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Abstract. The cube attack is an important technique for the cryptanal-
ysis of symmetric key primitives, especially for stream ciphers. Aiming at
recovering some secret key bits, the adversary reconstructs a superpoly
with the secret key bits involved, by summing over a set of the plain-
texts/IV which is called a cube. Traditional cube attack only exploits
linear/quadratic superpolies. Moreover, for a long time after its pro-
posal, the size of the cubes has been largely confined to an experimental
range, e.g., typically 40. These limits were first overcome by the division
property based cube attacks proposed by Todo et al. at CRYPTO 2017.
Based on MILP modelled division property, for a cube (index set) I, they
identify the small (index) subset J of the secret key bits involved in the
resultant superpoly. During the precomputation phase which dominates
the complexity of the cube attacks, 2|I|+|J| encryptions are required to
recover the superpoly. Therefore, their attacks can only be available when
the restriction |I| + |J | < n is met.

In this paper, we introduced several techniques to improve the division
property based cube attacks by exploiting various algebraic properties
of the superpoly.

1. We propose the “flag” technique to enhance the preciseness of MILP
models so that the proper non-cube IV assignments can be identified
to obtain a non-constant superpoly.
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2. A degree evaluation algorithm is presented to upper bound the
degree of the superpoly. With the knowledge of its degree, the super-
poly can be recovered without constructing its whole truth table.
This enables us to explore larger cubes I’s even if |I| + |J | ≥ n.

3. We provide a term enumeration algorithm for finding the monomials
of the superpoly, so that the complexity of many attacks can be
further reduced.

As an illustration, we apply our techniques to attack the initialization of
several ciphers. To be specific, our key recovery attacks have mounted
to 839-round Trivium, 891-round Kreyvium, 184-round Grain-128a and
750-round Acorn respectively.

Keywords: Cube attack · Division property · MILP · Trivium
Kreyvium · Grain-128a · Acorn · Clique

1 Introduction

Cube attack, proposed by Dinur and Shamir [1] in 2009, is one of the general
cryptanalytic techniques of analyzing symmetric-key cryptosystems. After its
proposal, cube attack has been successfully applied to various ciphers, including
stream ciphers [2–6], hash functions [7–9], and authenticated encryptions [10,11].
For a cipher with n secret variables x = (x1, x2, . . . , xn) and m public variables
v = (v1, v2, . . . , vm), we can regard the algebraic normal form (ANF) of output
bits as a polynomial of x and v, denoted as f(x,v). For a randomly chosen set
I = {i1, i2, ..., i|I|} ⊂ {1, . . . , m}, f(x,v) can be represented uniquely as

f(x,v) = tI · p(x,v) + q(x,v),

where tI = vi1 · · · vi|I| , p(x,v) only relates to vs’s (s /∈ I) and the secret key
bits x, and q(x,v) misses at least one variable in tI . When vs’s (s /∈ I) and x
are assigned statically, the value of p(x,v) can be computed by summing the
output bit f(x,v) over a structure called cube, denoted as CI , consisting of 2|I|

different v vectors with vi, i ∈ I being active (traversing all 0-1 combinations)
and non-cube indices vs, s /∈ I being static constants. Traditional cube attacks
are mainly concerned about linear or quadratic superpolies. By collecting linear
or quadratic equations from the superpoly, the attacker can recover some secret
key bits information during the online phase. Aiming to mount distinguishing
attack by property testing, cube testers are obtained by evaluating superpolies
of carefully selected cubes. In [2], probabilistic tests are applied to detect some
algebraic properties such as constantness, low degree and sparse monomial dis-
tribution. Moreover, cube attacks and cube testers are acquired experimentally
by summing over randomly chosen cubes. So the sizes of the cubes are largely
confined. Breakthroughs have been made by Todo et al. in [12] where they intro-
duce the bit-based division property, a tool for conducting integral attacks1,
1 Integral attacks also require to traverse some active plaintext bits and check whether

the summation of the corresponding ciphertext bits have zero-sum property, which
equals to check whether the superpoly has p(x, v) ≡ 0.
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to the realm of cube attack. With the help of mixed integer linear programming
(MILP) aided division property, they can identify the variables excluded from
the superpoly and explore cubes with larger size, e.g., 72 for 832-round Trivium.
This enables them to improve the traditional cube attack.

Division property, as a generalization of the integral property, was first pro-
posed at EUROCRYPT 2015 [13]. With division property, the propagation of
the integral characteristics can be deduced in a more accurate manner, and
one prominent application is the first theoretic key recovery attack on full
MISTY1 [14].

The original division property can only be applied to word-oriented primi-
tives. At FSE 2016, bit-based division property [15] was proposed to investigate
integral characteristics for bit-based block ciphers. With the help of division
property, the propagation of the integral characteristics can be represented by
the operations on a set of 0-1 vectors identifying the bit positions with the zero-
sum property. Therefore, for the first time, integral characteristics for bit-based
block ciphers Simon32 and Simeck32 have been proved. However, the sizes of the
0-1 vector sets are exponential to the block size of the ciphers. Therefore, as has
been pointed out by the authors themselves, the deduction of bit-based division
property under their framework requires high memory for block ciphers with
larger block sizes, which largely limits its applications. Such a problem has been
solved by Xiang et al. [16] at ASIACRYPT 2016 by utilizing the MILP model.
The operations on 0-1 vector sets are transformed to imposing division property
values (0 or 1) to MILP variables, and the corresponding integral characteristics
are acquired by solving the models with MILP solvers like Gurobi [17]. With
this method, they are able to give integral characteristics for block ciphers with
block sizes much larger than 32 bits. Xiang et al.’s method has now been applied
to many other ciphers for improved integral attacks [18–21].

In [12], Todo et al. adapt Xiang et al.’s method by taking key bits into the
MILP model. With this technique, a set of key indices J = {j1, j2, . . . , j|J|} ⊂
{1, . . . , n} is deduced for the cube CI s.t. p(x,v) can only be related to the key
bits xj ’s (j ∈ J). With the knowledge of I and J , Todo et al. can recover 1-bit
of secret-key-related information by executing two phases. In the offline phase,
a proper assignment to the non-cube IVs, denoted by IV ∈ F

m
2 , is determined

ensuring p(x, IV ) non-constant. Also in this phase, the whole truth table of
p(x, IV ) is constructed through cube summations. In the online phase, the exact
value of p(x, IV ) is acquired through a cube summation and the candidate
values of xj ’s (j ∈ J) are identified by checking the precomputed truth table. A
proportion of wrong keys are filtered as long as p(x, IV ) is non-constant.

Due to division property and the power of MILP solver, cubes of larger
dimension can now be used for key recoveries. By using a 72-dimensional cube,
Todo et al. propose a theoretic cube attack on 832-round Trivium. They also
largely improve the previous best attacks on other primitives namely Acorn,
Grain-128a and Kreyvium [12,22]. It is not until recently that the result on
Trivium has been improved by Liu et al. [6] mounting to 835 rounds with a
new method called the correlation cube attack. The correlation attack is based
on the numeric mapping technique first appeared in [23] originally used for
constructing zero-sum distinguishers.
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1.1 Motivations

Due to [12,22], the power of cube attacks has been enhanced significantly, how-
ever, there are still problems remaining unhandled that we will reveal explicitly.

Finding Proper IV ’s May Require Multiple Trials. As is mentioned
above, the superpoly can filter wrong keys only if a proper IV assignment
IV ∈ F

m
2 in the constant part of IVs is found such that the corresponding

superpoly p(x, IV ) is non-constant. The MILP model in [12,22] only proves the
existence of the proper IV ’s but finding them may not be easy. According to
practical experiments, there are quite some IV ’s making p(x, IV ) ≡ 0. There-
fore, t ≥ 1 different IV ’s might be trailed in the precomputation phase before
finding a proper one. Since each IV requires to construct a truth table with
complexity 2|I|+|J|, the overall complexity of the offline phase can be t×2|I|+|J|.
When large cubes are used (|I| is big) or many key bits are involved (|J | is large),
such a complexity might be at the risk of exceeding the brute-force bound 2n.
Therefore, two assumptions are made to validate their cube attacks as follows.

Assumption 1 (Strong Assumption). For a cube CI , there are many values
in the constant part of IV whose corresponding superpoly is balanced.

Assumption 2 (Weak Assumption). For a cube CI , there are many val-
ues in the constant part of IV whose corresponding superpoly is not a constant
function.

These assumptions are proposed to guarantee the validity of the attacks as long
as |I| + |J | < n, but the rationality of such assumptions is hard to be proved,
especially when |I| + |J | are so close to n in many cases. The best solution is to
evaluate different IVs in the MILP model so that the proper IV of the constant
part of IVs and the set J are determined simultaneously before implementing
the attack.
Restriction of |I| + |J | < n. The superpoly recovery has always been domi-
nating the complexity of the cube attack, especially in [12], the attacker knows
no more information except which secret key bits are involved in the superpoly.
Then she/he has to first construct the whole truth table for the superpoly in
the offline phase. In general, the truth-table construction requires repeating the
cube summation 2|J| times, and makes the complexity of the offline phase about
2|I|+|J|. Apparently, such an attack can only be meaningful if |I|+|J | < n, where
n is the number of secret variables. The restriction of |I|+ |J | < n barricades the
adversary from exploiting cubes of larger dimension or mounting more rounds
(where |J | may expand). This restriction can be removed if we can avoid the
truth table construction in the offline phase.

1.2 Our Contributions

This paper improves the existing cube attacks by exploiting the algebraic prop-
erties of the superpoly, which include the (non-)constantness, low degree and
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sparse monomial distribution properties. Inspired by the division property based
cube attack work of Todo et al. in [12], we formulate all these properties in one
framework by developing more precise MILP models, thus we can reduce the
complexity of superpoly recovery.

This also enables us to attack more rounds, or employ even larger cubes.
Similar to [12], our methods regard the cryptosystem as a non-blackbox poly-
nomial and can be used to evaluate cubes with large dimension compared with
traditional cube attack and cube tester. In the following, our contributions are
summarized into five aspects.

Flag Technique for Finding Proper IV Assignments. The previous MILP
model in [12] has not taken the effect of constant 0/1 bits of the constant part
of IVs into account. In their model, the active bits are initialized with division
property value 1 and other non-active bits are all initialized to division property
value 0. The non-active bits include constant part of IVs, together with some
secret key bits and state bits that are assigned statically to 0/1 according to
the specification of ciphers. It has been noticed in [22] that constant 0 bits can
affect the propagation of division property. But we should pay more attention to
constant 1 bits since constant 0 bits can be generated in the updating functions
due to the XOR of even number of constant 1’s. Therefore, we propose a for-
mal technique which we refer as the “flag” technique where the constant 0 and
constant 1 as well as other non-constant MILP variables are treated properly.
With this technique, we are able to find proper assignments to constant IVs
(IV ) that makes the corresponding superpoly (p(x, IV )) non-constant. With
this technique, proper IVs can now be found with MILP model rather than
time-consuming trial & summations in the offline phase as in [12,22]. According
to our experiments, the flag technique has a perfect 100% accuracy for finding
proper non-cube IV assignments in most cases. Note that our flag technique has
partially proved the availability of the two assumptions since we are able to find
proper IV ’s in all our attacks.

Degree Evaluation for Going Beyond the |I| + |J | < n Restriction. To
avoid constructing the whole truth table using cube summations, we introduce
a new technique that can upper bound the algebraic degree, denoted as d, of the
superpoly using the MILP-aided bit-based division property. With the knowledge
of its degree d (and key indices J), the superpoly can be represented with its(|J|
≤d

)
coefficients rather than the whole truth table, where

(|J|
≤d

)
is defined as

( |J |
≤ d

)
:=

d∑

i=0

(|J |
i

)
. (1)

When d = |J |, the complexity by our new method and that by [12] are equal.
For d < |J |, we know that the coefficients of the monomials with degree higher
than d are constantly 0. The complexity of superpoly recovery can be reduced
from 2|I|+|J| to 2|I| × (|J|

≤d

)
. In fact, for some lightweight ciphers, the algebraic

degrees of their round functions are quite low. Therefore, the degrees d are
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often much smaller than the number of involved key bits |J |, especially when
high-dimensional cubes are used. Since d � |J | for all previous attacks, we can
improve the complexities of previous results and use larger cubes mounting to
more rounds even if |I| + |J | ≥ n.

Precise Term Enumeration for Further Lowering Complexities. Since
the superpolies are generated through iterations, the number of higher-degree
monomials in the superpoly is usually much smaller than its low-degree coun-
terpart. For example, when the degree of the superpoly is d < |J |, the number
of d-degree monomials are usually much smaller than the upper bound

(|J|
d

)
.

We propose a MILP model technique for enumerating all t-degree (t = 1, . . . , d)
monomials that may appear in the superpoly, so that the complexities of several
attacks are further reduced.

Relaxed Term Enumeration. For some primitives (such as 750-round
Acorn), our MILP model can only enumerate the d-degree monomials since
the number of lower-degree monomials are too large to be exhausted. Alter-
nately, for t = 1, . . . , d − 1, we can find a set of key indices JRt ⊆ J s.t. all
t-degree monomials in the superpoly are composed of xj , j ∈ JRt. As long as
|JRt| < |J | for some t = 1, . . . , d − 1, we can still reduce the complexities of
superpoly recovery.

Combining the flag technique and the degree evaluation above, we are able
to lower the complexities of the previous best cube attacks in [6,12,22]. Par-
ticularly, we can further provide key recovery results on 839-round Trivium2,
891-round Kreyvium, 184-round Grain-128a, and 750-round Acorn. Further-
more, the precise & relaxed term enumeration techniques allow us to lower the
complexities of 833-round Trivium, 849-round Kreyvium, 184-round Grain-128a
and 750-round Acorn. Our concrete results are summarized in Table 1.3 In [26],
Todo et al. revisit the fast correlation attack and analyze the key-stream gener-
ator (rather than the initialization) of the Grain family (Grain-128a, Grain-128,
and Grain-v1). As a result, the key-stream generators of the Grain family are
insecure. In other words, they can recover the internal state after initialization
more efficiently than by exhaustive search. And the secret key is recovered from
the internal state because the initialization is a public permutation. To the best
of our knowledge, all our results of Kreyvium, Grain-128a, and Acorn are the
current best key recovery attacks on the initialization of the targeted ciphers.
However, none of our results seems to threaten the security of the ciphers.

Clique View of the Superpoly Recovery. In order to lower the complexity
of the superpoly recovery, the term enumeration technique has to execute many
MILP instances, which is difficult for some applications. We represent the resul-
tant superpoly as a graph, so that we can utilize the clique concept from the

2 While this paper was under submission, Fu et al. released a paper on ePrint [24] and
claimed that 855 rounds initialization of Trivium can be attacked.

3 Because of the page limitation, we put part of detailed applications about Kreyvium,
Grain-128a and Acorn in the full version [25].
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graph theory to upper bound the complexity of the superpoly recovery phase,
without requiring MILP solver as highly as the term enumeration technique.

Organizations. Section. 2 provides the background of cube attacks, division
property, MILP model etc. Section 3 introduces our flag technique for identify-
ing proper assignments to non-cube IVs. Section 4 details the degree evaluation
technique upper bounding the algebraic degree of the superpoly. Combining the
flag technique and degree evaluation, we give improved key recovery cube attacks
on 4 targeted ciphers in Sect. 5. The precise & relaxed term enumeration as well
as their applications are given in Sect. 6. We revisit the term enumeration tech-
nique from the clique overview in Sect. 7. Finally, we conclude in Sect. 8.

Table 1. Summary of our cube attack results

Applications #Full rounds #Rounds Cube size |J | Complexity Reference

Trivium 1152

799 32† – Practical [4]

832 72 5 277 [12,22]

833 73 7 276.91 Sect. 6.1

835 37/36∗ – 275 [6]

836 78 1 279 Sect. 5.1

839 78 1 279 Sect. 5.1

Kreyvium 1152

849 61 23 284 [22]

849 61 23 281.7 Full version [25]

849 61 23 273.41 Sect. 6.2

872 85 39 2124 [22]

872 85 39 294.61 Full version [25]

891 113 20 2120.73 Full version [25]

Grain-128a 256

177 33 – Practical [27]

182 88 18 2106 [12,22]

182 88 14 2102 Full version [25]

183 92 16 2108 [12,22]

183 92 16 2108 − 296.08 Full version [25]

184 95 21 2109.61 Sect. 6.3

ACORN 1792

503 5‡ - Practical‡ [5]

704 64 58 2122 [12,22]

704 64 63 277.88 Sect. 6.4

750 101 81 2125.71 Full version [25]

750 101 81 2120.92 Sect. 6.4

†18 cubes whose size is from 32 to 37 are used, where the most efficient cube is shown to
recover one bit of the secret key.
∗28 cubes of sizes 36 and 37 are used, following the correlation cube attack scenario. It requires
an additional 251 complexity for preprocessing.
‡The attack against 477 rounds is mainly described for the practical attack in [5]. However,

when the goal is the superpoly recovery and to recover one bit of the secret key, 503 rounds

are attacked.
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2 Preliminaries

2.1 Mixed Integer Linear Programming

MILP is an optimization or feasibility program whose variables are restricted to
integers. A MILP model M consists of variables M.var, constraints M.con, and
an objective function M.obj. MILP models can be solved by solvers like Gurobi
[17]. If there is no feasible solution at all, the solver simply returns infeasible. If
no objective function is assigned, the MILP solver only evaluates the feasibility
of the model. The application of MILP model to cryptanalysis dates back to
the year 2011 [28], and has been widely used for searching characteristics corre-
sponding to various methods such as differential [29,30], linear [30], impossible
differential [31,32], zero-correlation linear [31], and integral characteristics with
division property [16]. We will detail the MILP model of [16] later in this section.

2.2 Cube Attack

Considering a stream cipher with n secret key bits x = (x1, x2, . . . , xn) and m
public initialization vector (IV) bits v = (v1, v2, . . . , vm). Then, the first output
keystream bit can be regarded as a polynomial of x and v referred as f(x,v).
For a set of indices I = {i1, i2, . . . , i|I|} ⊂ {1, 2, . . . , n}, which is referred as cube
indices and denote by tI the monomial as tI = vi1 · · · vi|I| , the algebraic normal
form (ANF) of f(x,v) can be uniquely decomposed as

f(x,v) = tI · p(x,v) + q(x,v),

where the monomials of q(x,v) miss at least one variable from {vi1 , vi2 , . . . , vi|I|}.
Furthermore, p(x,v), referred as the superpoly in [1], is irrelevant to
{vi1 , vi2 , . . . , vi|I|}. The value of p(x,v) can only be affected by the secret key
bits x and the assignment to the non-cube IV bits vs (s /∈ I). For a secret key
x and an assignment to the non-cube IVs IV ∈ F

m
2 , we can define a structure

called cube, denoted as CI(IV ), consisting of 2|I| 0-1 vectors as follows:

CI(IV ) := {v ∈ F
m
2 : v[i] = 0/1, i ∈ I

∧
v[s] = IV [s], s /∈ I}. (2)

It has been proved by Dinur and Shamir [1] that the value of superpoly p
corresponding to the key x and the non-cube IV assignment IV can be computed
by summing over the cube CI(IV ) as follows:

p(x, IV ) =
⊕

v∈CI(IV )

f(x,v). (3)

In the remainder of this paper, we refer to the value of the superpoly correspond-
ing to the assignment IV in Eq. (3) as pIV (x) for short. We use CI as the cube
corresponding to arbitrary IV setting in Eq. (2). Since CI is defined according
to I, we may also refer I as the “cube” without causing ambiguities. The size of
I, denoted as |I|, is also referred as the dimension of the cube.

Note: since the superpoly p is irrelevant to cube IVs vi, i ∈ I, the value of
IV [i], i ∈ I cannot affect the result of the summation in Eq. (3) at all. Therefore
in Sect. 5, our IV [i]’s (i ∈ I) are just assigned randomly to 0-1 values.
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2.3 Bit-Based Division Property and Its MILP Representation

At 2015, the division property, a generalization of the integral property, was pro-
posed in [13] with which better integral characteristics for word-oriented cryp-
tographic primitives have been detected. Later, the bit-based division property
was introduced in [15] so that the propagation of integral characteristics can
be described in a more precise manner. The definition of the bit-based division
property is as follows:

Definition 1 ((Bit-Based) Division Property). Let X be a multiset whose
elements take a value of Fn

2 . Let K be a set whose elements take an n-dimensional
bit vector. When the multiset X has the division property D1n

K
, it fulfills the

following conditions:

⊕

x∈X

xu =

{
unknown if there exist k ∈ K s.t. u 	 k,

0 otherwise,

where u 	 k if ui ≥ ki for all i, and xu =
∏n

i=1 xui
i .

When the basic bitwise operations COPY, XOR, AND are applied to the ele-
ments in X, transformations of the division property should also be made fol-
lowing the propagation corresponding rules copy, xor, and proved in [13,15].
Since round functions of cryptographic primitives are combinations of bitwise
operations, we only need to determine the division property of the chosen plain-
texts, denoted by D1n

K0
. Then, after r-round encryption, the division property of

the output ciphertexts, denoted by D1n

Kr
, can be deduced according to the round

function and the propagation rules. More specifically, when the plaintext bits
at index positions I = {i1, i2, . . . , i|I|} ⊂ {1, 2, . . . , n} are active (the active bits
traverse all 2|I| possible combinations while other bits are assigned to static 0/1
values), the division property of such chosen plaintexts is D1n

k , where ki = 1 if
i ∈ I and ki = 0 otherwise. Then, the propagation of the division property from
D1n

k is evaluated as

{k} := K0 → K1 → K2 → · · · → Kr,

where DKi
is the division property after i-round propagation. If the division

property Kr does not have an unit vector ei whose only ith element is 1, the ith
bit of r-round ciphertexts is balanced.

However, when round r gets bigger, the size of Kr expands exponentially
towards O(2n) requiring huge memory resources. So the bit-based division prop-
erty has only been applied to block ciphers with tiny block sizes, such as Simon32
and Simeck32 [15]. This memory-crisis has been solved by Xiang et al. using the
MILP modeling method.

Propagation of Division Property with MILP. At ASIACRYPT 2016,
Xiang et al. first introduced a new concept division trail defined as follows:
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Definition 2 (Division Trail [16]). Let us consider the propagation of the
division property {k} def= K0 → K1 → K2 → · · · → Kr. Moreover, for any
vector k∗

i+1 ∈ Ki+1, there must exist a vector k∗
i ∈ Ki such that k∗

i can propa-
gate to k∗

i+1 by the propagation rule of the division property. Furthermore, for
(k0,k1, . . . ,kr) ∈ (K0 × K1 × · · · × Kr) if ki can propagate to ki+1 for all
i ∈ {0, 1, . . . , r − 1}, we call (k0 → k1 → · · · → kr) an r-round division trail.

Let Ek be the target r-round iterated cipher. Then, if there is a division trail
k0

Ek−−→ kr = ej (j = 1, ..., n), the summation of jth bit of the ciphertexts is

unknown; otherwise, if there is no division trial s.t. k0
Ek−−→ kr = ej , we know

the ith bit of the ciphertext is balanced (the summation of the ith bit is constant
0). Therefore, we have to evaluate all possible division trails to verify whether
each bit of ciphertexts is balanced or not. Xiang et al. proved that the basic
propagation rules copy, xor, and of the division property can be translated
as some variables and constraints of an MILP model. With this method, all
possible division trials can be covered with an MILP model M and the division
property of particular output bits can be acquired by analyzing the solutions of
the M. After Xiang et al.’s work, some simplifications have been made to the
MILP descriptions of copy, xor, and in [12,18]. We present the current simplest
MILP-based copy, xor, and as follows:

Proposition 1 (MILP Model for COPY [18]). Let a
COPY−−−−→

(b1, b2, . . . , bm) be a division trail of COPY. The following inequalities are suffi-
cient to describe the propagation of the division property for copy.

{
M.var ← a, b1, b2, . . . , bm as binary.

M.con ← a = b1 + b2 + · · · + bm

Proposition 2 (MILP Model for XOR [18]). Let (a1, a2, . . . , am) XOR−−−→ b
be a division trail of XOR. The following inequalities are sufficient to describe
the propagation of the division property for xor.

{
M.var ← a1, a2, . . . , am, b as binary.

M.con ← a1 + a2 + · · · + am = b

Proposition 3 (MILP Model for AND [12]). Let (a1, a2, . . . , am) AND−−−→ b
be a division trail of AND. The following inequalities are sufficient to describe
the propagation of the division property for and.

{
M.var ← a1, a2, . . . , am, b as binary.

M.con ← b ≥ ai for all i ∈ {1, 2, . . . ,m}

Note: Proposition 3 includes redundant propagations of the division property,
but they do not affect preciseness of the obtained characteristics [12].
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2.4 The Bit-Based Division Property for Cube Attack

When the number of initialization rounds is not large enough for a thorough
diffusion, the superpoly p(x,v) defined in Eq. (2) may not be related to all key
bits x1, . . . , xn corresponding to some high-dimensional cube I. Instead, there is
a set of key indices J ⊆ {1, . . . , n} s.t. for arbitrary v ∈ F

m
2 , p(x,v) can only be

related to xj ’s (j ∈ J). In CRYPTO 2017, Todo et al. proposed a method for
determining such a set J using the bit-based division property [12]. They further
showed that, with the knowledge of such J , cube attacks can be launched to
recover some information related to the secret key bits. More specifically, they
proved the following Lemma1 and Proposition 4.

Lemma 1. Let f(x) be a polynomial from F
n
2 to F2 and af

u ∈ F2 (u ∈ F
n
2 ) be

the ANF coefficients of f(x). Let k be an n-dimensional bit vector. Assuming

there is no division trail such that k
f−→ 1, then af

u is always 0 for u 	 k.

Proposition 4. Let f(x,v) be a polynomial, where x and v denote the secret
and public variables, respectively. For a set of indices I = {i1, i2, . . . , i|I|} ⊂
{1, 2, . . . ,m}, let CI be a set of 2|I| values where the variables in
{vi1 , vi2 , . . . , vi|I|} are taking all possible combinations of values. Let kI be an
m-dimensional bit vector such that vkI = tI = vi1vi2 · · · vi|I| , i.e. ki = 1 if i ∈ I

and ki = 0 otherwise. Assuming there is no division trail such that (eλ,kI)
f−→ 1,

xλ is not involved in the superpoly of the cube CI .

When f represents the first output bit after the initialization iterations, we
can identify J by checking whether there is a division trial (eλ,kI)

f−→ 1 for
λ = 1, . . . , n using the MILP modeling method introduced in Sect. 2.3. If the
division trial (eλ,kI)

f−→ 1 exists, we have λ ∈ J ; otherwise, λ /∈ J .
When J is determined, we know that for some assignment to the non-cube

IV ∈ F
m
2 , the corresponding superpoly pIV (x) is not constant 0, and it is

a polynomial of xj , j ∈ J . With the knowledge of J , we recover offline the
superpoly pIV (x) by constructing its truth table using cube summations defined
as Eq. (3). As long as pIV (x) is not constant, we can go to the online phase where
we sum over the cube CI(IV ) to get the exact value of pIV (x) and refer to the
precomputed truth table to identify the xj , j ∈ J assignment candidates. We
summarize the whole process as follows:

1. Offline Phase: Superpoly Recovery. Randomly pick an IV ∈ F
m
2 and

prepare the cube CI(IV ) defined as Eq. (2). For x ∈ F
n
2 whose xj , j ∈ J tra-

verse all 2|J| 0-1 combinations, we compute and store the value of the super-
poly pIV (x) as Eq. (3). The 2|J| values compose the truth table of pIV (x) and
the ANF of the superpoly is determined accordingly. If pIV (x) is constant,
we pick another IV and repeat the steps above until we find an appropriate
one s.t. pv (x) is not constant.

2. Online Phase: Partial Key Recovery. Query the cube CI(IV ) to encryp-
tion oracle and get the summation of the 2|I| output bits. We denoted the
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summation by λ ∈ F2 and we know pIV (x) = λ according to Eq. (3). So we
look up the truth table of the superpoly and only reserve the xj , j ∈ J s.t.
pIV (x) = λ.

3. Brute-Force Search. Guess the remaining secret variables to recover the
entire value in secret variables.

Phase 1 dominates the time complexity since it takes 2|I|+|J| encryptions to
construct the truth table of size 2|J|. It is also possible that pIV (x) is constant
so we have to run several different IV ’s to find the one we need. The attack
can only be meaningful when (1) |I| + |J | < n; (2) appropriate IV ’s are easy to
be found. The former requires the adversary to use “good” cube I’s with small
J while the latter is the exact reason why Assumptions 1 and 2 are proposed
[12,22].

3 Modeling the Constant Bits to Improve the Preciseness
of the MILP Model

In the initial state of stream ciphers, there are secret key bits, public modifiable
IV bits and constant 0/1 bits. In the previous MILP model, the initial bit-based
division properties of the cube IVs are set to 1, while those of the non-cube IVs,
constant state bits or even secret key bits are all set to 0.

Obviously, when constant 0 bits are involved in multiplication operations,
it always results in an constant 0 output. But, as is pointed out in [22], such
a phenomenon cannot be reflected in previous MILP model method. In the
previous MILP model, the widely used COPY+AND operation:

COPY+AND : (s1, s2) → (s1, s2, s1 ∧ s2). (4)

can result in division trials (x1, x2)
COPY +AND−−−−−−−−−→ (y1, y2, a) as follows:

(1, 0) COPY +AND−−−−−−−−−→ (0, 0, 1),

(0, 1) COPY +AND−−−−−−−−−→ (0, 0, 1).

Assuming that either s1 or s2 of Eq. (4) is a constant 0 bit, (s1 ∧ s2) is always 0.
In this occasion, the division property of (s1 ∧ s2) must be 0 which is overlooked
by the previous MILP model. To prohibit the propagation above, an additional
constraint M.con ← a = 0 should be added when either s1 or s2 is constant 0.

In [22], the authors only consider the constant 0 bits. They thought the model
can be precise enough when all the state bits initialized to constant 0 bits are
handled. But in fact, although constant 1 bits do not affect the division property
propagation, we should still be aware because 0 bits might be generated when
even number of constant 1 bits are XORed during the updating process. This is
shown in Example 2 for Kreyvium in Appendix A [25].

Therefore, for all variables in the MILP v ∈ M.var, we give them an addi-
tional flag v.F ∈ {1c, 0c, δ} where 1c means the bit is constant 1, 0c means
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constant 0 and δ means variable. Apparently, when v.F = 0c/1c, there is always
a constraint v = 0 ∈ M.con. We define =, ⊕ and × operations for the elements
of set {1c, 0c, δ}. The = operation tests whether two elements are equal(naturally
1c = 1c, 0c = 0c and δ = δ ). The ⊕ operation follows the rules:

⎧
⎪⎨

⎪⎩

1c ⊕ 1c = 0c

0c ⊕ x = x ⊕ 0c = x

δ ⊕ x = x ⊕ δ = δ

for arbitrary x ∈ {1c, 0c, δ} (5)

The × operation follows the rules:
⎧
⎪⎨

⎪⎩

1c × x = x × 1c = x

0c × x = x × 0c = 0c

δ × δ = δ

for arbitrary x ∈ {1c, 0c, δ} (6)

Therefore, in the remainder of this paper, the MILP models for COPY, XOR
and AND should also consider the effects of flags. So the previous copy, xor, and
and should now add the assignment to flags. We denote the modified versions as
copyf, xorf, and andf and define them as Propositions 5, 6 and 7 as follows.

Proposition 5 (MILP Model for COPY with Flag). Let a
COPY−−−−→

(b1, b2, . . . , bm) be a division trail of COPY. The following inequalities are suffi-
cient to describe the propagation of the division property for copyf.

⎧
⎪⎨

⎪⎩

M.var ← a, b1, b2, . . . , bm as binary.

M.con ← a = b1 + b2 + · · · + bm

a.F = b1.F = . . . = bm.F

We denote this process as (M, b1, . . . , bm) ← copyf(M, a,m).

Proposition 6 (MILP Model for XOR with Flag). Let (a1, a2, . . . , am)
XOR−−−→ b be a division trail of XOR. The following inequalities are sufficient to
describe the propagation of the division property for xorf.

⎧
⎪⎨

⎪⎩

M.var ← a1, a2, . . . , am, b as binary.

M.con ← a1 + a2 + · · · + am = b

b.F = a1.F ⊕ a2.F ⊕ · · · ⊕ am.F

We denote this process as (M, b) ← xorf(M, a1, . . . , am).

Proposition 7 (MILP Model for AND with Flag). Let (a1, a2, . . . , am)
AND−−−→ b be a division trail of AND. The following inequalities are sufficient to
describe the propagation of the division property for andf.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M.var ← a1, a2, . . . , am, b as binary.

M.con ← b ≥ ai for all i ∈ {1, 2, . . . ,m}
b.F = a1.F × a2.F × · · · am.F

M.con ← b = 0 if b.F = 0c

We denote this process as (M, b) ← andf(M, a1, . . . , am).
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Algorithm 1. Evaluate secret variables by MILP with Flags
1: procedure attackFramework(Cube indices I, specific assignment to non-cube IVs

IV or IV = NULL)
2: Declare an empty MILP model M
3: Declare x as n MILP variables of M corresponding to secret variables.
4: Declare v as m MILP variables of M corresponding to public variables.
5: M.con ← vi = 1 and assign vi.F = δ for all i ∈ I
6: M.con ← vi = 0 for all i ∈ ({1, 2, . . . , n} − I)
7: M.con ← ∑n

i=1 xi = 1 and assign xi.F = δ for all i ∈ {1, . . . , n}
8: if IV = NULL then
9: vi.F = δ for all i ∈ ({1, 2, . . . , m} − I)

10: else
11: Assign the flags of vi, i ∈ ({1, 2, . . . , m} − I) as:

vi.F =

{
1c if IV [i] = 1

0c if IV [i] = 0

12: end if
13: Update M according to round functions and output functions
14: do
15: solve MILP model M
16: if M is feasible then
17: pick index j ∈ {1, 2, . . . , n} s.t. xj = 1
18: J = J ∪ {j}
19: M.con ← xj = 0
20: end if
21: while M is feasible
22: return J
23: end procedure

With these modifications, we are able to improve the preciseness of the MILP
model. The improved attack framework can be written as Algorithm 1. It enables
us to identify the involved keys when the non-cube IVs are set to specific constant
0/1 values by imposing corresponding flags to the non-cube MILP binary vari-
ables. With this method, we can determine an IV ∈ F

m
2 s.t. the corresponding

superpoly pIV (x) �= 0.

4 Upper Bounding the Degree of the Superpoly

For an IV ∈ F
m
2 s.t. pIV (x) �= 0, the ANF of pIV (x) can be represented as

pIV (x) =
∑

u∈F
n
2

aux
u (7)

where au is determined by the values of the non-cube IVs. If the degree of
the superpoly is upper bounded by d, then for all u’s with Hamming weight
satisfying hw(u) > d, we constantly have au = 0. In this case, we no longer have
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to build the whole truth table to recover the superpoly. Instead, we only need
to determine the coefficients au for hw(u) ≤ d. Therefore, we select

∑d
i=0

(|J|
i

)

different x’s and construct a linear system with
(∑d

i=0

(|J|
i

))
variables and the

coefficients as well as the whole ANF of pIV (x) can be recovered by solving
such a linear system. So the complexity of Phase 1 can be reduced from 2|I|+|J|

to 2|I| × ∑d
i=0

(|J|
i

)
. For the simplicity of notations, we denote the summation

∑d
i=0

(|J|
i

)
as

(|J|
≤d

)
in the remainder of this paper. With the knowledge of the

involved key indices J = {j1, j2, . . . , j|J|} and the degree of the superpoly d =
deg pIV (x), the attack procedure can be adapted as follows:

1. Offline Phase: Superpoly Recovery. For all
(|J|
≤d

)
x’s satisfying hw(x) ≤

d and
⊕

j∈J ej 	 x, compute the values of the superpolys as pIV (x) by
summing over the cube CI(IV ) as Eq. (3) and generate a linear system of
the

(|J|
≤d

)
coefficients au (hw(u) ≤ d). Solve the linear system, determine the

coefficient au of the
(|J|
≤d

)
terms and store them in a lookup table T . The ANF

of the pIV (x) can be determined with the lookup table.
2. Online Phase: Partial Key Recovery. Query the encryption oracle and

sum over the cube CI(IV ) as Eq. (3) and acquire the exact value of pIV (x).
For each of the 2|J| possible values of {xj1 , . . . , xj|J|}, compute the values of
the superpoly as Eq. (7) (the coefficient au are acquired by looking up the
precomputed table T ) and identify the correct key candidates.

3. Brute-force search phase. Attackers guess the remaining secret variables
to recover the entire value in secret variables.

The complexity of Phase 1 becomes 2|I| × (|J|
≤d

)
. Phase 2 now requires 2|I|

encryptions and 2|J| × (|J|
≤d

)
table lookups, so the complexity can be regarded

as 2|I| + 2|J| × (|J|
≤d

)
. The complexity of Phase 3 remains 2n−1. Therefore, the

number of encryptions a feasible attack requires is

max
{

2|I| ×
( |J |

≤ d

)
, 2|I| + 2|J| ×

( |J |
≤ d

)}
< 2n. (8)

The previous limitation of |I| + |J | < n is removed.
The knowledge of the algebraic degree of superpolys can largely benefit the

efficiency of the cube attack. Therefore, we show how to estimate the algebraic
degree of superpolys using the division property. Before the introduction of the
method, we generalize Proposition 4 as follows.

Proposition 8. Let f(x,v) be a polynomial, where x and v denote the secret
and public variables, respectively. For a set of indices I = {i1, i2, . . . , i|I|} ⊂
{1, 2, . . . ,m}, let CI be a set of 2|I| values where the variables in
{vi1 , vi2 , . . . , vi|I|} are taking all possible combinations of values. Let kI be
an m-dimensional bit vector such that vkI = tI = vi1vi2 · · · vi|I| . Let kΛ

be an n-dimensional bit vector. Assuming there is no division trail such that
(kΛ||kI)

f−→ 1, the monomial xkΛ is not involved in the superpoly of the cube CI .
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Proof. The ANF of f(x,v) is represented as follows

f(x,v) =
⊕

u∈F
n+m
2

af
u · (x‖v)u ,

where af
u ∈ F2 denotes the ANF coefficients. The polynomial f(x,v) is decom-

posed into

f(x, v) =
⊕

u∈F
n+m
2 |u�(0‖kI )

afu · (x‖v)u ⊕
⊕

u∈F
n+m
2 |u ��(0‖kI )

afu · (x‖v)u

= tI ·
⊕

u∈F
n+m
2 |u�(0‖kI )

afu · (x‖v)u⊕(0‖kI ) ⊕
⊕

u∈F
n+m
2 |u ��(0‖kI )

afu · (x‖v)(0‖u )

= tI · p(x, v) ⊕ q(x, v).

Therefore, the superpoly p(x,v) is represented as

p(x,v) =
⊕

u∈F
n+m
2 |u�(0‖kI)

af
u · (x‖v)u⊕(0‖kI).

Since there is no division trail (kΛ‖kI)
f−→ 1, af

u = 0 for u 	 (kΛ‖kI) because
of Lemma 1. Therefore,

p(x,v) =
⊕

u∈F
n+m
2 |u�(0‖kI),uk Λ‖0=0

af
u · (x‖v)u⊕(0‖kI).

This superpoly is independent of the monomial xkΛ since ukΛ‖0 is always 0. ��

According to Proposition 8, the existence of the division trial (kΛ||kI)
f−→ 1

is in accordance with the existence of the monomial xkΛ in the superpoly of the
cube CI .

If there is d ≥ 0 s.t. for all kΛ of hamming weight hw(kΛ) > d, the division
trail xkΛ does not exist, then we know that the algebraic degree of the superpoly
is bounded by d. Using MILP, this d can be naturally modeled as the maximum
of the objective function

∑n
j=1 xj . With the MILP model M and the cube

indices I, we can bound the degree of the superpoly using Algorithm2. Same
with Algorithm 1, we can also consider the degree of the superpoly for specific
assignment to the non-cube IVs. So we also add the input IV that can either be
a specific assignment or a NULL referring to arbitrary assignment. The solution
M.obj = d is the upper bound of the superpoly’s algebraic degree. Furthermore,
corresponding to M.obj = d and according to the definition of M.obj, there
should also be a set of indices {l1, . . . , ld} s.t. the variables representing the
initially declared x (representing the division property of the key bits) satisfy the
constraints xl1 = . . . = xld = 1. We can also enumerate all t-degree (1 ≤ t ≤ d)
monomials involved in the superpoly using a similar technique which we will
detail later in Sect. 6.
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Algorithm 2. Evaluate upper bound of algebraic degree on the superpoly
1: procedure DegEval(Cube indices I, specific assignment to non-cube IVs IV or

IV = NULL)
2: Declare an empty MILP model M.
3: Declare x be n MILP variables of M corresponding to secret variables.
4: Declare v be m MILP variables of M corresponding to public variables.
5: M.con ← vi = 1 and assign the flags vi.F = δ for all i ∈ I
6: M.con ← vi = 0 for i ∈ ({1, . . . , n} − I)
7: if IV = NULL then
8: Assign the flags vi.F = δ for i ∈ ({1, . . . , n} − I)
9: else

10: Assign the flags of vi, i ∈ ({1, 2, . . . , n} − I) as:

vi.F =

{
1c if IV [i] = 1

0c if IV [i] = 0

11: end if
12: Set the objective function M.obj ← ∑n

i=1 xi

13: Update M according to round functions and output functions
14: Solve MILP model M
15: return The solution of M.
16: end procedure

5 Applications of Flag Technique and Degree Evaluation

We apply our method to 4 NLFSR-based ciphers namely Trivium, Kreyvium,
Grain-128a and Acorn. Among them, Trivium, Grain-128a and Acorn are
also targets of [12]. Using our new techniques, we can both lower the complexities
of previous attacks and give new cubes that mount to more rounds. We give
details of the application to Trivium in this section, and the applications to
Kreyvium, Grain-128a and Acorn in our full version [25].

5.1 Specification of Trivium

Trivium is an NLFSR-based stream cipher, and the internal state is represented
by 288-bit state (s1, s2, . . . , s288). Figure 1 shows the state update function of
Trivium. The 80-bit key is loaded to the first register, and the 80-bit IV is
loaded to the second register. The other state bits are set to 0 except the least
three bits in the third register. Namely, the initial state bits are represented as

(s1, s2, . . . , s93) = (K1,K2, . . . , K80, 0, . . . , 0),
(s94, s95, . . . , s177) = (IV1, IV2, . . . , IV80, 0, . . . , 0),

(s178, s279, . . . , s288) = (0, 0, . . . , 0, 1, 1, 1).
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zi

Figure 1. Structure of Trivium

The pseudo code of the update function is given as follows.

t1 ← s66 ⊕ s93

t2 ← s162 ⊕ s177

t3 ← s243 ⊕ s288

z ← t1 ⊕ t2 ⊕ t3

t1 ← t1 ⊕ s91 · s92 ⊕ s171

t2 ← t2 ⊕ s175 · s176 ⊕ s264

t3 ← t3 ⊕ s286 · s287 ⊕ s69

(s1, s2, . . . , s93) ← (t3, s1, . . . , s92)
(s94, s95, . . . , s177) ← (t1, s94, . . . , s176)
(s178, s279, . . . , s288) ← (t2, s178, . . . , s287)

Here z denotes the 1-bit key stream. First, in the key initialization, the state
is updated 4 × 288 = 1152 times without producing an output. After the key
initialization, one bit key stream is produced by every update function.

5.2 MILP Model of Trivium

The only non-linear component of Trivium is a 2-degree core function denoted
as fcore that takes as input a 288-bit state s and 5 indices i1, . . . , i5, and outputs
a new 288-bit state s′ ← fcore(s, i1, . . . , i5) where

s′
i =

{
si1si2 + si3 + si4 + si5 , i = i5

si, otherwise
(9)

The division property propagation for the core function can be represented as
Algorithm 3. The input of Algorithm3 consists of M as the current MILP model,
a vector of 288 binary variables x describing the current division property of the
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288-bit NFSR state, and 5 indices i1, i2, i3, i4, i5 corresponding to the input bits.
Then Algorithm 3 outputs the updated model M, and a 288-entry vector y
describing the division property after fcore.

Algorithm 3. MILP model of division property for the core function (Eq. (9))
1: procedure Core(M,x, i1, i2, i3, i4, i5)
2: (M, yi1 , z1) ← copyf(M, xi1)
3: (M, yi2 , z2) ← copyf(M, xi2)
4: (M, yi3 , z3) ← copyf(M, xi3)
5: (M, yi4 , z4) ← copyf(M, xi4)
6: (M, a) ← andf(M, z1, z2)
7: (M, yi5) ← xorf(M, a, z2, z3, z4, xi5)
8: for all i ∈ {1, 2, . . . , 288} w/o i1, i2, i3, i4, i5 do
9: yi = xi

10: end for
11: return (M,y)
12: end procedure

With the definition of Core, the MILP model of R-round Trivium can be
described as Algorithm 4. This algorithm is a subroutine of Algorithm1 for gen-
erating the MILP model M, and the model M can evaluate all division trails
for Trivium whose initialization rounds are reduced to R. Note that constraints
to the input division property are imposed by Algorithm1.

5.3 Experimental Verification

Identical to [12], we use the cube I = {1, 11, 21, 31, 41, 51, 61, 71} to verify our
attack and implementation. The experimental verification includes: the degree
evaluation using Algorithm2, specifying involved key bits using Algorithm1 with
IV = NULL or specific non-cube IV settings.

Example 1 (Verification of Our Attack against 591-round Trivium). With
IV = NULL using Algorithm 1, we are able to identify J = {23, 24, 25, 66, 67}.
We know that with some assignment to the non-cube IV bits, the superpoly
can be a polynomial of secret key bits x23, x24, x25, x66, x67. These are the same
with [12]. Then, we set IV to random values and acquire the degree through
Algorithm 2, and verify the correctness of the degree by practically recovering
the corresponding superpoly.

– When we set IV = 0xcc2e487b, 0x78f99a93, 0xbeae, and run Algorithm2,
we get the degree 3. The practically recovered superpoly is also of degree 3:

pv (x) = x66x23x24 + x66x25 + x66x67 + x66,

which is in accordance with the deduction by Algorithm2 through MILP
model.
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Algorithm 4. MILP model of division property for Trivium

1: procedure TriviumEval(round R)
2: Prepare empty MILP Model M
3: M.var ← vi for i ∈ {1, 2, . . . , 80}. � Declare Public Modifiable IVs
4: M.var ← xi for i ∈ {1, 2, . . . , 80}. � Declare Secret Keys
5: M.var ← s0i for i ∈ {1, 2, . . . , 288}
6: s0i = xi, s0i+93 = vi for i = 1, . . . , 80.
7: M.con ← s0i = 0 for i = 81, . . . , 93, 174, . . . , 288.
8: s0i .F = 0c for i = 81, . . . , 285 and s0j .F = 1c for j = 286, 287, 288. � Assign the

flags for constant state bits
9: for r = 1 to R do

10: (M,x) = Core(M, sr−1, 66, 171, 91, 92, 93)
11: (M,y) = Core(M,x, 162, 264, 175, 176, 177)
12: (M, z) = Core(M,y, 243, 69, 286, 287, 288)
13: sr = z ≫ 1
14: end for
15: for all i ∈ {1, 2, . . . , 288} w/o 66, 93, 162, 177, 243, 288 do
16: M.con ← sRi = 0
17: end for
18: M.con ← (sR66 + sR93 + sR162 + sR177 + sR243 + sR288) = 1
19: return M
20: end procedure

– When we set IV = 0x61fbe5da, 0x19f5972c, 0x65c1, the degree evaluation
of Algorithm 2 is 2. The practically recovered superpoly is also of degree 2:

pv (x) = x23x24 + x25 + x67 + 1.

– When we set IV = 0x5b942db1, 0x83ce1016, 0x6ce, the degree is 0 and the
superpoly recovered is also constant 0.

On the Accuracy of MILP Model with Flag Technique. As a comparison,
we use the cube above and conduct practical experiments on different rounds
namely 576, 577, 587, 590, 591 (selected from Table 2 of [22]). We try 10000
randomly chosen IV ’s. For each of them, we use the MILP method to evaluate
the degree d, in comparison with the practically recovered ANF of the superpoly
pIV (x). For 576, 577, 587 and 590 rounds, the accuracy is 100%. In fact, such
100% accuracy is testified for most of our applied ciphers, which is shown in [25].
For 591-round, the accuracies are distributed as:

1. When the MILP model gives degree evaluation d = 0, the accuracy is 100%
that the superpoly is constant 0.

2. When the MILP model gives degree evaluation d = 3, there is an accuracy
49% that the superpoly is a 3-degree polynomial. For the rest, the superpoly
is constant 0.

3. When the MILP model gives degree evaluation d = 2, there is accuracy 43%
that the superpoly is a 2-degree polynomial. For the rest, the superpoly is
constant 0.
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The ratios of error can easily be understood: for example, in some case, one key
bit may multiply with constant 1 in one step xi · 1 and be canceled by XORing
with itself in the next round, this results in a newly generated constant 0 bit
((xi · 1) ⊕ xi = 0). However, by the flag technique, this newly generated bit
has flag value δ = (δ × 1c) + δ. In our attacks, the size of cubes tends to be
large, which means most of the IV bits become active, the above situation of
(xi · 1) ⊕ xi = 0 will now become (xi · vj) ⊕ xi. Therefore, when larger cubes are
used, fewer constant 0/1 flags are employed, and the MILP models are becoming
closer to those of IV = NULL. It is predictable that the accuracy of the flag
technique tends to increase when larger cubes are used. To verify this statement,
we construct a 10-dimensional cube I = {5, 13, 18, 22, 30, 57, 60, 65, 72, 79} for
591-round Trivium. When IV = NULL, we acquire the same upper bound of
the degree d = 3. Then, we tried thousands of random IVs, and get an overall
accuracy 80.9%. From above, we can conclude that the flag technique has high
preciseness and can definitely improve the efficiency of the division property
based cube attacks.

5.4 Theoretical Results

The best result in [12] mounts to 832-round Trivium with cube dimension |I| =
72 and the superpoly involves |J | = 5 key bits. The complexity is 277 in [12].
Using Algorithm 2, we further acquire that the degree of such a superpoly is 3.
So the complexity for superpoly recovery is 272×(

5
≤3

)
= 276.7 and the complexity

for recovering the partial key is 272 + 23 × (
5
3

)
. Therefore, according to Eq. (8),

the complexity of this attack is 276.7.
We further construct a 77-dimensional cube, I = {1, . . . , 80} \ {5, 51, 65}. Its

superpoly after 835 rounds of initialization only involves 1 key bit J = {57}. So
the complexity of the attack is 278. Since there are only 3 non-cube IVs, we let
IV be all 23 possible non-cube IV assignments and run Algorithm 1. We find
that x57 is involved in all of the 23 superpolys. So the attack is available for any
of the 23 non-cube IV assignments. This can also be regarded as a support to
the rationality of Assumption 1.

According previous results, Trivium has many cubes whose superpolys only
contain 1 key bit. These cubes are of great value for our key recovery attacks.
Firstly, the truth table of such superpoly is balanced and the Partial Key Recov-
ery phase can definitely recover 1 bit of secret information. Secondly, the Super-
poly Recovery phase only requires 2|I|+1 and the online Partial Key Recovery
only requires 2|I| encryptions. Such an attack can be meaningful as long as
|I| + 1 < 80, so we can try cubes having dimension as large as 78. Therefore,
we investigate 78-dimensional cubes and find the best cube attack on Trivium
is 839 rounds. By running Algorithm 1 with 22 = 4 different assignments to
non-cube IVs, we know that the key bit x61 is involved in the superpoly for
IV = 0x0, 0x4000, 0x0 or IV = 0x0, 0x4002, 0x0. In other words, the 47-th
IV bit must be assigned to constant 1. The summary of our new results about
Trivium is in Table 2.
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Table 2. Summary of theoretical cube attacks on Trivium. The time complexity in
this table shows the time complexity of Superpoly Recovery (Phase 1) and Partial Key
Recovery (Phase 2).

#Rounds |I| Degree Involved keys J Time complexity

832 72† 3 34, 58, 59, 60, 61 (|J | = 5) 276.7

833 73‡ 3 49, 58, 60, 74, 75, 76 (|J | = 7) 279

833 74∗ 1 60 (|J | = 1) 275

835 77� 1 57 (|J | = 1) 278

836 78◦ 1 57 (|J | = 1) 279

839 78• 1 61 (|J | = 1) 279

†: I = {1, 2, ..., 65, 67, 69, ..., 79}
‡: I = {1, 2, ..., 67, 69, 71, ..., 79}
∗: I = {1, 2, ..., 69, 71, 73, ..., 79}
�: I = {1, 2, 3, 4, 6, 7, . . . , 50, 52, 53, . . . , 64, 66, 67, . . . , 80}
◦: I = {1, ..., 11, 13, ..., 42, 44, ..., 80}
•: I = {1, ..., 33, 35, ..., 46, 48, ..., 80} and IV [47] = 1

6 Lower Complexity with Term Enumeration

In this section, we show how to further lower the complexity of recovering the
superpoly (Phase 1) in Sect. 4.

With cube indices I, key bits J and degree d, the complexity of the cur-
rent superpoly recovery is 2I × (|J|

≤d

)
, where

(|J|
≤d

)
corresponds to all 0-, 1-. . .,

d-degree monomials. When d ≤ |J |/2 (which is true in most of our applica-
tions), we constantly have

(|J|
0

) ≤ . . . ≤ (|J|
d

)
. But in practice, high-degree terms

are generated in later iterations and the high-degree monomials should be fewer
than their low-degree counterparts. Therefore, for all

(|J|
i

)
monomials, only very

few of them may appear in the superpoly. Similar to Algorithm1 that decides
all key bits appear in the superpoly, we propose Algorithm5 that enumerates
all t-degree monomials that may appear in the superpoly. Apparently, when
we use t = 1, we can get J1 = J , the same output as Algorithm 1 containing
all involved keys. If we use t = 2, 3, . . . , d, we get J2, . . . , Jd that contains all
possible monomials of degrees 2, 3, . . . , d. Therefore, we only need to determine
1 + |J1| + |J2| + . . . + |Jd| coefficients in order to recover the superpoly and
apparently, |Jt| ≤ (|J|

t

)
for t = 1, . . . d. With the knowledge of Jt, t = 1, . . . , d,

the complexity for Superpoly Recovery (Phase 1) has now become

2|I| × (1 +
d∑

t=1

|Jt|) ≤ 2|I| ×
( |J |

≤ d

)
. (10)
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And the size of the lookup table has also reduced to (1 +
∑d

t=1 |Jt|). So the
complexity of the attack is now

max{2|I| × (1 +
d∑

t=1

|Jt|), 2|I| + 2|J| × (1 +
d∑

t=1

|Jt|)}. (11)

Furthermore, since high-degree monomials are harder to be generated through
iterations than low-degree ones, we can often find |Ji| <

(|J|
i

)
when i approaches

d. So the complexity for superpoly recovery has been reduced.

Note: Jt’s (t = 1, . . . , d) can be generated by TermEnum of Algorithm 5 and
they satisfy the following Property 1. This property is equivalent to the “Embed
Property” given in [19].

Property 1. For t = 2, . . . , d, if there is T = (i1, i2, . . . , it) ∈ Jt and T ′ =
(is1 , . . . , isl

) (l < t) is a subsequence of T (1 ≤ s1 < . . . < sl ≤ t). Then,
we constantly have T ′ ∈ Jl.

Before proving Property 1, we first prove the following Lemma2.

Lemma 2. If k 	 k′ and there is division trial k
f−→ l, then there is also division

trial k′ f−→ l′ s.t. l 	 l′.

Proof. Since f is a combination of COPY, AND and XOR operations, and the
proofs when f equals to each of them are similar, we only give a proof of the
case when f equals to COPY. Let f : (∗, . . . , ∗, x) COPY−−−−→ (∗, . . . , ∗, x, x).

First assume the input division property be k = (k1, 0), since k 	 k′, there
must be k′ = (k′

1, 0) and k1 	 k′
1. We have l = k, l′ = k′, thus the property

holds.
When the input division property is k = (k1, 1), we know that the output

division property can be l ∈ {(k1, 0, 1), (k1, 1, 0)}. Since k 	 k′, we know k′ =
(k′

1, 1) or k′ = (k′
1, 0), and k1 	 k′

1. When k′ = (k′
1, 0), then l′ = k′ = (k′

1, 0),
the relation holds. When k′ = (k′

1, 1), we know l′ ∈ {(k′
1, 0, 1), (k′

1, 1, 0)}, the
relation still holds. ��
Now we are ready to prove Property 1.

Proof. Let k,k ∈ F
n
2 satisfy ki = 1 for i ∈ T and ki = 0 otherwise; k′

i = 1
for i ∈ T ′ and k′

i = 0 otherwise. Since T ∈ Jt, we know that there is division
trial (k,kI)

R−Rounds−−−−−−−→ (0, 1) Since k 	 k′, we have (k,kI) 	 (k′,kI) and
according to Lemma 2, there is division trial s.t. (k′,kI)

R−Rounds−−−−−−−→ (0m+n, s)
where (0m+n, 1) 	 (0m+n, s). Since the hamming weight of (k′,kI) is larger than
0 and there is no combination of COPY, AND and XOR that makes non-zero
division property to all-zero division property. So we have s = 1 and there exist
division trial (k′,kI)

R−Rounds−−−−−−−→ (0, 1). ��
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Property 1 reveals a limitation of Algorithm 5. Assume the superpoly is

pv (x1, x2, x3, x4) = x1x2x3 + x1x4.

We can acquire J3 = {(1, 2, 3)} by running TermEnum of Algorithm 5. But, if
we run TermEnum with t = 2, we will not acquire just J2 = {(1, 4)} but J2 =
{(1, 4), (1, 2), (1, 3), (2, 3)} due to (1, 2, 3) ∈ J3 and (1, 2), (1, 3), (2, 3) are its
subsequences. Although there are still redundant terms, the reduction from

(|J|
d

)

to |Jd| is usually huge enough to improve the existing cube attack results.
Applying such term enumeration technique, we are able to lower complex-

ities of many existing attacks namely: 832-, 833-round Trivium, 849-round
Kreyvium, 184-round Grain-128a and 704-round Acorn. The attack on 750-
round Acorn can also be improved using a relaxed version of TermEnum which
is presented as RTermEnum on the righthand side of Algorithm5. In the relaxed
algorithm, RTermEnum is acquired from TermEnum by replacing some states which
are marked in red in Algorithm 5, and we state details later in Sect. 6.4.

6.1 Application to Trivium

As can be seen in Table 2, the attack on 832-round Trivium has J = J1 = 5 and
degree d = 3, so we have

(
5

≤3

)
= 26 using previous technique. But by running

Algorithm 5, we find that |J2| = 5, |J3| = 1, so we have 1 +
∑3

t=1 |Jt| = 12 <(
5

≤3

)
= 26. Therefore, the complexity has now been reduced from 276.7 to 275.8.

Similar technique can also be applied to the 73 dimensional cube of Table 2.
Details are shown in Table 3.

Table 3. Results of Trivium with Precise Term Enumeration

#Rounds |I| |J1| |J2| |J3| |J4| |J5| |Jt|, t ≥ 6 1 +
∑d

t=1 |Jt| Previous Improved

832 72 5 5 1 0 0 0 12≈ 23.58 276.7 275.58

833 73 7 6 1 0 0 0 15≈ 23.91 279 276.91

6.2 Applications to Kreyvium

We revisit the 61-dimensional cube first given in [23] and transformed to a key
recovery attack on 849-round Kreyvium in [22]. The degree of the superpoly is
9, so the complexity is given as 281.7 in Appendix A of [25]. Since J = J1 is of
size 23, we enumerate all the terms of degree 2–9 and acquire the sets J2, . . . , J9.
1 +

∑d
t=1 |Jt| = 5452 ≈ 212.41. So the complexity is now lowered to 273.41. The

details are listed in Table 4.

Table 4. Results of Kreyvium with Precise Term Enumeration

#Rounds |I| |J1| |J2| |J3| |J4| |J5| |J6| |J7| |J8| |J9| 1 +
∑d

t=1 |Jt| Previous Improved

849 61 23 158 555 1162 1518 1235 618 156 26 5452≈ 212.41 281.7 273.41
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Algorithm 5. Enumerate all the terms of degree t

1: procedure TermEnum(Cube indices I,
specific assignment to non-cube IVs
IV or IV = NULL, targeted degree t)

2: Declare an empty MILP model M
and an empty set Jt = φ ⊆ {1, . . . , n}n

3: Declare x as n MILP variables of
M corresponding to secret variables.

4: Declare v as m MILP variables of
M corresponding to public variables.

5: M.con ← vi = 1 and assign vi.F =
δ for all i ∈ I

6: M.con ← vi = 0 for all i ∈
({1, 2, . . . , n} − I)

7: M.con ← ∑n
i=1 xi = t and assign

xi.F = δ for all i ∈ {1, . . . , n}
8: if IV = NULL then
9: vi.F = δ for all i ∈

({1, 2, . . . , n} − I)
10: else
11: Assign the flags of vi, i ∈

({1, 2, . . . , n} − I) as:

vi.F =

{
1c if IV [i] = 1

0c if IV [i] = 0

12: end if
13: Update M according to round

functions and output functions
14: do
15: solve MILP model M
16: if M is feasible then
17: pick index sequence

(j1, . . . , jt) ⊆ {1, . . . , n}t s.t.
xj1 = . . . = xjt = 1

18: Jt = Jt ∪ {(j1, . . . , jt)}
19: M.con ← ∑t

i=1 xji ≤ t − 1
20: end if
21: while M is feasible
22: return Jt

23: end procedure

1: procedure RTermEnum(Cube indices
I, specific assignment to non-cube IVs
IV or IV = NULL, targeted degree t)

2: Declare an empty MILP model
M and an empty set JRt = φ ⊆
{1, . . . , n}

3: Declare x as n MILP variables of
M corresponding to secret variables.

4: Declare v as m MILP variables of
M corresponding to public variables.

5: M.con ← vi = 1 and assign vi.F =
δ for all i ∈ I

6: M.con ← vi = 0 for all i ∈
({1, 2, . . . , n} − I)

7: M.con ← ∑n
i=1 xi ≥ t and assign

xi.F = δ for all i ∈ {1, . . . , n}
8: if IV = NULL then
9: vi.F = δ for all i ∈

({1, 2, . . . , n} − I)
10: else
11: Assign the flags of vi, i ∈

({1, 2, . . . , n} − I) as:

vi.F =

{
1c if IV [i] = 1

0c if IV [i] = 0

12: end if
13: Update M according to round

functions and output functions
14: do
15: solve MILP model M
16: if M is feasible then
17: pick index set

{j1, . . . , jt′} ⊆ {1, . . . , n} s.t. t′ ≥ t
and xj1 = . . . = xjt′ = 1

18: JRt = JRt ∪ {j1, . . . , jt′}
19: M.con ← ∑

i/∈JRt
xi ≥ 1

20: end if
21: while M is feasible
22: return JRt

23: end procedure
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6.3 Applications to Grain-128a

For the attack on 184-round Grain-128a, the superpoly has degree d = 14, the
number of involved key bits is |J | = |J1| = 21 and we are able to enumerate all
terms of degree 1–14 as Table 5.

Table 5. Results of Grain-128a with term Enumeration

#Rounds |I| |J1| |Ji| (2 ≤ i ≤ 14) 1 +
∑d

t=1 |Jt| Previous Improved

184 95 21 157, 651, 1765, 3394, 4838,
5231, 4326, 2627, 1288,
442, 104, 15, 1

214.61 2115.95 2109.61

6.4 Applications to ACORN

For the attack on 704-round Acorn, with the cube dimension 64, the number
of involved key bits in the superpoly is 72, and the degree is 7. We enumerate all
the terms of degree from 2 to 7 as in Table 6, therefore we manage to improve
the complexity of our cube attack in the previous section.

Table 6. Results of Acorn with Precise Term Enumeration

#Rounds |I| |J1| |J2| |J3| |J4| |J5| |J6| |J7| 1 +
∑d

t=1 |Jt| Previous Improved

704 64 72 1598 4911 5755 2556 179 3 213.88 293.23 277.88

Relaxed Algorithm 5. For the attack on 750-round Acorn (the superpoly
is of degree d = 5), The left part of Algorithm5 can only be carried out for
the 5-degree terms |J5| = 46. For t = 2, 3, 4, the sizes of Jt are too large to
be enumerated. We settle for the index set JRt containing the key indices that
composing all the t-degree terms. For example, when J3 = {(1, 2, 3), (1, 2, 4)},
we have JR3 = {1, 2, 3, 4}. The relationship between Jt and JRt is |Jt| ≤ (|JRt|

t

)

and J1 = JR1. The searching space for Jt in Algorithm 5 is
(|J1|

t

)
while that

of the relaxed algorithm is only
(|JRt|

t

)
. So it is much easier to enumerate JRt,

therefore the complexity can still be improved (in comparison with Eq. (8)) as
long as |JRt| < |J1|. The complexity of this relaxed version can be written as

max{2|I| × (1 +
d−1∑

t=1

(|JRt|
t

)
+ Jd), 2|I| + 2|J| × (1 +

d−1∑

t=1

(|JRt|
t

)
+ Jd)} (12)

For 750-round Acorn, we enumerate J5 and JR1, . . . , JR4 whose sizes are listed
in Table 7. The improved complexity, according to Eq. (12), is 2120.92, lower than
the original 2125.71 given in Appendix A in [25].
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Table 7. Results of Acorn with Relaxed Term Enumeration

#Rounds |I| |JR1| |JR2| |JR3| |JR4| |J5| 1 +
∑d−1

t=1

(|JRt|
t

)
+ |Jd| Previous Improved

750 101 81 81 77 70 46 219.92 2125.71 2120.92

7 A Clique View of the Superpoly Recovery

The precise & relaxed term enumeration technique introduced in Sect. 6 have to
execute many MILP instances, which is difficult for some applications. In this
section, we represent the resultant superpoly as a graph, which is called superpoly
graph, so that we can utilize the clique concept from the graph theory to upper
bound the complexity of the superpoly recovery phase in our attacks, without
requiring MILP solver as highly as the term enumeration technique.

Definition 3 (Clique [33]). In a graph G = (V,E), where V is the set of
vertices and E is the set of edges, a subset C ⊆ V , s.t. each pair of vertices in
C is connected by an edge is called a clique.

A i-clique is defined as a clique consists of i vertices, and i is called the clique
number. A 1-clique is a vertex, a 2-clique is just an edge, and a 3-clique is called
a triangle.

Given a cube CI , by running Algorithm5 for degree i, we determine Ji, which
is the set of all the degree-i terms that might appear in the superpoly p(x,v) (see
Sect. 6). Then we represent p(x,v) as a graph G = (J1, J2), where the vertices
in J1 correspond to the involved secret key bits in p(x,v), the edges between
any pairs of the vertices reveal the quadratic terms involved in p(x,v), We call
the graph G = (J1, J2) the superpoly graph of the cube CI . The set of i-cliques
in the superpoly graph is denoted as Ki. Note that there is a natural one-to-one
correspondence between the sets Ji and Ki for i = 1, 2.

It follows from the definition of a clique that any i-clique in Ki (i ≥ 2)
represents a monomial of degree i whose all divisors of degree 2 belong to J2. On
the other hand, due to the “embed” Property 1 in Sect. 6, we have that all its
quadratic divisors must be in J2. Then any monomial in Ji can be represented
by an i-clique in Ki. Hence for all i ≥ 2, Ji corresponds to a subset of Ki. Denote
the number of i-cliques as |Ki|, then |Ji| ≤ |Ki|. Apparently, |Ki| ≤ (|J|

i

)
for all

1 ≤ i ≤ d.
Now we show a simple algorithm for constructing Ki from J1 and J2 for i ≥ 3.

For instance, when constructing K3, we take the union operation of all possible
combinations of three elements from J2, and only keep the elements of degree 3.
Similarly, we construct Ki for 3 < i ≤ d, where d is the degree of the superpoly.
Therefore, all the i-cliques (3 ≤ i ≤ d) are found by the simple algorithm, i.e.
the number of i-cliques |Ki| in G(J1, J2) is determined. We therefore can upper
bound the complexity of the offline phase as

2|I| × (1 +
d∑

i=1

|Ki|). (13)
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Note that we have |Ji| ≤ |Ki| ≤ (|J1|
i

)
. It indicates that the upper bound

of the superpoly recovery given by clique theory in Eq. (13) is better than the
one provided by our degree evaluation in Eq. (8), while it is weaker than the one
presented by our term enumeration techniques in Eq. (10). However, it is unclear
if there exists a specific relation between |Ki| and

(|JRi|
i

)
in the relaxed terms

enumeration technique.

Advantage over the Terms Enumeration Techniques. In Sect. 6 when
calculating Ji (i ≥ 3) by Algorithm 5, we set the target degree as i and solve
the newly generated MILP to obtain Ji, regardless of the knowledge of Ji−1 we
already hold. On the other hand, as is known in some cases, the MILP solver
might take long time before providing Ji as desired. However, by using clique
theory, we first acquire J1 and J2, which are essential for the term enumeration
method as well. According to the “embed” property, we then make full use
of the knowledge of J1 and J2, to construct Ki for i ≥ 3 by an algorithm
which is actually just performing simple operations (like union operations among
elements, or removal of repeated elements, etc) in sets. So hardly any cost is
required to find all the Ki (3 ≤ i ≤ d) we want. This significantly saves the
computation costs since solving MILP is usually very time-consuming.

8 Conclusion

Algebraic properties of the resultant superpoly of the cube attacks were further
studied. We developed a division property based framework of cube attacks
enhanced by the flag technique for identifying proper non-cube IV assignments.
The relevance of our framework is three-fold: For the first time, it can identify
proper non-cube IV assignments of a cube leading to a non-constant superpoly,
rather than randomizing trails & summations in the offline phase. Moreover,
our model derived the upper bound of the superpoly degree, which can break
the |I| + |J | < n barrier and enable us to explore even larger cubes or mount to
attacks on more rounds. Furthermore, our accurate term enumeration techniques
further reduced the complexities of the superpoly recovery, which brought us the
current best key recovery attacks on ciphers namely Trivium, Kreyvium, Grain-
128a and Acorn.

Besides, when term enumeration cannot be carried out, we represent the
resultant superpoly as a graph. By constructing all the cliques of our super-
poly graph, an upper bound of the complexity of the superpoly recovery can be
obtained.
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