keyword searches: Given a
keyword w, the client should be able to retrieve all data items that are associated
with w (e.g., all document identifiers that contain w). This typically consists of
a two-stage process: First, the client encrypts her database and uploads it to the
server, and then the client repeatedly queries the server with various keywords by
providing the server with keyword-specific search tokens. Informally, the security
requirement of SSE schemes asks that the server does not learn any information
about keywords for which the client did not issue any queries.

The practical relevance of SSE schemes. Motivated by the increasingly-
growing technological interest in outsourcing data to remote (and thus poten-
tially untrusted) servers, a very fruitful line of research in the cryptography
community focused on the design of SSE schemes (e.g., [2,5–12,14,19,20,22,23,
27,29]). Most of the proposed schemes offer strong and meaningful notions of
security, and some even extend the basic keyword search functionality to more
expressive ones.

Despite these promising developments, Cash et al. [7] showed via experiments
with real-world databases that the practical performance of the known schemes
is quite disappointing, and scales badly to large databases. Somewhat surpris-
ingly, they observed that performance issues resulting from impractical memory
layouts may be significantly more crucial compared to performance issues result-
ing from the cryptographic processing of the data. More specifically, Cash et al.
observed that schemes with poor locality (i.e., schemes in which the server has
to access a rather large number of non-contiguous memory locations with each
query) have poor practical performance when dealing with large databases that
require the usage of disk-storage mechanisms.

Practical locality, however, is obviously insufficient: Any practically-relevant
SSE scheme should (at least) not suffer from either a significant space overhead
(i.e., encrypted databases should not be much larger than the original databases),

Tight Tradeoffs in Searchable Symmetric Encryption 409

or from a poor read efficiency (i.e., servers should not read much more data than
needed for answering each query)1.

Efficiency tradeoffs and existing lower bounds. This state of affairs nat-
urally poses the challenge of constructing an SSE scheme that simultaneously
enjoys asymptotically-optimal space overhead, locality, and read efficiency – but
unfortunately no such scheme is currently known. This has motivated Cash and
Tessaro [8] to initiate the study of understanding the tradeoff between these cen-
tral measures of efficiency. They proved a lower bound showing that, for a large
and natural class of SSE schemes, it is in fact impossible to simultaneously enjoy
asymptotically-optimal space overhead, locality, and read efficiency. Specifically,
they considered the class of SSE schemes with “non-overlapping reads”: Schemes
in which distinct keywords induce non-overlapping memory regions which the
server may access upon their respective queries (we refer the reader to the work
of Cash and Tessaro [8] for a formal definition of their notion of non-overlapping
reads).

The class of SSE schemes with non-overlapping reads captures the basic
techniques underlying all existing SSE schemes other than two schemes pro-
posed by Asharov et al. [2]. These two schemes may have arbitrary overlapping
reads, and offer an improved tradeoff between their space overhead, locality,
and read efficiency compared to the previously suggested schemes. This trade-
off, however, is still non-optimal, and Asharov et al. showed that this is in fact
inherent to their approach. Similarly to Cash and Tessaro, they proved that also
for a different class of SSE schemes, it is impossible to simultaneously enjoy
asymptotically-optimal space overhead, locality, and read efficiency. Specifically,
they considered the class of SSE scheme with “statistically-independent reads”:
Schemes in which distinct keywords induce statistically-independent memory
regions which the server accesses upon their respective queries.

The lower bounds proved by Cash and Tessaro and by Asharov et al. capture
all of the existing SSE schemes (except for various schemes with non-standard
leakage or functionality that we do not consider in this work). That is, the
basic techniques underlying each of the known SSE schemes belong either to
the class of “non-overlapping reads” or to the class of “statistically-independent
reads”. In both cases, however, the existing lower bounds are not tight, as there
are still noticeable gaps between the lower bounds and the performance guaran-
tees of the existing schemes (as we detail in the next section). This unsatisfying
situation calls for obtaining a better understanding of SSE techniques: Either by
strengthening the known lower bounds, or by designing new schemes with better
performance guarantees.

1 We consider the notions of locality and read efficiency as formalized by Cash and
Tessaro [8]: The locality of a scheme is the number of non-contiguous memory
accesses that the server performs with each query, and the read efficiency of a scheme
is the ratio between the number of bits the server reads with each query and the
actual size of the answer. We refer the reader to Sect. 2.1 for the formal definitions.

410 G. Asharov et al.

1.1 Our Contributions

We prove tight bounds on the tradeoff between the space overhead, locality, and
read efficiency of SSE schemes within the following two general frameworks:

The pad-and-split framework: We formalize a framework that refines the
non-overlapping reads framework of Cash and Tessaro [8] while still capturing
the same existing SSE schemes (i.e., all existing schemes other than those of
Asharov et al. [2])2. We refer to this framework as the “pad-and-split” frame-
work given the structure of the SSE schemes that it captures.
Within this framework we significantly strengthen the lower bound of Cash
and Tessaro: We show that any pad-and-split scheme with locality L must
use space Ω (N · log N/ log L) for databases of size N . For example, for any
constant locality (i.e., L = O(1)) and for any logarithmic locality (i.e.,
L = O(log N)) our lower bound shows that any such scheme must use space
Ω(N log N) and Ω(N log N/ log log N), respectively, and is thus not likely to
be of substantial practical relevance (whereas the lower bound of Cash and
Tessaro would only yield space ω(N) when the locality is constant).
Then, we observe that our lower bound is in fact tight, as it is matched by
a recent scheme proposed by Demertzis and Papamanthou [14] that is cap-
tured by our framework (i.e., their scheme is an optimal instantiation of our
framework). We refer the reader to Sects. 1.2 and 3 for a high-level overview
and for a detailed description of this framework, its instantiations, and of our
lower bound, respectively.

The statistical-independence framework: We consider the statistical-inde-
pendence framework of Asharov et al. [2], and show that their lower bound
for SSE schemes in this framework is essentially tight: Based on the exis-
tence of any one-way function, we construct a scheme whose efficiency guar-
antees match their lower bound for constant locality within an additive
O(log log log N) factor in the read efficiency, and improve upon those of their
two schemes.
Specifically, for databases of size N , our scheme offers both optimal space
and optimal locality (i.e., space O(N) and locality O(1)), and comes very
close to offering optimal read efficiency as well. The read efficiency of our
scheme when querying for a keyword w depends on the length of the list
DB(w) that is associated with w (that is, the read efficiency depends on the
number of identifiers that are associated with w).3 When querying for a key-
word that is associated with n = N1−ε(n) identifiers, the read efficiency of
our scheme is f(N) · ε(n)−1 + O(log log log N), where f(N) = ω(1) may be
any pre-determined function, and ω(1) · ε(n)−1 is a lower bound as proved by

2 Each of the schemes that are captured by our framework offers other important
implementation details, improvements and optimizations that we do not intend to
capture, since these are not directly related to the tradeoff between space, locality,
and read efficiency.

3 We emphasize that this does not hurt the security of SSE schemes, and still results
in minimal leakage as required.

Tight Tradeoffs in Searchable Symmetric Encryption 411

Asharov et al. [2]. In particular, for any keyword that is associated with at
most N1−1/o(log log log N) identifiers (i.e., for any keyword that is not exception-
ally common), the read efficiency of our scheme when retrieving its identifiers
is O(log log log N). We refer the reader to Sects. 1.2 and 4 for a high-level
overview and for a detailed description of this framework and of our new
scheme, respectively.

Our results in the pad-and-split and statistical-independence frameworks,
which are summarized in Table 1 and presented in more detail in Sect. 1.2, show
a significant gap between the performance guarantees that can be offered within
these two frameworks. In both frameworks we establish tight bounds that cap-
ture the basic techniques underlying all of the existing SSE schemes. Thus, any
attempt to further improve upon the tradeoff between the space overhead, local-
ity and read efficiency of our schemes must be based on new techniques that
deviate from all known SSE schemes.

Table 1. A summary of our contributions. We denote by N the size of the
database. The read efficiency in the lower bound of Asharov et al. [2] and in our
statistical-independence scheme (Theorem 1.2) when querying for a keyword w depends
on the number n = N1−ε(n) of identifiers that are associated with w. In addition, our
statistical-independence scheme is based on the modest assumption that no keyword is
associated with more than N/ log3 N identifiers, whereas the scheme of Asharov et al.
[2] is based on the stronger assumption that no keyword is associated with more than
N1−1/ log log N identifiers (thus, the read efficiency of their scheme does not contradict
their lower bound, and our scheme has better read efficiency compared to their scheme).
Finally, we note that the ω(1) term in the read efficiency of our scheme can be set to
any super-constant function (e.g., log log log log N).

Space Locality Read Efficiency

This work (Theorem 1.1):

Pad-and-split lower bound

Ω(N log N/ log L) L O(1)

[14]: Pad-and-split scheme O(N log N/ log L) L O(1)

[2]: Statistical-independence lower
bound

O(N) O(1) ω(1) · ε(n)−1

[2]: Statistical-independence scheme O(N) O(1) Õ(log log N)

This work (Theorem 1.2):

Statistical-independence scheme

O(N) O(1) ω(1) · ε(n)−1 +
O(log log log N)

1.2 Overview of Our Contributions

In this section we provide an overview of the two frameworks that we consider
in this work, and present our results within each framework. As standard in the
line of research on searchable symmetric encryption, we represent a database
as a collection DB = {DB(w1), . . . ,DB(wnW

)}, where w1, . . . , wnW
are distinct

keywords, and DB(w) is the list of all identifiers that are associated with each
keyword w. We denote by N =

∑nW

i=1 |DB(wi)| the size of the database.

412 G. Asharov et al.

Our pad-and-split framework. Our pad-and-split framework considers
schemes that are characterized by an algorithm denoted SplitList and consist of
two phases. In the first phase, given a database DB = {DB(w1), . . . ,DB(wnW

)}
of size N , for each keyword wi the scheme invokes the SplitList algorithm on the
length ni of its corresponding list DB(wi), to obtain a vector (x(1)

i , . . . , x
(m)
i) of

integers. The scheme then potentially pads the list DB(wi) by adding “dummy”
elements, and splits the padded list into sublists of lengths len(1), . . . , len(m),
where x

(j)
i denotes the number of sublists of each length len(j). Then, in the

second phase, for each possible length len(j), the scheme groups together all sub-
lists of length len(j), and independently processes each such group to produce an
encrypted database EDB.

We consider any possible instantiation of the SplitList algorithm (satisfying
the necessary requirement that no list is longer than the sum of lengths of its
sublists), and this enables us to describe a general template for constructing
an SSE scheme based on any such algorithm given any one-way function. Our
template yields schemes whose space usage and locality are essentially inherited
from similar properties of their underlying SplitList algorithm, and whose read
efficiency is always constant. We then demonstrate that this template captures
the memory access patterns underlying essentially all existing schemes other
than those of Asharov et al. [2]. Specifically, we show that each of these schemes
can be obtained as an instantiation of our template using a suitable SplitList
algorithm.

A tight lower bound for pad-and-split schemes. Equipped with our gen-
eral notion of pad-and-split schemes, we prove a lower bound on the asymptotic
efficiency guarantees of such schemes. Whereas the lower bound of Cash and
Tessaro [8] states that SSE schemes with non-overlapping reads cannot simulta-
neously offer asymptotically-optimal space overhead and locality, we prove the
following lower bound (capturing the same existing schemes) stating that the
efficiency guarantees of pad-and-split schemes must in fact be very far from
optimal:

Theorem 1.1. Any pad-and-split SSE scheme for databases of size N with local-
ity L = L(N) uses space Ω (N log N/ log L).

We show that this lower bound is tight, as it matches the tradeoff offered by
the scheme of Demertzis and Papamanthou [14] (i.e., their scheme is an optimal
instantiation of our framework). We refer the reader to Sect. 3 for a detailed and
more formal presentation of our results, including an in-depth discussion of the
existing pad-and-split instantiations.

The statistical-independence framework. The statistical-independence
framework of Asharov et al. [2] considers symmetric searchable encryption
schemes that are characterized by a pair of algorithms, denoted RangesGen
and Allocation, and consist of two phases. In the first phase, given a database
DB = {DB(w1), . . . ,DB(wnW

)} of size N , for each keyword wi the scheme invokes
the RangesGen algorithm on the length ni of its corresponding list DB(wi),

Tight Tradeoffs in Searchable Symmetric Encryption 413

to obtain a set of possible locations in which the scheme may place the ele-
ments of the list DB(wi).4 Then, in the second phase, given the sets of possible
locations for all keywords, the scheme invokes the Allocation algorithm on these
sets to obtain the actual locations for the corresponding lists. A key property
of this framework is that the RangesGen algorithm, which determines the set of
possible locations for each list DB(wi), is applied separately and independently
to the length of each list. Thus, the possible locations of each list are indepen-
dent of the possible locations of all other lists (in contrast, the actual locations
of the lists are naturally correlated).

Asharov et al. referred to a pair (RangesGen,Allocation) of such algorithms as
an allocation scheme, and showed that any such allocation scheme can be used
to construct an SSE scheme. Then, by constructing two allocation schemes they
obtained two SSE schemes with space O(N) and locality O(1). Without making
any assumptions on the structure of the database, their first scheme has read
efficiency Õ(log N), and under the assumption that no keyword is associated
with more than N1−1/ log log N identifiers, their second scheme has read efficiency
Õ(log log N).

Our leveled two-choice scheme. Within the statistical-independence frame-
work, as discussed above, we construct a scheme whose tradeoff between space,
locality, and read efficiency matches the lower bound proved by Asharov et al.
for scheme in this framework to within an additive O(log log log N) factor in its
read efficiency (see Sect. 4 for a formal statement of their lower bound).

Specifically, we construct a scheme whose read efficiency when querying for
a keyword w depends on the length of the list DB(w) that is associated with
w (that is, the read efficiency depends on the number of identifiers that are
associated with w). For any n ≤ N we denote by r(N,n) the read efficiency
when retrieving a list of length n, and prove the following theorem:

Theorem 1.2. Assuming the existence of any one-way function, for any func-
tion f(N) = ω(1) there exists an adaptively-secure symmetric searchable encryp-
tion scheme for databases of size N in which no keyword is associated with more
than N/ log3 N identifiers, with the following guarantees:

– Space O(N).
– Locality O(1).
– Read efficiency r(N,n) = f(N)·ε(n)−1+O(log log log N), where n = N1−ε(n).
– Token size O(1).

Our construction applies to databases of size N under the modest assumption
that no keyword is associated with more than N/ log3 N identifiers (note that
the construction of Asharov et al. [2] is based on the stronger assumption that no
keyword is associated with more than N1−1/ log log N identifiers). One can always

4 Looking ahead, when supplied with a token corresponding to a keyword wi, the
server will return to the client all data stored in the possible locations of the list
DB(wi) (the server will not actually know in which of the possible locations the
elements of the list are actually placed).

414 G. Asharov et al.

generically deal (in a secure manner) with such extremely-common keywords
by first excluding them from the database and applying our proposed scheme,
and then applying in addition any other scheme for these extremely-common
keywords (e.g., the “one-choice scheme” of Asharov et al. [2] or the recent scheme
of Demertzis et al. [13] – see Sect. 1.3 for more details).

When comparing our scheme to the scheme of Asharov et al. (see Table 1),
both schemes offer space O(N) and locality O(1), where the read efficiency of
our scheme is strictly better than the read efficiency of their scheme – see Fig. 1.
In particular, for any keyword that is not exceptionally frequent (specifically,
associated with at most N1−1/o(log log log N) identifiers), our scheme provides
read efficiency O(log log log N) whereas their scheme provides read efficiency
Õ(log log N).

The structure of our scheme. Our scheme is a leveled generalization of the
“two-choice” scheme of Asharov et al. and consists of three levels for storing
the elements of a given database. The first level consists of the two-choice SSE
scheme of Asharov et al. but with an exponentially improved read efficiency. Our
key observation is that when viewing the first level as a collection of “bins”, then
by allowing a few elements to “overflow” we can reduce the maximal load of each
bin from Õ(log log N) (as in [2]) to O(log log log N) and also handle much longer
lists (i.e., much more frequent keywords). This then translates into improving
the read efficiency in this level from Õ(log log N) to O(log log log N), while still
using space O(N) and locality O(1).

At this point, however, we have to store the overflowing elements. We store
the vast majority of these elements in our second level, which consists of roughly
log N cuckoo hashing tables [26], where the j hash table is designed to store
at most N̂/2j values each of which of size 2j . Our specific choice of cuckoo
hashing as a static dictionary (i.e., a hash table) is due to its specific properties
that guarantee the security of our scheme (see Sect. 2.3 for a discussion of these
specific properties). In particular, our third level consists of a cuckoo hashing
stash for each of the second-level cuckoo hashing tables. The goal of introducing
this level is to reduce the failure probably of cuckoo hashing from noticeable to
negligible, which is essential for the security of our resulting SSE scheme. We
refer the reader to Sect. 4 for a detailed description of our scheme.

1.3 Related Work

The notion of searchable symmetric encryption was put forward by Song et al.
[27] who suggested several practical constructions. Formal notions of security and
functionality for SSE, as well as the first constructions satisfying them, were later
provided by Curtmola et al. [11,12]. Additional work in this line of research devel-
oped searchable symmetric encryption schemes with various efficiency properties,
support for data updates, authenticity, support for more advanced searches, and
more (see [2,5–12,14,16,19,20,22,23,27,29] and the references therein). The two
frameworks that we consider in this work capture schemes that satisfy that stan-
dard notions of SSE introduced by Curtmola et al. [11,12]. These schemes are

Tight Tradeoffs in Searchable Symmetric Encryption 415

Fig. 1. The read efficiency of our statistical-independence scheme compared
to that of Asharov et al. [2] and to the lower bound. The read efficiency of our
scheme is depicted by the blue line, and the read efficiency of the scheme of Asharov
et al. is depicted by the yellow line (recall that our scheme supports keywords that
are associated with up to N/ log3 N identifiers, whereas the scheme of Asharov et al.
only supports keywords that are associated with at most N1−1/ log log N identifiers).
The read efficiency lower bound of Asharov et al. is depicted by the red triangle (note
that it coincides with our blue line for keywords that are associated with at least
N1−1/o(log log log N) and at most N/ log3 N identifiers). In all three cases the read effi-
ciency is presented as a function of the number of identifiers that are associated with
the queried keyword. (Color figure online)

discussed in Sect. 3.2 as instantiations of our pad-and-split framework, and in
Sect. 4.2 as instantiations of the statistical-independence framework of Asharov
et al. [2].

Our statistical-independence scheme can be applied to any database in which
no keyword is associated with more than N/ log3 N identifiers. As discussed
above, one can always generically deal (in a secure manner) with such extremely-
frequent keywords by first excluding them from the database and applying our
proposed scheme, and then applying in addition any other scheme for these
extremely-common keywords. For example, for these keywords one can apply
the “one-choice scheme” of Asharov et al. or the recent scheme of Demertzis,
Papadopoulos and Papamanthou [13] that provides a sub-logarithmic read effi-
ciency when searching for extremely frequent keywords5. Specifically, Demertzis
et al. proposed a scheme that handles such extremely frequent keywords and
improves their read efficiency from Õ(log N) as guaranteed by the “one-choice
scheme” of Asharov et al. to O(log2/3+δ N) for any fixed constant δ > 0 (for all
other keywords they use the two schemes of Asharov et al., which can now be
replaced by our new scheme in its appropriate range of parameters).

5 The scheme of Demertzis et al. [13] is not captured by the two frameworks we consider
in this work, as it requires the server to modify its stored data (i.e., the encrypted
database) and the user to update her local state whenever a search query is issued.

416 G. Asharov et al.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Sect. 2 we review the
standard notion of symmetric searchable encryption schemes, as well as various
tools that are used in our constructions. Then, in Sect. 3 we put forward our
pad-and-split framework and then present our lower bound and new scheme in
this framework. In Sect. 4 we review the statistical-independence framework and
then present our new scheme in this framework.

2 Preliminaries

In this section we present the notation, definitions, and basic tools that are used
in this work. We denote by λ ∈ N the security parameter. For a distribution X
we denote by x ← X the process of sampling a value x from the distribution X.
Similarly, for a set X we denote by x ← X the process of sampling a value x
from the uniform distribution over X . For an integer n ∈ N we denote by [n] the
set {1, . . . , n}. A function negl : N → R

+ is negligible if for every constant c > 0
there exists an integer Nc such that negl(n) < n−c for all n > Nc. All logarithms
in this paper are to the base of 2.

2.1 Searchable Symmetric Encryption

Let W = {w1, . . . , wnW
} denote a set of keywords, where each keyword wi is

associated with a list DB(wi) = {id1, . . . , idni
} of document identifiers (these

may correspond, for example, to documents in which the keyword wi appears).
A database DB = {DB(w1), . . . ,DB(wnW

)} consists of several such lists. We
assume that each keyword and document identifier can be represented using
a constant number of machine words, each of length O(λ) bits, in the unit-
cost RAM model6. There are various different syntaxes for SSE schemes in the
literature, where the main differences are in the flavor of interaction between the
server and the client with each query. In this work we consider both a setting
where the server decrypts the set of identifiers by itself, and a setting where the
server does not decrypt this but rather sends encrypted data back to the client
(who can then decrypt and learn the set of identifiers).

Functionality

A searchable symmetric encryption scheme is a 5-tuple (KeyGen,EDBSetup,
TokGen,Search,Resolve) of probabilistic polynomial-time algorithms satisfying
the following requirements:

– The key-generation algorithm KeyGen takes as input the security parameter
λ ∈ N in unary representation and outputs a secret key K.

6 The unit cost word-RAM model is considered the standard model for analyzing the
efficiency of data structures (see, for example, [15,17,18,24,25] and the references
therein).

Tight Tradeoffs in Searchable Symmetric Encryption 417

– The database setup EDBSetup algorithm takes as input a secret key K and
a database DB, and outputs an encrypted database EDB.

– The token-generation algorithm TokGen takes as input a secret key K and a
keyword w, and outputs a token τ and some internal state ρ.

– The search algorithm Search takes as input a token τ and an encrypted
database EDB, and outputs a list R of results.

– The resolve algorithm Resolve takes as input a list R of results and an internal
state ρ, and outputs a list M of document identifiers.

An SSE scheme for databases of size N = N(λ) is correct if for any database
DB of size N and for any keyword w, with an overwhelming probability in the
security parameter λ ∈ N, it holds that M = DB(w) at the end of the following
experiment:

1. K ← KeyGen(1λ).
2. EDB ← EDBSetup(K,DB).
3. (τ, ρ) ← TokGen(K,w).
4. R ← Search(τ,EDB).
5. M = Resolve(ρ,R).

We note that one can also consider a more adversarially-flavored notion of cor-
rectness, where an adversary adaptively interacts with a server with the goal of
producing a query that results in an incorrect output. We refer the reader to
[2] for more details, and here we only point out that our schemes in this paper
satisfy such a notion as well.

Efficiency Measures

Our notions of space usage, locality and read efficiency follow those introduced
by Cash and Tessaro [8].

Space. A symmetric searchable encryption scheme (KeyGen,EDBSetup,TokGen,
Search,Resolve) uses space s = s(λ,N) if for any λ,N ∈ N, for any database
DB of size N , and for any key K produced by KeyGen(1λ), the algorithm
EDBSetup(K,DB) produces encrypted databases that can be represented using
s machine words.

Locality. The search procedure of any SSE scheme can be decomposed into a
sequence of contiguous reads from the encrypted database EDB, and the locality
is defined as the number of such reads. Specifically, locality is defined by viewing
the Search algorithm of an SSE scheme as an algorithm that does not obtain
as input the actual encrypted database, but rather only obtains oracle access
to it. Each query to this oracle consists of an interval [ai, bi], and the oracle
replies with the machine words that are stored in this interval of EDB. At first,
the Search algorithm is invoked on a token τ and queries its oracle with some
interval [a1, b1]. Then, it iteratively continues to compute the next interval to
read based on τ and all previously read intervals. We denote these intervals by
ReadPat(EDB, τ).

418 G. Asharov et al.

Definition 2.1 (Locality). An SSE scheme Π is d-local (or has locality d) if
for every λ, DB and w ∈ W, K ← KeyGen(1λ), EDB ← EDBSetup(K,DB) and
τ ← TokGen(K,w) we have that ReadPat(EDB, τ) consists of at most d intervals.

Read efficiency. The notion of read efficiency compares the overall size of the
portion of EDB that is read on each query to the size of the actual answer to
the query. For a given DB and w, we let ||DB(w)|| denote the number of words
in the encoding of DB(w).

Definition 2.2 (Read efficiency). An SSE scheme Π is r-read efficient (or has
read efficiency r) if for any λ, DB, and w ∈ W, we have that ReadPat(τ,EDB)
consists of intervals of total length at most r · ||DB(w)|| words.

Security Notions
The standard security definition for SSE schemes follows the ideal/real simula-
tion paradigm. We consider both static and adaptive security, where the differ-
ence is whether the adversary chooses its queries statically (i.e., before seeing
any token), or in an adaptive manner (i.e., the next query may be a function
of the previous tokens). In both cases, some information is leaked to the server,
which is formalized by letting the simulator receive the evaluation of some “leak-
age function” on the database itself and the real tokens. We start with the static
case.

The real execution. The real execution is parameterized by the scheme Π, the
adversary A, and the security parameter λ. In the real execution the adversary
is invoked on 1λ, and outputs a database DB and a list of queries w = {wi}i.
Then, the experiment invokes the key-generation algorithm and the database
setup algorithms, K ← KeyGen(1λ) and EDB ← EDBSetup(K,DB). Then, for
each query w = {wi}i that the adversary has outputted, the token generator
algorithm is run to obtain τi = TokGen(wi). The adversary is given the encrypted
database EDB and the resulting tokens τ = {τi}wi∈w, and outputs a bit b.

The ideal execution. The ideal execution is parameterized by the scheme Π,
a leakage function L, the adversary A, a simulator S and the security parameter
λ. In this execution, the adversary A is invoked on 1λ, and outputs (DB,w)
similarly to the real execution. However, this time the simulator S is given the
evaluation of the leakage function on (DB,w) and should output EDB, τ (i.e.,
(EDB, τ) ← S(L(DB,w))). The execution follows by giving (EDB, τ) to the
adversary A, which outputs a bit b.

Let SSE-RealΠ,A(λ) denote the output of the real execution, and let
SSE-IdealΠ,L,A,S(λ) denote the output of the ideal execution, with the adver-
sary A, simulator S and leakage function L. We now ready to define security of
SSE:

Definition 2.3 (Static L-secure SSE). Let Π = (KeyGen,EDBSetup,
TokGen,Search) be an SSE scheme and let L be a leakage function. We say that

Tight Tradeoffs in Searchable Symmetric Encryption 419

the scheme Π is static L-secure searchable encryption if for every ppt adversary
A, there exists a ppt simulator S and a negligible function negl(·) such that

|Pr [SSE-RealΠ,A(λ) = 1] − Pr [SSE-IdealΠ,L,A,S(λ) = 1]| < negl(λ)

Adaptive setting. In the adaptive setting, the adversary is not restricted to
specifying all of its queries w in advance, but can instead choose its queries during
the execution in an adaptive manner, depending on the encrypted database EDB
and on the tokens that it sees. Let SSE-RealadaptΠ,A (λ) denote the output of the
real execution in this adaptive setting. In the ideal execution, the simulator S
is now an interactive Turing machine, which interacts with the experiment by
responding to queries. First, the simulator S is invoked on L(DB) and outputs
EDB. Then, for every query wi that A may output, the function L is invoked
on DB and all previously queries {wj}j<i and the new query wi, outputs some
new leakage information which is given to the simulator S. The latter outputs
some ti, which is given back to A, who may then issue a new query. At the end
of the execution, A outputs a bit b. Let SSE-IdealadaptΠ,L,A,S(λ) be the output of
the ideal execution. The adaptive security of SSE is defined as follows:

Definition 2.4 (Adaptive L-secure SSE). Let Π = (KeyGen,EDBSetup,
TokGen,Search) be an SSE scheme and let L be a leakage function. We say
that the scheme Π is adaptive L-secure searchable encryption if for every ppt
adversary A, there exists a ppt simulator S and a negligible function negl(·)
such that

∣
∣
∣Pr

[
SSE-RealadaptΠ,A (λ) = 1

]
− Pr

[
SSE-IdealadaptΠ,L,A,S(λ) = 1

]∣
∣
∣ < negl(λ)

The leakage function. Following the standard notions of security for SSE
we consider the leakage function Lmin for one-round protocols and the leakage
function Lsizes for two-round protocols, where

Lmin (DB,w) =
(
N, {DB(w)}w∈w

)
,

Lsizes(DB,w) = (N, {|DB(w)|}w∈w) ,

and N =
∑

w∈W |DB(w)| is the size of the database. That is, both functions
return the size of the database, and the difference between them is that the
function Lmin returns the actual documents that contain each keyword w ∈ w
that the adversary has queried, whereas the function Lsizes returns only the
number of such documents.

The leakage functions in the adaptive setting are defined analogously. That
is, for a database DB, a set of “previous” queries {wj}j<i, and a new query wi,
we define

Ladap
min (DB, {wj}j<i, wi) =

{
N if ({wj}j<i, wi) = (⊥,⊥)
DB(wi) otherwise

Ladap
size (DB, {wj}j<i, wi) =

{
N if ({wj}j<i, wi) = (⊥,⊥)
|DB(wi)| otherwise .

420 G. Asharov et al.

2.2 Static Hash Tables

In our schemes we rely on static hash tables (also known as static dictionaries).
These are data structures that given a set S can support lookup operations in
constant time in the standard unit-cost word-RAM model. Specifically, a static
hash table consists of a pair of algorithms denoted (HTSetup,HTLookup). The
algorithm HTSetup gets as input a set S = {(
i, di)}k

i=1 of pairs (
i, di) of strings,
where
i ∈ {0, 1}s is the label and di ∈ {0, 1}r is the data. The output of this
algorithm is a hash table HT(S). The lookup algorithm HTLookup on input
(HT(S),
) returns d if (
, d) ∈ S, and ⊥ otherwise.

There exist many constructions of static hash tables that use linear space
(i.e., O(k(r + s)) bits) and answer lookup queries by reading a constant number
of contiguous s-bit blocks and r-bit blocks (see, for example, [1,26], and the
many references therein).

2.3 Cuckoo Hashing with a Stash

Cuckoo hashing is an efficient and practical hash table designed by Pagh and
Rodler [26], providing worst-case constant lookup time and uses linear space.
An important property of cuckoo hashing is that by storing a few elements
in a secondary (small) data structure, referred to as a “stash”, it is possible to
decrease its failure probability from noticeable to negligible [21]. For our purposes
in this work, it suffices to consider the following abstraction of cuckoo hashing
with a stash:

– The memory is an abstract array [m], where each cell may contain a single
element or NULL.

– The potential locations of any element are randomly sampled (instead of
being determined by hash functions).

We now summarize the abstract properties of cuckoo hashing with a stash
in which we are interested for our construction in Sect. 4:

1. For storing n lists, where each list consists of
 elements, an array of size
O(n ·
) is used. The array is partitioned into two segments – a cuckoo hashing
segment of size O(n ·
) and a stash segment of size s ·
.

2. Fetching a list requires accessing two random locations (of size
 each) in the
cuckoo hashing segment and accessing the entire stash segment.

3. When using a stash of size s = no(1), the probability that n lists can be
successfully stored is 1 − O(ns/2) [4, Theorem 2].7

7 Note that in the original work of Kirsch et al. [21] they considered a constant-sized
stash, whereas in this work we are interested in a stash whose size is not necessarily
constant, and thus we rely on [4].

Tight Tradeoffs in Searchable Symmetric Encryption 421

3 The Pad-and-Split Framework: A Stronger
Lower Bound

In this section we first formalize our pad-and-split framework for the design
of symmetric searchable encryption schemes (Sect. 3.1). Then, we show that it
captures the memory access patterns underlying essentially all of the existing
symmetric searchable encryption schemes other than the schemes of Asharov
et al. [2] (Sect. 3.2), and discuss the instantiation of Demertzis and Papamanthou
(Sect. 3.3) whose tradeoff matches our lower bound (Sect. 3.4).

3.1 The Pad-and-Split Framework

Our framework considers symmetric searchable encryption schemes that are char-
acterized by a deterministic algorithm denoted SplitList, and consist of the fol-
lowing two phases:

– Given a database DB = {DB(w1), . . . ,DB(wnW
)} of size N , for each keyword

wi the scheme invokes the SplitList algorithm on the length ni of its cor-
responding list DB(wi), to obtain a vector (x(1)

i , . . . , x
(m)
i) of integers. The

scheme then potentially pads the list DB(wi) by adding “dummy” elements,
and splits the padded list into sublists of lengths len(1), . . . , len(m), where x

(j)
i

denotes the number of sublists of each length len(j).
– For each possible length len(j), the scheme groups together all sublists of

length len(j), and independently processes each such group to produce an
encrypted database EDB.

A key property of our framework is that the SplitList algorithm, which deter-
mines the number of sublists of each length, does not take as input an actual
list DB(wi) but only its length ni = |DB(wi)|. This algorithm is parameterized
by the possible lengths len(1), . . . , len(m) of sublists, and also by upper bounds
s(1), . . . , s(m) on the total number of sublists of lengths len(1), . . . , len(m), respec-
tively. We allow the parameters m, len(1), . . . , len(m) and s(1), . . . , s(m) to depend
on the total length N =

∑nW

i=1 |DB(wi)| of the database, but do not explicitly
denote this for ease of notation.

We consider any possible instantiation of the SplitList algorithm subject to
satisfying two natural requirements. First, we require that each list DB(wi) is
split into sublists whose total length is at least the length of DB(wi). Second, we
require that for every possible sublist length len(j) there are at most s(j) sublists
of length len(j) in the worst-case over all possible databases of size N . Formally:

Definition 3.1. We say that a SplitList algorithm, parameterized by (len(1), . . . ,
len(m)) and (s1, . . . , sm) is valid if for every integer N and for every vector of
lengths (n1, . . . , nk) with

∑k
i=1 ni = N , it holds that:

422 G. Asharov et al.

– Each list is not longer than the sum of lengths of its sublists:
For every ni it holds that x

(1)
i · len(1) + · · · + x

(m)
i · len(m) ≥ ni, where

(x(1)
i , . . . , x

(m)
i) = SplitList(N,ni).

– Each s(j) upper bounds the number of sublists of length len(j): For
every j ∈ [m] it holds that

∑k
i=1 x

(j)
i ≤ s(j), where (x(1)

i , . . . , x
(m)
i) =

SplitList(N,ni) for every i ∈ [k].

In addition, we say that SplitList has locality L if each list DB(wi) is split
into at most L sublists. Formally:

Definition 3.2. We say that a SplitList algorithm has locality L = L(N) if
for every ni it holds that x

(1)
i + · · · + x

(m)
i ≤ L, where (x(1)

i , . . . , x
(m)
i) =

SplitList(N,ni).

Equipped with our notion of a valid SplitList algorithm, we describe a general
template (see Construction 3.5) for constructing symmetric searchable encryp-
tion schemes given any such algorithm. We rely, in addition, on a pseudorandom
function PRF and a private-key encryption scheme (Enc,Dec) with pseudoran-
dom ciphertexts – both of which can be constructed based on any one-way func-
tion. This yields the following theorem:

Theorem 3.3. Given a valid SplitList algorithm with parameters (len(1), . . . ,
len(m)) and (s(1), . . . , s(m)), a pseudorandom function PRF, and a private-key
encryption scheme (Enc,Dec) with pseudorandom ciphertexts, Construction 3.5
is a static Lmin -secure symmetric searchable encryption scheme for databases of
size N with the following parameters:

– Space O
(∑m

j=1 s(j) · len(j)
)
.

– Locality O(L(N)), where SplitList has locality L(N).
– Read efficiency O(1).
– Token size O(1).

Moreover, Construction 3.5 is an adaptive Ladap
min -secure symmetric searchable

encryption scheme in the random-oracle model, when instantiating PRF and
(Enc,Dec) appropriately.

Note that Theorem 3.3 guarantees that Construction 3.5 is statically-secure
in the standard model (although, we do prove it can be made adaptively secure in
the random-oracle model). The next theorem shows that a simple modification
of the scheme (described as Construction 3.6), based on an idea sketched by
Stefanov et al. [28], is in fact adaptively secure in the standard model. This
comes at the cost of increasing the token size from tokens of size O(1) to tokens
of size O(L), where L is the locality of the SplitList algorithm. In this scheme,
the client decrypts the results sent by the server (using the Resolve algorithm),
and thus the scheme leaks only the size of the results. This is in contrast to the

Tight Tradeoffs in Searchable Symmetric Encryption 423

scheme described in Construction 3.5, where the server decrypts the results, and
thus the scheme leaks the results themselves8.

Theorem 3.4. Given a valid SplitList algorithm with parameters (len(1), . . . ,
len(m)) and (s(1), . . . , s(m)), a pseudorandom function PRF, and a private-
key encryption scheme (Enc,Dec) with pseudorandom ciphertexts, Construc-
tion 3.6 is an adaptive Ladap

size -secure symmetric searchable encryption scheme for
databases of size N with the following parameters:

– Space O
(∑m

j=1 s(j) · len(j)
)
.

– Locality O(L(N)), where SplitList has locality L(N).
– Read efficiency O(1).
– Token size O(L(N)).

In the remainder of this section we provide a high-level overview of these
schemes. The proofs of Theorems 3.3 and 3.4 can be found in the full version of
this paper [3].

Overview of the schemes. In both schemes each list of document identi-
fiers DB(wi) is padded and split as dictated by the output (x(1)

i , . . . , x
(m)
i) =

SplitList(N, |DB(wi)|). That is, DB(wi) is padded to length x
(1)
i · len(1) + · · · +

x
(m)
i · len(m), and split into sublists, where for each j ∈ [m] there are x

(j)
i sublists

of length len(j). Then, we construct an encrypted database which consists of the
following hash tables:

– A hash table that stores (in encrypted manner) the lengths of all lists, and is
padded to contain exactly N elements.

– For every j ∈ [m] a hash table that stores (in an encrypted manner) all
sublists of length len(j), and is padded to contain exactly s(j) sublists of this
length.

In all hash tables we store the various elements according to pseudorandom
labels that are derived from each corresponding keyword w via a pseudorandom
function whose key is known only to the client. Intuitively speaking, the scheme
is secure for any valid SplitList algorithm due to the following three reasons: (1)
The number of padded elements and the number of sublists each list is split into
depend only on the length of each list, (2) each hash table consists of encrypted
elements with pseudorandom labels, and (3) the size of each hash table depends
only on the size of the database.

The main differences between Construction 3.5 (providing static security) and
Construction 3.6 (providing adaptive security) are as follows:

1. The lengths of the lists in Construction 3.6 are encrypted using one-time pads.
This is required in order to allow “explaining” a random value as the encryption
of any particular length on the fly (given that adversaries may be adaptive).

8 Note that any scheme in which the server decrypts the results can be easily trans-
formed into a scheme where only the client decrypts the results by adding an addi-
tional encryption layer – but this does not necessarily hold in the other direction.

424 G. Asharov et al.

2. In Construction 3.5, for each searched keyword the server is given keys derived
from that keyword, allowing it to compute the labels and decrypt the docu-
ment identifiers associated with that keyword. In Construction 3.6 the server
is given the labels themselves (thus, the token size is O(L)), and can only
locate the encrypted document identifiers, but not to decrypt them.

3.2 The Generality of the Pad-and-Split Framework

We now demonstrate that our pad-and-split framework captures the memory
access patterns underlying the vast majority of existing symmetric searchable
encryption schemes for supporting keywords search (i.e., we show that these
schemes can be obtained as instantiations of our framework). We note that each
of these schemes offers other important implementation details, improvements
and optimizations that we do not intend to capture using our framework (since
these are not directly related to the tradeoff between space, locality, and read
efficiency), and we refer to the relevant papers for further details.

The scheme of Curtmola et al. [11]. This is the most common technique
underlying the vast majority of existing schemes (in particular, [7,10,12,20,23,
29]). In this scheme each list is split into single elements (i.e., sublists of length 1),
and those are stored in the same hash table. This is captured by our framework
when setting m = 1, len(1) = 1, s(1) = N , and SplitList(N,ni) = (ni). This
results in a scheme with space O(N), locality O(N), and read efficiency O(1).

The 2lev scheme of Cash et al. [6]. This scheme can be viewed as a pad-
and-split scheme with two possible lengths, b and B, where b < B. A list of
length at most b is padded to length b, and a list of length greater than b is
padded to a length that is a multiple of B and then split into sublists of length
B (in order to reduce space overhead, this scheme does not add dummy lists,
thus resulting in a non-standard leakage function). This results in a scheme with
space O(N · (b + B

b+1)), locality O(N/B), and read efficiency O(1).

A simple scheme with O(N2) space. In this scheme each list is padded to
the maximal possible length (i.e., to length N , where N =

∑nW

i=1 |DB(wi)|), and
all lists are stored in the same hash table. This is captured by our framework
when setting m = 1, len(1) = N , s(1) = N and SplitList(N,ni) = (1). This results
in a scheme with space O(N2), locality O(1), and read efficiency O(1).

The scheme of Cash and Tessaro [8]. This scheme splits a list of length ni

into at most log ni sublists of lengths that are powers of 2 according to the binary
representation of ni. Then, for each possible power of 2, the scheme stores sublists
of that length in a separate hash table. This is captured by our framework when
setting m = �log N	+1, len(j) = 2j−1, s(j) = N/2j−1, and the SplitList algorithm
on input ni outputs a binary vector of length m which corresponds to the binary
representation of ni. This results in a scheme with space O(

∑m
j=1 len(j)s(j)) =

O(N log N), locality O(log N), and read efficiency O(1).

Tight Tradeoffs in Searchable Symmetric Encryption 425

CONSTRUCTION 3.5 (One-Round Pad-and-Split SSE Scheme)

A pad-and-split SSE scheme is parameterized by a SplitList algorithm, and by the
following values (all values are functions of the size N of the database):

1. Locality parameter L.
2. Possible lengths len(1), . . . , len(m) of sublists.
3. Upper bounds s(1), . . . , s(m) on the total number of sublists of lengths

len(1), . . . , len(m), respectively.

Key generator. The algorithm KeyGen on input 1λ samples and outputs a key
K ← {0, 1}λ for PRF.
Setup. The algorithm EDBSetup on input (K,DB) is defined as follows:

1. Initialize t+1 empty sets T, T1, . . . , Tm, where T will consist of the lengths of
the lists, and each set Tj will consist of all sublists of length len(j).

2. For every keyword wi ∈ W with an associated list DB(wi) = {id1, . . . , idni}:

(a) Compute (labeli, Ki, ̂Ki) = PRFK(wi).
(b) Compute n̂i = EncKi(ni) and add the pair (labeli, n̂i) to the set T .

(c) Compute (x
(1)
i , . . . , x

(m)
i) = SplitList(N, ni).

(d) For every j = 1, . . . , m:

i. For every x = 1, . . . , x
(j)
i :

A. Take the next len(j) elements from the list DB(wi) and create a
block {id′

1, . . . , id
′
len(j)

}. If there are less than len(j) elements left
in DB(wi), then pad with dummy elements.

B. Compute a label: labelj,x = PRF
̂Ki

(j, x).

C. Encrypt dj,x =
(

EncKi(id
′
1), . . . ,EncKi(id

′
len(j)

)
)

.
D. Insert the pair (labelj,x, dj,x) into the set Tj .

3. Pad the set T to contain exactly N elements by adding dummy elements, and
pad each set Tj to contain exactly s(j) elements by adding dummy elements.

4. For each set T, T1, . . . , Tm, uniformly shuffle the set, and generate a
hash table by invoking the HTSetup algorithm for obtaining hash tables
HT(T),HT(T1), . . . ,HT(Tm).

5. Output EDB = (HT(T), (HT(T1), . . . ,HT(Tm))).

Token generator. The algorithm TokGen on input (K, wi) computes and outputs

the token τi = (labeli, Ki, ̂Ki) = PRFK(wi).

Search. The algorithm Search on input (τi,EDB), where τi = (labeli, Ki, ̂Ki) and
EDB = (HT(T),HT(T1), . . . ,HT(Tm)), is defined as follows:

1. Initialize a list of document identifiers R = ∅.
2. Invoke HTLookup on the hash table HT(T) and label labeli to retrieve

n̂i = EncKi(ni). Decrypt n̂i using the key Ki, and compute (x
(1)
i , . . . , x

(m)
i) =

SplitList(N, ni).

3. For every j ∈ [m] and for every x ∈
[

x
(j)
i

]

compute labelj,x = PRF
̂Ki

(j, x).

Invoke HTLookup on the hash table HT(Tj) for the label labelj,x, and obtain
the block dj,x. Decrypt the block using the key Ki and add the elements to
the list R. For a block that contains dummy elements, obtain and decrypt
only the part that does not contain dummy elements.

426 G. Asharov et al.

CONSTRUCTION 3.6 (Two-Round Pad-and-Split SSE Scheme)

A pad-and-split SSE scheme is parameterized by a SplitList algorithm, and the
following values (all values are functions of the size N of the database):

1. Locality parameter L.
2. Possible lengths len(1), . . . , len(m) of sublists.
3. Upper bounds s(1), . . . , s(m) on the total number of sublists of lengths

len(1), . . . , len(m), respectively.

Key generator. The algorithm KeyGen on input 1λ samples a key K ← {0, 1}λ

for PRF, samples a key ̂K ← {0, 1}λ for (Enc,Dec), and outputs (K, ̂K).

Setup. The algorithm EDBSetup on input ((K, ̂K),DB) is defined as follows:

1. Initialize t+1 empty sets T, T1, . . . , Tm, where T will consist of the lengths of
the lists, and each set Tj will consist of all sublists of length len(j).

2. For every keyword wi ∈ W with an associated list DB(wi) = {id1, . . . , idni}:
(a) Compute ((labeli, Ki), (labeli,1, . . . , labeli,L)) = PRFK(wi).
(b) Compute n̂i = Ki ⊕ ni and add the pair (labeli, n̂i) to the set T .

(c) Compute (x
(1)
i , . . . , x

(m)
i) = SplitList(N, ni).

(d) For every j = 1, . . . , m:

i. For every x = 1, . . . , x
(j)
i :

A. Take the next len(j) elements from the list DB(wi) and create a
block {id′

1, . . . , id
′
len(j)

}. If there are less than len(j) elements left
in DB(wi), then pad with dummy elements.

B. Let label be the first unused label from (labeli,1, . . . , labeli,L).
C. Encrypt dj,x =

(

Enc
̂K(id′

1), . . . ,Enc ̂K(id′
len(j)

)
)

.
D. Insert the pair (label, dj,x) into the set Tj .

3. Pad the set T to contain exactly N elements by adding dummy elements, and
pad each set Tj to contain exactly s(j) elements by adding dummy elements.

4. For each set T, T1, . . . , Tm, uniformly shuffle the set, and generate a
hash table by invoking the HTSetup algorithm for obtaining hash tables
HT(T),HT(T1), . . . ,HT(Tm).

5. Output EDB = (HT(T), (HT(T1), . . . ,HT(Tm))).

Token generator. The algorithm TokGen on input ((K, ̂K), wi) computes and
outputs the token τi = ((labeli, Ki), (labeli,1, . . . , labeli,L)) = PRFK(wi).
Search. The algorithm Search on input (τi,EDB), where τi =
((labeli, Ki), (labeli,1, . . . , labeli,L)) and EDB = (HT(T),HT(T1), . . . ,HT(Tm)), is
defined as follows:

1. Initialize a list of results R = ∅.
2. Invoke HTLookup on the hash table HT(T) and label labeli to retrieve n̂i =

Ki ⊕ni. Decrypt ni = Ki ⊕ n̂i and compute (x
(1)
i , . . . , x

(m)
i) = SplitList(N, ni).

3. For every j ∈ [m] and for every x ∈
[

x
(j)
i

]

, let label be the first unused label

from (labeli,1, . . . , labeli,L). Invoke HTLookup on the hash table HT(Tj) for the
label labelj,x, obtain the block dj,x, and add its elements to the list R. For
a block that contains dummy elements, obtain only the part that does not
contain dummy elements.

Resolve. The algorithm Resolve on input ((K, ̂K), R) computes and outputs the
identifiers M = {Dec

̂K(c) : c ∈ R}.

Tight Tradeoffs in Searchable Symmetric Encryption 427

The scheme of Asharov et al. [2, Sect. 5]. This scheme improves the one
of Cash and Tessaro [8]. In this scheme, a list of length 2pi−1 < ni ≤ 2pi is
padded to length 2pi and stored as a whole. This is captured by our framework
when setting m =
log N� + 1, len(j) = 2j−1, s(j) = 2N/2j−1, and the SplitList
algorithm, on input ni, outputs a vector of length m where all the entries are
zeros except for a one that appears in the location
log ni� + 1. This results in
a scheme with space O(

∑m
j=1 len(j)s(j)) = O(N log N), locality O(1), and read

efficiency O(1).

3.3 An Optimal Instantiation for Any Locality

As discussed in Sect. 1.1, the lower bound that we prove for schemes in the pad-
and-split framework matches the tradeoff provided by the scheme of Demertzis
and Papamanthou [14] (which is captured by our framework). Specifically, when
setting the read efficiency of their scheme to O(1), one obtains a statically-secure
scheme with space O(N log N/ log L), locality L, and read efficiency O(1). It
should be noted that their scheme supports also non-constant read efficiency,
but in that case it is not captured by our framework as it leaks additional
information (in particular, the random choices made by the setup algorithm).

In what follows we describe their instantiation within our above-described
template. Their scheme is obtained by splitting each list to sublists of lengths
that are a power of the locality L. In our notation, we set m = �log N/ log L	+1 =
�logL N	 + 1, len(j) = Lj−1, and s(j) = 2N/len(j) for every j ∈ [m]. As for the
splitting algorithm, a list of length Lj−1 ≤ ni < Lj is padded to a length that
is a multiple of Lj−1, and split into at most L sublists of length Lj−1. More
formally, SplitList(N,ni) outputs a vector of length m, where all the entries are
zeros except for the entry in the position j = �logL(ni)	 + 1, which is set to the
value

⌈
ni/Lj−1

⌉ ∈ {1, . . . , L}.
This is indeed a valid SplitList algorithm, and its locality is L. Specifically, for

each ni and j it holds that
ni/Lj−1� · Lj−1 ≥ ni, that is, each list is not longer
than the sum of the lengths of its sublists. Moreover, for j = �logL(ni)	 + 1 it
also holds that
ni/Lj−1� ≤ L and
ni/Lj−1� · Lj−1 < 2 · ni. This means that
the locality is L, and that the padding at most doubles the length of the list.
Therefore, it is suffices to set s(j) = 2N/len(j), and thus it holds that

∑m
j=1 len(j) ·

s(j) = m · 2N = O(N · log N/ log L).
According to Theorems 3.3 and 3.4, the above splitting algorithm results in a

searchable symmetric encryption schemes with space O(N ·log N/ log L), locality
O(L), and read efficiency O(1). This yields the following corollaries:

Corollary 3.7 ([14]). Assuming the existence of any one-way function, for any
L = L(N) > c (where c is an absolute constant) there exists a static Lmin -
secure symmetric searchable encryption scheme for databases of size N with the
following parameters:

– Space O(N · log N/ log L).
– Locality L(N).

428 G. Asharov et al.

– Read efficiency O(1).
– Token size O(1).

Moreover, the scheme is adaptively Ladap
min -secure in the random-oracle model,

when instantiating its building blocks appropriately.

Corollary 3.8. Assuming the existence of any one-way function, for any L =
L(N) > c (where c is an absolute constant) there exists an adaptive Ladap

size -secure
symmetric searchable encryption scheme for databases of size N with the follow-
ing parameters:

– Space O(N · log N/ log L).
– Locality L(N).
– Read efficiency O(1).
– Token size O(L(N)).

Better efficiency for super-constant sub-polynomial locality. For local-
ity L(N) satisfying ω(1) ≤ L(N) ≤ No(1) we can in fact instantiate our
framework in a manner that reduces the expression

∑m
j=1 len(j)s(j) to (1 +

o(1))(N · log N/ log L). This matches our lower bound, which is shown to be
(1 − o(1))(N · log N/ log L), to within an additive lower-order term.

This is done as follows. Let L̂ = �L/ log L	, and for a list of length ni let
j such that L̂j ≤ ni < L̂j+1. Represent ni = a · L̂j + b · L̂j−1 + c, where
a ∈ {1, . . . , L̂ − 1}, b ∈ {0, . . . , L̂ − 1}, and c ∈ {0, . . . , L̂j−1 − 1}. If a ≥ log L,
then pad and split the list into at most L̂ sublists of length L̂j . Otherwise, pad
and split the list into at most L̂ · log L ≤ L sublists of length L̂j−1. This way, we
never pad a list more than (1 + 1/ log L) times its length, so for any j, we can
set s(j) = (1 + 1/ log L)N/len(j), and obtain

m∑

j=1

len(j)s(j) =
(

1 +
1

log L

)

N ·
(⌊

log N

log L̂

⌋

+ 1
)

=
(
1 + o(1)

)
N · log N

log L
,

where the last equality holds since ω(1) ≤ L ≤ No(1).

3.4 Our Lower Bound for Pad-and-Split Schemes

In this section we present our lower bound on the trade-off between the space
and the locality of any pad-and-split scheme. Recall that each such a scheme is
characterized by a SplitList algorithm that satisfies a modest validity requirement
(recall Definition 3.1), and is associated with the following parameters (all of
which may be functions of the size N of the database):

– The possible lengths len(1), . . . , len(m) of sublists to which the SplitList algo-
rithm splits the list associated with each keyword, as described in Sect. 3.1.

– Upper bounds s(1), . . . , s(m) on the total number of sublists of lengths
len(1), . . . , len(m), respectively, that are produced by the SplitList algorithm
when processing an entire database.

Tight Tradeoffs in Searchable Symmetric Encryption 429

Equipped with the above parameters, recall from Theorems 3.3 and 3.4 that the
space usage of a pad-and-split scheme is O

(∑m
j=1 s(j) · len(j)

)
, and the locality

of such a scheme is O(L) where L = L(N) is the locality of its SplitList algorithm
(i.e., each list is split into at most L sublists). Thus, proving a lower bound on
the trade-off between the space and the locality of pad-and-split schemes trans-
lates to proving such a lower bound on the corresponding parameters of their
underlying SplitList algorithm. Theorem1.1 follows as an immediate corollary of
the following theorem, which we prove in the full version of this paper [3]:

Theorem 3.9. Let SplitList be a valid splitting algorithm with parameters
len(1), . . . , len(m) and s(1), . . . , s(m), and with locality L = L(N). Then, for any
0 < c < 1 it holds that

m∑

j=1

len(j) · s(j) ≥ (1 − c) · N ·
(

log N

log L − log c + C1
− C2

)

,

where C1 and C2 are small absolute constants.

In particular, by setting c = 1/2 we obtain the lower bound
∑m

j=1 len(j) ·
s(j) = Ω(N · log N/ log L), which implies Theorem 1.1. In addition, if ω(1) ≤
L(N) ≤ No(1) then by setting c = 1/ log L we obtain the tighter lower bound
∑m

j=1 len(j) · s(j) ≥ (1 − o(1))N · log N/ log L.

4 The Statistical-Independence Framework:
A Leveled Two-Choice Scheme

In this section we consider the statistical-independence framework introduced by
Asharov et al. [2] for the design of symmetric searchable encryption schemes. As
discussed in Sect. 1.2, within this framework we construct a scheme whose read
efficiency when querying for a keyword w may depend on the length of the list
DB(w) that is associated with w, and for any n ≤ N we denote by r(N,n) the read
efficiency when retrieving a list of length n.9 We prove the following theorem:

Theorem 4.1. Assuming the existence of any one-way function, for any func-
tion f(N) = ω(1) there exists an adaptive Ladap

size -secure symmetric searchable
encryption scheme for databases of size N in which no keyword is associated
with more than N/ log3 N identifiers, with the following parameters:

– Space O(N).
– Locality O(1).
– Read efficiency r(N,n) = f(N)·ε(n)−1+O(log log log N), where n = N1−ε(n).
– Token size O(1).
9 We emphasize that having the read efficiency depend on the length of the retrieved

list does not hurt the security of SSE schemes, and our scheme still results in minimal
leakage as required.

430 G. Asharov et al.

Comparing the performance of our new scheme with the lower bound of
Asharov et al. in the statistical-independence framework, Theorem4.1 matches
their lower bound to within an additive O(log log log N) factor in the read effi-
ciency. Specifically, Asharov et al. proved the following lower bound for schemes
in the statistical-independence framework (restated to consider read efficiency
r(N,n) that may depend on the length n of each list, and to consider constant
locality):

Theorem 4.2 ([2]). For any searchable symmetric encryption scheme in the
statistical-independence framework with space O(N log N), locality O(1), and
read efficiency r(N,n), there exists a function f(N) = ω(1) such that r(N,n) =
f(N) · ε(n)−1 for every 1 ≤ n ≤ N/ log N , where n = N1−ε(n).

In the remainder of this section we first overview the statistical independence
framework for the design of symmetric searchable encryption schemes (Sect. 4.1),
and then present our new scheme within this framework (Sect. 4.2).

4.1 The Statistical-Independence Framework

The statistical-independence framework of Asharov et al. [2] considers symmetric
searchable encryption schemes that are characterized by a pair of algorithms,
denoted RangesGen and Allocation, and consist of the following two phases:

– Given a database DB = {DB(w1), . . . ,DB(wnW
)} of size N , for each keyword

wi the scheme invokes the RangesGen algorithm on the length ni of its corre-
sponding list DB(wi), to obtain a set of possible locations in which the scheme
may place the elements of the list DB(wi). This set consists of several intervals
and we denote it by Ri = {[a1, b1], . . . , [ad, bd]} ← RangesGen(N,ni).
Looking ahead, when supplied with a token corresponding to a keyword wi,
the server will return to the client all data stored in the possible locations
of the list DB(wi) (the server will not actually know in which of the possible
locations the elements of the list are actually placed).

– Given the sets of possible locations R1, . . . , RnW
of the lists corresponding

to all keywords w1, . . . , wnW
, respectively, the scheme invokes the Allocation

algorithm on these sets (and on the respective lengths of the lists) to obtain
the actual locations for the elements of all lists. We denote the actual locations
as an array map ← Allocation ((n1, R1), . . . , (nnW

, RnW
)), where each of its

entries is either a pair (i, j) (representing that this entry is the actual location
of the jth element from the list DB(wi)) or NULL (representing an empty
entry).

A key property of this framework is that the RangesGen algorithm, which
determines the set of possible locations for each list DB(wi), is applied separately
and independently to the length of each list. Thus, the possible locations of each
list are independent of the possible locations of all other lists (in contrast, the
actual locations of the lists are naturally allowed to be correlated).

Asharov et al. referred to a pair (RangesGen,Allocation) of such algorithms as
an allocation scheme, and showed that any such allocation scheme satisfying a

Tight Tradeoffs in Searchable Symmetric Encryption 431

natural correctness requirement can be used to construct a searchable symmetric
encryption scheme. The correctness requirement asks that for any database, with
all but a negligible probability, these algorithms produce an actual allocation map
in which each element has exactly one actual placement (where the probability is
taken over the internal coin tosses of the algorithms RangesGen and Allocation).

The resulting scheme of Asharov et al. inherits its space, locality and read
efficiency from those of its underlying allocation scheme, defined as follows:

Definition 4.3. A pair (RangesGen,Allocation) of algorithms satisfying the
above correctness requirement is an (s, d, r)-allocation scheme, for some func-
tions s(·), d(·) and r(·, ·), if the following properties hold:

– Space: For any input (n1, . . . , nk), the array map ← Allocation((n1, R1),
. . . , (nk, Rk)), where Ri = {[a1, b1], . . . , [ad, bd]} ← RangesGen(N,ni) for
every i ∈ [k], is of size at most s(N), where N =

∑k
i=1 ni.

– Locality: For any input (N,ni), the algorithm RangesGen outputs at most
d(N) ranges.

– Read efficiency: For any input (N,ni) for the algorithm RangesGen it holds
that: ∑d

j=1 (bj − aj + 1)
ni

≤ r(N,ni) ,

where {[a1, b1], . . . , [ad, bd]} ← RangesGen(N,ni).

Equipped with the above notation, Asharov et al. proved the following:

Theorem 4.4 ([2]). Given any (s, d, r)-allocation scheme and any one-way func-
tion, there exists an Ladap

size -secure searchable symmetric encryption scheme for
databases of size N with space O(s(N), locality O(d(N)), and read efficiency
O(r(N, ·)).

From allocation algorithms to SSE schemes. We conclude our high-level
description of the statistical-independence framework by briefly overviewing the
generic transformation from allocation schemes to SSE scheme. The reader is
referred to [2] for the complete formal description of this transformation.

In a nutshell, the client runs the RangesGen and the Allocation procedures as
described above to obtain the actual allocation map of all elements. Then, the
client encrypts each identifier from each list DB(w) in map with a key that is
derived from the keyword w using a pseudorandom function. In addition, any
unused entry in the array is filled with a uniform string of the appropriate length.

When issuing a query corresponding to a keyword w, the client asks the server
to retrieve the encrypted content of all possible locations of the list DB(w).10

10 The details here are quite subtle. The server obtains the pseudorandom key that was
used to produce randomness for the relevant invocation of RangesGen. In addition,
the server stores the lengths of the lists in an encrypted manner, and can only reveal
the lengths of the already-queried lists. Knowing both the pseudorandom key and
the list length allows the server to compute the possible locations of the list DB(w).

432 G. Asharov et al.

Since these locations are chosen independently at random, this does not reveal
any additional information on the structure of the database except for the length
of the queried list. The client then identifies the actual locations and decrypts
the data by itself.

4.2 Our Leveled Two-Choice Scheme

In this section we present our new allocation scheme from which Theorem 4.4 pro-
vides the searchable symmetric encryption schemes guaranteed by Theorem 4.1.
Our scheme consists of the following three levels for storing the elements of any
given database DB of size N :

– The first level, named the “two-choice array”, consists of the two-choice SSE
scheme of Asharov et al. [2] but with an exponentially improved read efficiency.
In this array, each list DB(wi) can be stored in one out of two possible inter-
vals of consecutive locations, in a manner that we describe below as part of
our Allocation algorithm. However, unlike the scheme of Asharov et al. we
do not store all of the N elements of the database in this array. Instead,
the key observation underlying our new scheme is that when viewing this
array as a collection of bins, then by allowing a few lists to “overflow” from
this level to the second level (overall at most N̂ = N/ log N elements will
overflow with all but a negligible probability), we can reduce the maximal
load of each bin from Õ(log log N) (as in [2]) to O(log log log N). This then
translates into improving the read efficiency in this level from Õ(log log N) to
O(log log log N).

– The second level, named the “cuckoo hashing level”, stores the vast majority
of the elements that overflow from the first level. This level consists of roughly
log N cuckoo hashing tables (see Sect. 2.3), where the j hash table is designed
to store at most N̂/2j values each of which of size 2j . These values are the
lists that overflow from the first level (the jth table will store overflowing lists
of length roughly 2j).

– The third level, named the “stash level”, consists of a cuckoo hashing stash
for each of the second-level cuckoo hashing tables. The goal of introducing
this level is to reduce the failure probably of cuckoo hashing from noticeable
to negligible (see Sect. 2.3), which is essential for the security of the resulting
SSE scheme.

This leveled structure of our allocation scheme, and thus of our SSE scheme,
guarantees that the possible locations for a list DB(w) of length n are its two
possible intervals in the two-choice array, its two locations in the jth cuckoo
hashing table for j = log n, and anywhere in the stash of the jth cuckoo hashing
table. In what follows we formally describe our allocation scheme (see Algo-
rithm4.7), which we prove to have space O(N), locality 5, and read efficiency
ω(1) · ε(n)−1 + O(log log log N) when retrieving lists of length n = N1−ε(n).

Tight Tradeoffs in Searchable Symmetric Encryption 433

Theorem 4.5. For any function f(N) = ω(1), Algorithm4.7 describes an
(O(N), 5, r(N,n))-allocation scheme for databases of size N in which no key-
word is associated with more than N/ log3 N identifiers, where r(N,n) = f(N) ·
ε(n)−1 + O(log log log N) and n = N1−ε(n).

Proof of Theorem 4.5. We assume without loss of generality that f(N) =
o(log log N) (since otherwise, we may take f̃(N) = min(f(N), o(log log N))
instead). For the two-choice part of the algorithm, we make use of the following
theorem from [2].

Theorem 4.6 ([2] Theorem 3.5 Part 1). Let S ≥ n1 be a bound on the maxi-
mal length, and let m be the number of bins. Consider the two-choice allocation
algorithm. Then, with probability 1−N−Ω(log N), there are at most S log2 N ele-
ments at level greater than 4N

m + log log N
S + 2, where the level of an element is

the load of its bin right after inserting the element (e.g., the first element that
is interested to the bin has level 1).

In Algorithm 4.7, we set S = N/ log3 N , m = N/ log log log N , and BinSize =
O(log log log N). Therefore, with an overwhelming probability there are at most
N̂ = N/ log N overflowing elements, and in this case, we place at most N̂ ele-
ments in the cuckoo hashing tables with the stashes.

Now we analyze the placement of the elements in the hash tables, assuming
that the number of elements in LeftOvers is at most N̂ . For each 0 ≤ j ≤ t, we
set the stash size sj = f(N) · ε−1

j where εj is chosen such that 2j = N1−εj . We
obtain that the algorithm fails to insert the lists into the cuckoo hash table Hj

with its stash with probability at most O((N̂/2j)−sj/2) (see Sect. 2.3). Note that
N εj ≥ log3 N , so it holds that

(N̂/2j)−si/2 = (N εj/ log N)−sj/2

≤ (N
2
3 εj)−sj/2

= N−f(N)/3.

Thus, the insertion of overflowing elements fails with a negligible probability, and
we conclude that Algorithm 4.7 fulfills the correctness requirement. Regarding
read efficiency, the overhead of the 2-choice is O(log log log N), the overhead of
the cuckoo hash table is 2, and the overhead of the stash is f(N) · ε(n)−1, where
n = N1−ε(n), so in total we get an overhead of f(N) · ε−1

i + O(log log log N) as
claimed. Locality of 5 easily follows from the description of SplitList. Regarding
the space overhead, the bins require space of m · BinSize = O(N), each cuckoo
hash table with stash requires space of O(N̂) = O(N/ log N), and there are less
than log N tables. So in total, the space overhead is O(N). �

434 G. Asharov et al.

ALGORITHM 4.7 (Our Allocation Scheme (RangesGen,Allocation))

Input: A vector of integers (n1, . . . , nk) representing the lengths of the lists

L1, . . . , Lk in the database. We let N =
∑k

i=1 ni, ̂N = N/ log N , and assume
for concreteness that the ni’s are powers of 2, and that n1 ≥ n2 ≥ · · · ≥ nk.

Parameters:

– A bound S = N/ log3 N on the length of the longest list in the database.
– The number m = N/ log log log N of bins in the two-choice array (it is chosen

as a power of 2 and such that m ≥ n1).
– A bound BinSize = O(log log log N) on the size of each bin in the two-choice

array.
– Stash sizes s0, . . . , st where t = log S and sj = f(N) · εj for every j ∈ [t],

where 2j = N1−εj and ω(1) ≤ f(N) ≤ o(log log N) may be any pre-specified
function.

The memory layout. The memory is partitioned into the following segments:

1. m bins B0, . . . , Bm−1, each of size BinSize.
2. Hash tables H0, . . . , Ht, where each hash table Hj is implemented as a cuckoo

hash table for ̂N/2j data items of size 2j each with a stash of size sj .

The RangesGen algorithm. On input N and ni:

1. Uniformly sample αi,1, αi,2 ← {0, . . . , m
ni

− 1}.

Consider the two super bins ˜Bαi,1 = (Bni·α1+j)
ni−1
j=0 and ˜Bαi,2 =

(Bni·α2+j)
ni−1
j=0 .

2. Sample two hash table locations βi,1, βi,2 for the cuckoo hash table Hlog ni .
3. The possible ranges Ri are (1) The above two super-bins; (2) The two cells

βi,1, βi,2 in the hashtable Hlog ni ; (3) The stash of the table Hlog ni .

The Allocation algorithm.

1. Initialize m empty bins B0, . . . , Bm−1, and an empty set LeftOvers.
2. Initialize hash tables H0, . . . , Ht, where each hash table Hj is implemented as

a cuckoo hash table for ̂N/2j entries of size 2j with a stash of size sj .
3. For every list Li with size ni and ranges Ri, reconstruct (αi,1, αi,2) and

(βi,1, βi2) from Ri, and place the list Li as follows:

(a) Consider the two super bins ˜Bαi,1 =
(

Bni·αi,1+j

)ni−1

j=0
and ˜Bαi,2 =

(

Bni·αi,2+j

)ni−1

j=0
. Let β ∈ {αi,1, αi,2} be the index of the least loaded

super bin among ˜Bαi,1 and ˜Bαi,2 , where the load of a super bin is defined
as the sum of loads of the bins that constitutes that super bin. If the load
of the bins in ˜Bβ is BinSize, then add Li to LeftOvers. Otherwise, place

the list Li in the super bin ˜Bβ . That is, for every j = 0, . . . , ni − 1, place
the jth element of the list Li in the bin Bni·β+j .

(b) If the list was not placed, then insert Li into the cuckoo hash table Hlog ni

using the locations βi,1 and βi,2. Note that the list might be placed in the
stash. If the insertion fails, then output ⊥ and abort.

Tight Tradeoffs in Searchable Symmetric Encryption 435

References

1. Arbitman, Y., Naor, M., Segev, G.: Backyard cuckoo hashing: constant worst-case
operations with a succinct representation. In: Proceedings of the 51st Annual IEEE
Symposium on Foundations of Computer Science, pp. 787–796 (2010)

2. Asharov, G., Naor, M., Segev, G., Shahaf, I.: Searchable symmetric encryption:
optimal locality in linear space via two-dimensional balanced allocations. In: Pro-
ceedings of the 48th Annual ACM Symposium on Theory of Computing, pp. 1101–
1114 (2016)

3. Asharov, G., Segev, G., Shahaf, I.: Tight tradeoffs in searchable symmetric encryp-
tion. Cryptology ePrint Archive, Report 2018/507 (2018). https://eprint.iacr.org/
2018/507

4. Aumüller, M., Dietzfelbinger, M., Woelfel, P.: Explicit and efficient hash families
suffice for cuckoo hashing with a stash. Algorithmica 70(3), 428–456 (2014)

5. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: Proceedings of the 22nd ACM Conference on Computer
and Communications Security, pp. 668–679 (2015)

6. Cash, D., Jaeger, J., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M., Steiner, M.:
Dynamic searchable encryption in very-large databases: data structures and imple-
mentation. In: Proceedings of the 21st Annual Network and Distributed System
Security Symposium (2014)

7. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 20

8. Cash, D., Tessaro, S.: The locality of searchable symmetric encryption. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 351–368.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 20

9. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005). https://doi.org/10.
1007/11496137 30

10. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 33

11. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: Proceedings of
the 13th ACM Conference on Computer and Communications Security, pp. 79–88
(2006)

12. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: Improved definitions and efficient constructions. J. Comput. Secur.
19(5), 895–934 (2011)

13. Demertzis, I. Papadopoulos, D., Papamanthou, C.: Searchable encryption with
optimal locality: achieving sublogarithmic read efficiency. Cryptology ePrint
Archive, Report 2017/749 (2017)

14. Demertzis, I., Papamanthou, C.: Fast searchable encryption with tunable locality.
In: Proceedings of the 2017 ACM Special Interest Group on Management of Data
(SIGMOD) Conference, pp. 1053–1067 (2017)

15. Dietzfelbinger, M., Pagh, R.: Succinct data structures for retrieval and approximate
membership. In: Proceedings of the 35th International Colloquium on Automata,
Languages and Programming, pp. 385–396 (2008)

https://eprint.iacr.org/2018/507
https://eprint.iacr.org/2018/507
https://doi.org/10.1007/978-3-642-40041-4_20
https://doi.org/10.1007/978-3-642-55220-5_20
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/978-3-642-17373-8_33

436 G. Asharov et al.

16. Goh, E.: Secure indexes. Cryptology ePrint Archive, Report 2003/216 (2003)
17. Hagerup, T.: Sorting and searching on the word RAM. In: Proceedings of the

15th Annual Symposium on Theoretical Aspects of Computer Science, pp. 366–
398 (1998)

18. Hagerup, T., Miltersen, P.B., Pagh, R.: Deterministic dictionaries. J. Algorithms
41(1), 69–85 (2001)

19. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Proceedings of the 16th International Conference on Financial Cryptog-
raphy and Data Security, pp. 258–274 (2013)

20. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: Proceedings of the 19th ACM Conference on Computer and Communica-
tions Security, pp. 965–976 (2012)

21. Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: cuckoo hashing
with a stash. SIAM J. Comput. 39(4), 1543–1561 (2009)

22. Kurosawa, K., Ohtaki, Y.: UC-secure searchable symmetric encryption. In:
Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 285–298. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32946-3 21

23. Kurosawa, K., Ohtaki, Y.: How to update documents verifiably in searchable sym-
metric encryption. In: Proceedings of the 12th International Conference on Cryp-
tology and Network Security, pp. 309–328 (2013)

24. Miltersen, P.B.: Cell probe complexity - a survey. In: Proceedings of the 19th
Conference on the Foundations of Software Technology and Theoretical Computer
Science, Advances in Data Structures Workshop (1999)

25. Pagh, A., Pagh, R.: Uniform hashing in constant time and optimal space. SIAM J.
Comput. 38(1), 85–96 (2008)

26. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)
27. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted

data. In: Proceedings of the 21st Annual IEEE Symposium on Security and Privacy,
pp. 44–55 (2000)

28. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. In: Proceedings of the 21st Annual Network and Distributed
System Security Symposium (2014)

29. van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P.H., Jonker, W.: Computa-
tionally efficient searchable symmetric encryption. In: Proceedings of 7th VLDB
Workshop on Secure Data Management, pp. 87–100 (2010)

https://doi.org/10.1007/978-3-642-32946-3_21

	Tight Tradeoffs in Searchable Symmetric Encryption
	1 Introduction
	1.1 Our Contributions
	1.2 Overview of Our Contributions
	1.3 Related Work
	1.4 Paper Organization

	2 Preliminaries
	2.1 Searchable Symmetric Encryption
	2.2 Static Hash Tables
	2.3 Cuckoo Hashing with a Stash

	3 The Pad-and-Split Framework: A Stronger Lower Bound
	3.1 The Pad-and-Split Framework
	3.2 The Generality of the Pad-and-Split Framework
	3.3 An Optimal Instantiation for Any Locality
	3.4 Our Lower Bound for Pad-and-Split Schemes

	4 The Statistical-Independence Framework: A Leveled Two-Choice Scheme
	4.1 The Statistical-Independence Framework
	4.2 Our Leveled Two-Choice Scheme

	References

