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Abstract. We present a very simple yet very powerful idea for turning
any passively secure MPC protocol into an actively secure one, at the
price of reducing the threshold of tolerated corruptions.

Our compiler leads to a very efficient MPC protocols for the impor-
tant case of secure evaluation of arithmetic circuits over arbitrary rings
(e.g., the natural case of Z2�) for a small number of parties. We show
this by giving a concrete protocol in the preprocessing model for the
popular setting with three parties and one corruption. This is the first
protocol for secure computation over rings that achieves active security
with constant overhead.

1 Introduction

Secure Computation. Secure Multiparty Computation (MPC) allows a set
of participants P1, . . . , Pn with private inputs respectively x1, . . . , xn to learn
the output of some public function f evaluated on their private inputs i.e.,
z = f(x1, . . . , xn) without having to reveal any other information about their
inputs. Seminal MPC results from the 80s [3,6,18,26] have shown that with
MPC it is possible to securely evaluate any boolean or arithmetic circuit with
information theoretic security (under the assumption that a strict minority of the
participants are corrupt) or with computational security (when no such honest
majority can be assumed).

As is well known, the most efficient MPC protocols are only passively secure.
What is perhaps less well known is that by settling for passive security, we
also get a wider range of domains over which we can do MPC. In addition to
the standard approach of evaluating boolean or arithmetic circuits over fields,
we can also efficiently perform computations over other rings. This has been
demonstrated by the Sharemind suite of protocols [5], which works over the
ring Z2� . Sharemind’s success in practice is probably, to a large extent, due
to the choice of the underlying ring, which closely matches the kind of ring
CPUs naturally use. Closely matching an actual CPU architecture allows easier
programming of algorithms for MPC, since programmers can reuse some of the
tricks that CPUs use to do their work efficiently.

While passive security is a meaningful security notion that is sometimes suf-
ficient, one would of course like to have security against active attacks. However,
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the known techniques, such as the GMW compiler, for achieving active security
incur a significant overhead, and while more efficient approaches exist, they usu-
ally need to assume that the computation is done over a field, and they always
have an overhead that depends on the security parameter. Typically, such pro-
tocols, like the BeDOZa or SPDZ protocols [4,11,13], start with a preprocessing
phase which generates the necessary correlated randomness [19] in the form of
so called multiplication triples. This is followed by an information theoretic and
therefore very fast online phase where the triples are consumed to evaluate the
arithmetic circuit. To get active security in the on-line phase, protocols employ
information-theoretic MACs that allow to detect whether incorrect information
is sent. Using such MACs forces the domain of computation to be a field which
excludes, of course, the ring Z2� . The only exception is recent work subsequent to
ours [10]. This is not a compiler but a specific protocol for the preprocessing model
which allows MACs for the domain Z2� . This is incomparable to our result for this
setting: compared to our result, the protocol from [10] tolerates larger number of
corruptions, but it introduces an overhead in storage and computational work pro-
portional to the product of the security parameter and the circuit size.

Another alternative is to use garbled circuits. However, they incur a rather
large overhead when active security is desired, and cannot be used at all if
we want to do arithmetic computation directly over a large ring. Thus, a very
natural question is:

Can we go from passive to active security at a small cost and can we do so
in a general way which allows us to do computations over general rings?

Our results. In this paper we address the above question by making three main
contributions:

1. A generic transformation that compiles a protocol with passive security
against at least 2 corruptions into one that is actively secure (but against
a smaller number of corruptions). This works both for the preprocessing and
the standard model. The transformation preserves perfect and statistical secu-
rity and its overhead depends only on the number of players, and not on the
security parameter. Thus, for a constant number of parties it loses only a
constant factor in efficiency.

2. We present a preprocessing protocol for 3 parties. It generates multiplication
triples to be used by a particular protocol produced by our compiler. This
preprocessing can generate triples over any ring Zm and has constant compu-
tational overhead for large enough m; more precisely, if m is exponential in
the statistical security parameter. We build this preprocessing from scratch,
not by using our compiler. This, together with our compiler, gives a plug-in
replacement for the Sharemind protocol as explained below.

3. A generic transformation that works for a large class of protocols including
those output by our passive-to-active compiler. It takes as input a proto-
col that is secure with abort and satisfies certain extra conditions, and pro-
duces a new protocol with complete fairness [8]. In security with abort, the
adversary gets the output and can then decide if the protocol should abort.
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In complete fairness the adversary must decide whether to abort without see-
ing the output. This is relevant in applications where the adversary might
“dislike” the result and would prefer that it is not delivered. The transfor-
mation has an additive overhead that only depends on the size of the output
and not the size of the computation. It works in the honest majority model
without broadcast. In this model we cannot guarantee termination in general
so security with complete fairness is essentially the best we can hope for.

Discussion of results. Our passive-to-active compiler can, for instance, be
applied to the straightforward 3-party protocol that represents secret values
using additive secret sharing over Z2� and does secure multiplication using multi-
plication triples created in a preprocessing phase. This protocol is secure against
2 passive corruptions. Applying our compiler results in a 3-party protocol Π
in the preprocessing model that is information theoretically secure against 1
corruption and obtains active security with abort. Π can be used as plug-in
replacement for the Sharemind protocol. It has better (active) instead of passive
security and is essentially as efficient. This, of course, is only interesting if we
can implement the required preprocessing efficiently, which is exactly what we
do as our second result, discussed in more detail below.

The compiler is based on the idea of turning each party in the passively secure
protocol into a “virtual” party, and then each virtual party is independently
emulated by 2 or more of the real parties (i.e., each real party will locally run
the code of the virtual party). Intuitively, if the number of virtual parties for
which a corrupt party is an emulator is not larger than the privacy threshold of
the original protocol, then our transform preserves the privacy guarantees of the
original protocol. Further, if we can guarantee that each virtual party is emulated
by at least one honest party, then this party can detect faulty behaviour by the
other emulators and abort if needed, thus guaranteeing correctness. Moreover, if
we set the parameters in a way that we are guaranteed an honest majority among
the emulators, then we can even decide on the correct behaviour by majority
vote and get full active security. While this in hindsight might seem like a simple
idea, proving that it actually works in general requires us to take care of some
technical issues relating, for instance, to handling the randomness and inputs of
the virtual parties.

The approach is closely related to replicated secret sharing which has been
used for MPC before [17,22] (see the related work section for further discussion),
but to the best of our knowledge, this is the first general construction that
transforms an entire passively secure protocol to active security. From this point
of view, it can be seen as a construction that unifies and “explains” several earlier
constructions.

While our construction works for any number of parties it unfortunately does
not scale well, and the resulting protocol will only tolerate corruptions of roughly√

n of the n parties and has a multiplicative overhead of order n compared to
the passively secure protocol. This is far from the constant fraction of corrup-
tions we know can be tolerated with other techniques. We show two ways to
improve this. First, while our main compiler preserves adaptive security, we also
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present an alternative construction that only works for static security but toler-
ates n/ log n active corruptions, and has overhead log2 n. Second, we show that
using results from [7], we get a protocol for any number n of parties tolerating
roughly n/4 malicious corruptions. We do this by starting from a protocol for
5 parties tolerating 2 passive corruptions, use our result to constructs a 5 party
protocol tolerating 1 active corruption, and then use a generic construction from
[7] based on monotone formulae. Note that a main motivation for the results
from [7] was to introduce a new approach to the design of multiparty protocols.
Namely, first design a protocol for a constant number of parties tolerating 1
active corruption, and then apply player emulation and monotone formulae to
get actively secure multiparty protocols. From this point of view, adding our
result extends their idea in an interesting way: using a generic transformation
one can now get active and information theoretic security for a constant fraction
of corruptions from a seemingly even simpler object: a protocol for a constant
number of parties that is passively secure against 2 corruptions.

Our second result, the preprocessing protocol, is based on the idea that we can
quite easily create multiplication triples involving secret shared values a, b, c ∈
Zm and where ab = c mod m if parties behave honestly. The problem now is that
the standard efficient approach to checking whether ab = c mod m only works
if m is prime, or at least has only large prime factors. We solve this by finding
a way to embed the problem into a slightly larger field Zp for a prime p. We
can then check efficiently if ab = c mod p. In addition we make sure that a, b are
small enough so that this implies ab = c over the integers and hence also that
ab = c mod m.

Our final result, the compiler for complete fairness, works for protocols where
the output is only revealed in the last round, as is typically the case for protocols
based on secret sharing. Roughly speaking, the idea is to execute the protocol
up to its last round just before the outputs are delivered. We then compute
verifiable secret sharings of the data that parties would send in the last round –
as well as one bit that says whether sending these messages would cause an abort
in the original protocol. Of course, this extra computation may abort, but if it
does not and we are told that the verifiably shared messages are correct, then
it is too late for the adversary to abort; as we assume an honest majority the
shared messages can always be reconstructed. While this basic idea might seem
simple, the proof is trickier than one might expect – as we need to be careful
with the assumptions on the original protocol to avoid selective failure attacks.

1.1 Related Work

Besides what is already mentioned above, there are several other relevant works.
Previous compilers, notably the GMW [18] and the IPS compiler [20,21], allow
to transform passively secure protocols into maliciously secure ones. The GMW
compiler uses zero-knowledge proofs and, hence, is not blackbox in the underlying
construction. It produces protocols which are far from practically efficient. The
IPS compiler works, very roughly speaking, by using an inner protocol to sim-
ulate the protocol execution of an outer protocol. The outer protocol computes
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the desired functionality. The inner protocol protocols computes the individual
computation steps of the outer protocol. The compiler is blackbox with respect
to the inner, but not the outer protocol and it requires the existence of obliv-
ious transfer. It is unclear whether the IPS compiler can be used to produce
practically efficient protocols.

In contrast, our compiler does not require any computational assumption
and thus preserves any information theoretic guarantees the underlying protocol
has. Our transform does not have any large hidden constants and can produce
actively secure protocols with efficiency that may be of practical interest.

In a recent work by Furukawa et al. [17], a practically very efficient three-
party protocol with one active corruption was proposed. Their protocol uses
replicated secret sharing and only works for bits. As the authors state themselves,
it is not straightforward to generalize their protocol to more than three parties,
while maintaining efficiency. In contrast, our protocol works over any arbitrary
ring and can easily be generalized to any number of players. Furthermore our
transform produces protocols with constant overhead, whereas their protocol
does not have constant overhead.

The idea of using replication to detect active corruptions has been used
before. For instance, Mohassel et al. [23] propose a three-party version of Yao’s
protocol. In a nutshell, their approach is to let two parties garble a circuit sepa-
rately and to let the third party check that the circuits are the same. Our results
in this work are more general in the sense that we propose a general transform
to obtain actively secure protocols from passively secure ones. In [14], Desmedt
and Kurosawa use replication to design a mix-net with t2 servers secure against
(roughly) t actively corrupted servers. A simple approach to MPC based on
replicated secret sharing was proposed by Maurer in [22]. It has been the basis
for practical implementations like [5].

2 Preliminaries

Notation. If X is a set, then v ← X means that v is a uniformly random value
chosen from X . When A is an algorithm, we write v ← A(x) to denote a run of
A on input x that produces output v. For n ∈ N, we write [n] to denote the set
{1, 2, . . . , n}. For n party protocols, we will write Pi+1 and implicitly assume a
wrap-around of the party’s index, i.e. Pn+1 = P1 and P1−1 = Pn. All logarithms
are assumed to be base 2.

Security Definitions. We will use the UC model throughout the paper, more
precisely the variant described in [9]. We assume the reader has basic knowledge
about the UC model and refer to [9] for details. Here we only give a very brief
introduction: We consider the following entities: a protocol ΠF for n players
that is meant to implement an ideal functionality F . An environment Z that
models everything external to the protocol which means that Z chooses inputs
for the players and is also the adversarial entity that attacks the protocol. Thus
Z may corrupt players passively or actively as specified in more detail below.
We have an auxiliary functionality G that the protocol may use to accomplish
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its goal. Finally we have a simulator S that is used to demonstrate that ΠF
indeed implements F securely.

In the definition of security we compare two processes: First, the real process
executes Z, ΠF and G together, this is denoted Z � ΠF � G. Second, we consider
the ideal process where we execute Z, S and F together, denoted Z �S �F . The
role of the simulator S is to emulate Z’s view of the attack on the protocol, this
includes the views of the corrupted parties as well as their communication with
G. To be able to do this, S must send inputs for corrupted players to F and will
get back outputs for the corrupted players. A simulator in the UC model is not
allowed to rewind the environment.

Both processes are given a security parameter k as input, and the only output
is one bit produced by Z. We think of this bit as Z’s guess at whether it has
been part of the real or the ideal process. We define preal respectively pideal to
be the probabilities that the real, respectively the ideal process outputs 1, and
we say that Z � ΠF � G ≡ Z � S � F if |preal − pideal| is negligible in k.

Definition 1. We say that protocol ΠF securely implements functionality F
with respect to a class of environments Env in the G-hybrid model if there exists
a simulator S such that for all Z ∈ Env we have Z � ΠF � G ≡ Z � S � F .

Different types of security can now be captured by considering different
classes of environments: For passive t-security, we consider any Z that corrupts
at most t players. Initially, it chooses inputs for the players. Corrupt players
follow the protocol so Z only gets read access to their views. For biased passive
t-security, we consider any Z that corrupts at most t players. Initially, it chooses
inputs for the players, as well as random coins for the corrupt players. Then cor-
rupt players follow the protocol so Z only gets read access to their views. This
type of security has been considered in [1,24] and intuitively captures passively
secure protocols where privacy only depends on the honest players choosing their
randomness properly. This is actually true for almost all known passively secure
protocols. Finally, for active t-security, we consider any Z that corrupts at most
t players, and Z takes complete control over corrupt players.

One may also distinguish between unconditional or computational security
depending on whether the environment class contains all environments of a cer-
tain type or only polynomial time ones. We will not be concerned much with
this distinction, as our main compiler is the same regardless, and preserves both
unconditional and computational security. For simplicity, we will consider uncon-
ditional security by default. We also consider by default adaptive security, mean-
ing that Z is allowed to adaptive choose players to corrupt during the protocol.

We will consider synchronous protocols throughout, so protocols proceed in
rounds in the standard way, with a rushing adversary. We will always assume that
point-to-point secure channels are available. In addition, we will also sometimes
make use of other auxiliary functionalities, as specified in the next subsection.

Ideal Functionalities. The broadcast functionality Fbcast (Fig. 1) allows a party to
send a value to a set of other parties, such that either all receiving parties receive
the same value or all parties jointly abort by outputting ⊥. This functionality is
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known as detectable broadcast [15] and while unconditionally secure broadcast
with termination among n parties requires that strictly less than n/3 parties
are corrupted [25], this bound does not apply to detectable broadcast, which
can be instantiated with information-theoretic security tolerating any number
of corruptions [16].

Functionality Fbcast

The ideal functionality runs with parties P1, . . . , Pn and environment Z.

– Pi sends (v,P) to Fbcast, where v ∈ {0, 1}∗ and P ⊂ {P1 . . .Pn}.
– If P contains a corrupted party, then Z receives v. Otherwise it only

receives notification that a broadcast has been started. Z then decides
whether to continue or to abort by sending a bit to the ideal functionality.

• If Z continues, then Fbcast sends v to all Pj ∈ P.
• If Z aborts, then Fbcast sends ⊥ to all Pj ∈ P.

Fig. 1. The broadcast functionality

Functionality Fcflip

The ideal functionality runs with parties P1, . . . , Pn and environment Z.

– The functionality waits for messages of the form (cflip,P) from all parties.
– After receiving all such messages, and a deliver message from the envi-

ronment Z, the functionality Fcflip picks a random string r ← {0, 1}λ and
outputs r to all parties in P.

Fig. 2. The coin flip functionality

Using the coin flip functionality Fcflip (Fig. 2), a set of parties can jointly
generate and agree on a uniformly random λ-bit string. In the case of an hon-
est majority, this functionality can be implemented with information-theoretic
security via verifiable secret sharing (VSS) [9] as follows: Let P be the set of
players that want to perform a coin flip. To realize the functionality, every par-
ticipating party Pi ∈ P secret shares a random bit string ri among all the other
players. Once every player in P shared its bit string ri, we let all players in P

reconstruct all bit strings and output
⊕

i ri. This is done by having all play-
ers send all their shares to players in P. Here we assume that reconstruction
is non-interactive, i.e., players send shares to each other and each player locally
computes the secret. Such VSS schemes exist, as is well known. It is important to
note that a VSS needs broadcast in the sharing phase, and since we only assume
detectable broadcast, the adversary may force the VSS to abort. However, since
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the decision to abort or not must be made without knowing the shared secret
(by privacy of the VSS) the adversary cannot use this to bias the output of the
coinflip.

The standard functionality Ftriple (Fig. 3) allows three parties P1, P2, and P3

to generate a replicated secret sharing of multiplication triples. In this functional-
ity, the adversary can corrupt one party and pick its shares. The remaining shares
of the honest parties are chosen uniformly at random. The intuition behind this
ideal functionality is that, even though the adversary can pick its own shares, it
does not learn anything about the remaining shares, and hence it does not learn
anything about the actual value of the multiplication triple that is secret shared.
We will present a communication efficient implementation of this functionality
in Sect. 5.

Functionality Ftriple

The ideal functionality is parameterized by an integer m, runs with parties
P1, P2, P3 and environment Z.

– If party Pi is corrupted, then the environment Z can input (corrupt, v)
where v = (ai+1, ai+2, bi+1, bi+2, ci+1, ci+2) all in Zm.

– Upon receiving init from all honest parties the functionality Ftriple picks
the undefined (ai, bi, ci) uniformly at random, such that (a1 + a2 + a3) ·
(b1 + b2 + b3) = (c1 + c2 + c3) ∈ Zm and outputs:

• (a1, b1, c1) to P2 and P3,
• (a2, b2, c2) to P3 and P1,
• (a3, b3, c3) to P1 and P2.

Fig. 3. Triple generation functionality

Finally, for any function f with n inputs and one output, we will let Ff

denote a UC functionality for computing f securely with (individual) abort.
That is, once it receives inputs from all n parties it computes f and then sends
the output to the environment Z. Z returns for each player a bit indicating if
this player gets the output or will abort. Ff sends the output to the selected
players and sends ⊥ to the rest. We consider three (stronger) variants of this:
Funanimous

f where Z must give the output to all players or have them all abort;
F fair

f where Z is not given the output when it decides whether to abort; and
F fullactive

f where the adversary cannot abort at all.

3 Our Passive to Active Security Transform

The goal of our transform is to take a passively secure protocol and convert it
into a protocol that is secure against a small number of active corruptions.
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For simplicity, let us start with a passively secure n-party protocol (n ≥ 3)
that we will convert into an n-party protocol in the Fcflip-hybrid model that is
secure against one active corruption.

The main challenge in achieving security against an actively corrupted party,
is to prevent it from deviating from the protocol description and sending mal-
formed messages. Our protocol transform is based upon the observation that,
assuming one active corruption, every pair of parties contains at least one honest
party. Now instead of letting the real parties directly run the passively secure
protocol, we will let pairs of real parties simulate virtual parties that will com-
pute, using the passively secure protocol, the desired functionality on behalf of
the real parties. More precisely, for 1 ≤ i ≤ n, the real parties Pi and Pi+1 will
simulate virtual party Pi. In the first phase of our protocol, Pi and Pi+1 will
agree on some common input and randomness that we will specify in a moment.
In the second phase, the virtual parties will run a passively secure protocol on
the previously agreed inputs and randomness. Whenever virtual party Pi sends
a message to Pj , we will realize this by letting Pi and Pi+1 both send the same
message to Pj and Pj+1. Note that when both Pi and Pi+1 are honest, these two
messages will be identical since they are constructed according to the same (pas-
sively secure) protocol, using the same shared randomness and the previously
received messages. The “action” of receiving a message at the virtual party Pj

is emulated by having the real parties Pj and Pj+1 both receive two messages
each. Both parties now check locally whether the received messages are identical
and, if not, broadcast an “abort” message. Otherwise they continue to execute
the passively secure protocol. The high-level idea behind this approach is that
the adversary controlling one real party cannot send a malformed message and
at the same time be consistent with the other honest real party simulating the
same virtual party. Hence, either the adversary behaves honestly or the protocol
will be aborted.

Remember that we need all real parties emulating the same virtual party
to agree on a random tape and a common input. Agreeing on a random tape
is trivial in the Fcflip-hybrid model, we can just invoke Fcflip for each virtual Pi

and have it send the random string to the corresponding real parties Pi and
Pi+1. Moreover, in the process of agreeing on inputs for the virtual parties we
need to be careful in not leaking any information about the real parties’ original
inputs. Towards this goal, we will let every real party secret share, e.g. XOR, its
input among all virtual parties. Now, instead of letting the underlying passively
secure protocol compute f(x1, . . . , xn), where real Pi holds input xi, we will use
it to compute f ′((x1

1, . . . , x
1
n), . . . , (xn

1 , . . . , xn
n)) := f(

⊕
i xi

1, . . . ,
⊕

i xi
n), where

virtual party Pi has input
(
xi
1, . . . , x

i
n

)
, i.e. one share of every original input.

As a small example, for the case of three parties, we would get P1 = {P1,P2}
holding input

(
x1
1, x

1
2, x

1
3

)
, P2 = {P2,P3} with input

(
x2
1, x

2
2, x

2
3

)
, and P3 =

{P3,P1} with
(
x3
1, x

3
2, x

3
3

)
. Since every real party only participates in the simu-

lation of two virtual parties, no real party learns enough shares to reconstruct
the other parties’ inputs. More precisely, for arbitrary n ≥ 3 and one corruption,
each real party will participate in the simulation of two virtual parties, thus
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the underlying passively secure protocol needs to be at least passively 2-secure.
Actually, each real party will learn not only two full views, but also one of the
inputs of each other virtual party, since it knows the shares it distributed itself.
As we will see in the security proof this is not a problem and passive 2-security
is, for one active corruption, a sufficient condition on the underlying passively
secure protocol.

The approach described above can be generalized to a larger number of cor-
rupted parties. The main insight for one active corruption was that each set of
two parties contains one honest party. For more than one corruption, we need to
ensure that each set of parties of some arbitrary size contains at least one hon-
est party that will send the correct message. Given n parties and t corruptions,
each virtual party needs to be simulated by at least t + 1 real parties. We let
real parties Pi, . . . ,Pi+t simulate virtual party Pi

1. This means that every real
party will participate in the simulation of t + 1 virtual parties. Since we have
t corruptions, the adversary can learn at most t (t + 1) views of virtual parties,
which means that our underlying passively secure protocol needs to have at least
passive

(
t2 + t

)
-security.

In the following formal description, let Pi be the virtual party that is simu-
lated by Pi, . . . ,Pi+t. By slight abuse of notation, we use the same notation for
the virtual party Pj and the set of real parties that emulate it. When we say Pi

sends a message to Pj , we mean that each real party in Pi will send one message
to every real party in Pj . Let Vi be the set of virtual parties in whose simulation
Pi participates.

Let f be the n-party functionality we want to compute, and Πf ′ be a passive(
t2 + t

)
-secure protocol that computes f ′, i.e., it computes f on secret shares

as described above. We construct Π̃f that computes f and is secure against t
active corruption as follows:

The protocol Π̃f :

1. Pi splits its input xi into n random shares, s.t. xi =
⊕

1≤j≤n xj
i , and for all

j ∈ [n] send (xj
i ,Pj) to Fbcast (which then sends xj

i to all parties in Pj).
2. For i ∈ [n] invoke Fcflip on input Pi. Each Pi receives {rj |Pj ∈ Vi} from the

functionality.
3. Pi receives

(
xj
1, . . . , x

j
n

)
for every Pj ∈ Vi from Fbcast. If any xj

i = ⊥, abort
the protocol.

4. All virtual parties, simulated by the real parties, jointly execute Πf ′ , where
each real party in Pi uses the same randomness ri that it obtained through
Fcflip. Whenever Pi receives a message from Pj , each member of Pi checks
that it received the same message from all parties in Pj . If not, it aborts (this
includes the case where a message is missing). Once a player makes it to the
end of Πf ′ without aborting, it outputs whatever is output in Πf ′ .

1 Any other distribution of real party among virtual parties that ensures that each
real party simulates equally many virtual parties would work as well.
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Theorem 1. Let n ≥ 3. Suppose Πf ′ implements Ff ′ with passive
(
t2 + t

)
-

security. Then Π̃f as described above implements Ff in the (Fbcast, Fcflip)-hybrid
model with active t-security.

Remark 1. We construct a protocol where the adversary can force some honest
players to abort while others terminate normally. We can trivially extend this to
a protocol implementing Funanimous

f where all players do the same: we just do a
round of detectable broadcast in the end where players say whether they would
abort in the original protocol. If a player hears “abort” from anyone, he aborts.

Remark 2. In Step 1 of the protocol the parties perform a XOR based n-out-
of-n secret sharing. We remark that any n-out-of-n secret sharing scheme could
be used here instead. In particular, when combining the transform with the
preprocessing protocol of Sect. 5, it will be more efficient to do the sharing in
the ring (Zm,+).

Remark 3. Our compiler is information-theoretically secure. This means that
our compiler outputs a protocol that is computationally, statistically, or perfectly
secure if the underlying protocol was respectively computationally, statistically,
or perfectly secure. This is particularly interesting, since, to the best of our
knowledge, our compiler is the first one to preserve statistical and perfect security
of the underlying protocol.

Remark 4. The theorem trivially extends to compilation of protocols that use an
auxiliary functionality G, such as a preprocessing functionality. We would then
obtain a protocol in the (Fbcast,Fcflip,G)-hybrid model. We leave the details to
the reader.

Proof. Before getting into the details of the proof, let us first roughly outline the
possibilities of an actively malicious adversary and our approach to simulating
his view in the ideal world. The protocol can be split into two separate phases.
First all real parties secret share their inputs among the virtual parties through
the broadcast functionality. A malicious party P∗

i can pick an arbitrary input
xi, but the broadcast functionality ensures that all parties simulating some vir-
tual party Pj will receive the same consistent share xj

i from the adversary. Since
every virtual party is simulated by at least one honest real party, the simulator
will obtain all secret shares of all inputs belonging to A. This allows the sim-
ulator to reconstruct these inputs and query the ideal functionality to retrieve
f(x′

1, . . . , x
′
n) where if Pj is honest then x′

j = xj is the input chosen by the
environment and if Pj is corrupt x′

j =
⊕

i xi
j is the input extracted by the sim-

ulator. Having the inputs of all corrupted parties and the output from the ideal
functionality, we can use the simulator of Πf ′ to simulate the interaction with
the adversary. At this point, there are two things to note.

First, we have n real parties that simulate n virtual parties. Since the adver-
sary can corrupt at most t real parties, we simulate each virtual party by t + 1
real parties. As each real party participates in the same amount of simulations
of virtual parties, we get that each real party simulates t + 1 virtual parties.
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This means that the adversary can learn at most t2 + t views of the virtual
parties and, hence, since Πf ′ is passively

(
t2 + t

)
-secure, the adversary cannot

distinguish the simulated transcript from a real execution.
Second, the random tapes are honestly generated by Fcflip. The simulator

knows the exact messages that the corrupted parties should be sending and how
to respond to them. Upon receiving an honest message from a corrupted party,
the simulator responds according to underlying simulator. If the adversary tries
to cheat, the simulator aborts. Aborting is fine, since, in a real world execution,
the adversary would be sending a message, which is inconsistent with at least
one honest real party that simulates the same virtual party, and this would make
some receiving honest party abort.

Given this intuition, let us now proceed with the formal simulation. Let Z
be the environment (that corrupts at most t parties). Let P

∗ be the set of real
parties that are corrupted before the protocol execution starts. Let V

∗ be the
set of virtual parties that are simulated by at least one corrupt real party from
P

∗. We will construct a simulator SΠ̃f
using the simulator SΠf′ for f ′. In the

specification of the simulator we will often say that it sends some message to a
corrupt player. This will actually mean that Z gets the message as Z plays for
all the corrupted parties.

SΠ̃f
:

1. For each Pi ∈ P
∗ and j ∈ [n], Z sends (xj

i ,Pj) to Fbcast (which is emulated
by SΠ̃f

). For each Pj ∈ V
∗ and each corrupt emulator in Pj , send to Z the

shares this emulator would receive from Fbcast, that is, {xj
i}i=1..n where for a

corrupt Pi we use the share specified by Z before and for honest Pi we use a
random value.

2. For each Pi ∈ P
∗, compute xi =

⊕
j xj

i and send it to the ideal functionality
Ff to retrieve z = f(x1, . . . , xn), where all xi with Pi 
∈ P

∗ are the honest
parties’ inputs in the ideal execution.

3. To simulate the calls to Fcflip, for each corrupt Pj , choose rj at random and
send it to each corrupt emulator of Pj .
Note that, at this point, we know the inputs and random tapes of all currently
corrupted parties. With this, we can check in the following whether corrupt
players follow the protocol.

4. Start the simulator SΠf′ and tell it that the initial set of corrupted play-
ers is V

∗. We will emulate both its interface towards Ff ′ and towards its
environment, as described below.

5. When SΠf′ queries Ff ′ for inputs of corrupted players, we return, for each
Pj ∈ V

∗, xj
1, ..., x

j
n. When it queries for the output we return z.

6. For each round in Πf ′ the following is done until the protocol ends or aborts:
(a) Query SΠf′ for the messages sent from honest to corrupt virtual parties

in the current round. For each such message to be received by a corrupted
Pj , send this message to all corrupt real parties in Pj .
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(b) Get from Z the messages from corrupt to honest real players in the current
round. Compute the set A of honest real players that, given these message,
will abort. For all corrupt Pj and honest Pi, compute the correct message
mj,i to be sent in this round from Pj to Pi. Tell SΠf′ that Pj sent mj,i to
Pi in this round.

(c) If we completed the final round, stop the simulation. Else, if A contains
all real honest parties, send “abort” to Ff and stop the simulation. Else,
If A = ∅ go to step 6a. Else, do as follows in the next round (in which the
protocol will abort because A 
= ∅): Query SΠf′ for the set of messages M
sent from honest to corrupt virtual parties in the current round. For all
real parties in A tell Z that they send nothing in this round. For all other
real honest players compute, as in step 6a, what messages they would
send to corrupt real players given M and send these to Z. Send “abort”
to Ff and stop the simulation.

It remains to specify how adaptive corruptions are handled: Whenever the
adversary adaptively corrupts a new party Pi, we go through all virtual parties Pj

in Vi (the virtual parties simulated by Pi) and consider the following two cases.
First, if Pj already contained a corrupted party, then we already know how to
simulate the view for this virtual player. Second, if Pi is the first corrupted party
in Pj , then we add Pi to V

∗ and tell SΠf′ that Pj is now corrupt and we forward
the response of SΠf′ to Z, namely the (simulated) current view of Pj . Since the
view of Pj contains this virtual party’s random tape, we can continue our overall
simulation as above.

We now need to show that SΠ̃f
works as required. For contradiction assume

that we have an environment Z for which Z � SΠ̃f
� Ff 
≡ Z � Πf � Fcflip � Fbcast.

We will use Z to construct an environment Z ′ that breaks the assumed security
of Πf ′ and so reach a contradiction.

Z ′:

1. Run internally a copy of Z, and get the initial set of corrupted real players
from Z, this determines the set V

∗ of corrupt virtual players as above, so Z ′

will corrupt this set (recall that Z ′ acts as environment for Πf ′).
2. For each real honest party Pi, get its input xi from Z. Choose random shares

xj
i subject to xi =

⊕
j xj

i .
3. Execute with Z Step 1 of SΠ̃f

’s algorithm, but instead of choosing random
shares on behalf of honest players, use the shares chosen in the previous step.
This will fix the inputs {xj

i}i=1..n of every virtual player Pj . Z ′ specifies these
inputs for the parties in Πf ′ .

4. Recall that Z ′ (being a passive environment) has access to the views of the
players in V

∗. This initially contains the randomness rj of corrupt Pj . Z ′ uses
this rj to execute Step 3 of SΠ̃f

.
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5. Now Z ′ can expect to see the views of the corrupt Pj ’s as they execute the
protocol Therefore Z ′ can perform Step 6 of SΠ̃f

with one change only: it will
get the messages from honest to corrupt players by looking at the views of
the corrupt Pj ’s, but will forward these messages to Z exactly as SΠ̃f

would
have done. In the end Z ′ outputs the guess produced by Z.

Now, all we need to observe is that if Z ′ runs in the ideal process, the view
seen by its copy of Z is generated using effectively the same algorithm as in SΠ̃f

,
since the views of corrupt virtual parties come from SΠf′ . On the other hand, if
Z ′ runs in the real process, its copy of Z will see a view distributed exactly as
what it would see in a normal real process. This is because the first 4 steps of Z ′

is a perfect simulation of the real Πf , and the last step aborts exactly when the
real protocol would have aborted and otherwise provides real protocol messages
to Z. Therefore Z ′ can distinguish real from ideal process with exactly the same
advantage as Z. �


Efficiency of our transform. In our transform every real party emulates t + 1
virtual parties which constitutes the only computational overhead of our trans-
form (if we ignore the computational effort in checking that the t + 1 received
messages are equal).

Since our transform mainly works by sending messages in a redundant fash-
ion, it incurs a multiplicative bandwidth overhead that depends on the num-
ber of active corruptions we want to tolerate. Assume the underlying protocol
Πf ′ sends a total of m messages and further assume that we want to toler-
ate t corruptions. This means that every virtual party Pi will be simulated by
t + 1 real parties. Whenever a virtual party Pi sends a message to Pj , we send
(t + 1) · (t + 1) = t2 + 2t + 1 real messages. Ignoring messages sent for the coin-
flips and share distribution, our transform produces a protocol that sends at
most m · (t2 + 2t + 1

)
messages.

For the special case, where n = 3, t = 1, and P1 = {P1,P2}, P2 = {P2,P3},
and P3 = {P3,P1}, it holds that for all i 
= j, |Pi ∩Pj | = 1. Hence, every message
from Pi to Pj is realized by sending 3 real messages, which results in 3m total
messages sent during the second phase of our transform.

Active security without Fcflipand Fbcast: By the UC composition theorem, we can
replace the functionalities Fcflip and Fbcast in our compiled protocol by secure
implementations and still have a secure protocol. It should be noted that for
t corruptions we have n ≥ (

t2 + t
)

+ 1 and thus we are always in an honest
majority setting. This means that both functionalities can be implemented with
information theoretic security in the basic point-to-point secure channels model
as described in Sect. 2.

The implementation of Fcflip uses verifiable secret sharing (VSS). Note that
even though VSS in itself is powerful enough to realize secure multiparty compu-
tation, we only use it for the coin flip functionality. Thus, the number of VSSs we
need depends only on the amount of randomness used in the passively secure pro-
tocol, and this can be reduced using a pseudorandom generator. Besides (and per-
haps more importantly) for the large class of protocols with biased passive security
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we do not need Fcflip at all to compile them. Recall that, in the biased passive secu-
rity model, we still assume that all parties follow the protocol execution honestly,
but corrupted parties have the additional power of choosing their random tapes
in a non-adaptive, but arbitrary manner. Adversaries who behave honestly, but
tamper with their random tapes have been previously considered in [1,24].

If our compiler starts with a protocol Πf ′ that is secure against biased passive
adversaries, then we can avoid the use of a coin-flipping functionality, since any
random tape is secure to use. We can modify our compiler in a straightforward
fashion. Rather than executing one coin-flip for every Pi to agree on a random
tape, we simply let one party from each Pi broadcast an arbitrarily chosen ran-
dom tape to the other members of Pi. Now, since we do not need Fcflip, and we
do not need to implement VSS for this purpose.

Guaranteed Output Delivery. At the cost of reducing the threshold t of active
corruptions that our transform can tolerate, we can obtain guaranteed output
delivery. For this we need to ensure that an adversary cannot abort in neither the
first phase, nor the second phase of our protocol. In the first phase, when each real
party broadcasts its input shares to the virtual parties, we can ensure termination
by simply letting every Pi to be simulated by 3t + 1 real parties. In this case
each Pi contains less than 1/3 corruptions and unconditionally secure broadcast
(with termination) exists among the members of Pi. Using this approach, the
adversary can learn t (3t + 1) views and thus the underlying protocol needs to
have passive

(
3t2 + t

)
-security.

Another approach that gives slightly better parameters is to only assume
an honest majority in each Pi and use detectable broadcast. In this case
the underlying protocol needs to be passively

(
2t2 + t

)
-secure and thus, since

n ≥ (
2t2 + t

)
+ 1, unconditionally secure broadcast with termination exists

among all parties. If a real party simulating a virtual party aborts during a
detectable broadcast (to members of Pi), it will broadcast (with guaranteed ter-
mination) this abort to all parties. At this point an honest sender, who initiated
the broadcast, can broadcast its share for that virtual party among all parties
in the protocol. Intuitively, since the broadcast failed, there is at least one cor-
rupted party in the virtual party and thus the adversary already learned the
sender’s input share, so we do not need to keep it secret any more. If the sender
is corrupt and does not broadcast its share after an abort, then all parties replace
the sender’s input by some default value.

In the second phase of our protocol, real parties simulating virtual parties
are currently aborting as soon as they receive inconsistent messages, as they
cannot distinguish a correct message from a malformed one. If we ensure that
every virtual party is simulated by an honest majority, then, whenever a real
party receives a set of messages representing a message from a virtual party, it
makes a majority decision. That is, it considers the most frequent message as
the correct one and continues the protocol based on this message. Let Π̃f denote
the modified protocol as described above. We then have the following corollary
whose proof is a trivial modification of the proof of Theorem 1.
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Corollary 1. Let n ≥ 3. Suppose Πf ′ implements Ff ′ with passive
(
2t2 + t

)
-

security. Then Π̃f as described above implements Ffullactive
f with active

t-security in the (Fbcast, Fcflip)-hybrid model.

3.1 Tolerating More Corruptions Assuming Static Adversaries

In this section we sketch a technique that allows to improve the number of
corruptions tolerated by our compiler if we restrict the adversary to only perform
static corruptions, i.e., if the adversary must choose the corrupted parties before
the protocol starts, and we assume a sufficiently large number of parties.

In contrast to our compiler from Theorem 1, instead of choosing which real
parties will emulate which virtual party in a deterministic way, we will now
map real parties to virtual parties in a probabilistic fashion. Intuitively, since
the adversary has to choose who to corrupt before the assignment and since
the assignment is done in a random way, this can lead to better bounds when
transforming protocols with a large number of parties.

Our new transform works as follows: At the start of the protocol, the parties
invoke Fcflip and use the obtained randomness to select uniformly at random a set
of real parties to emulate each virtual party. Then we execute the transformed
protocol Πf exactly as we specified above.

Let us define a virtual party in our transform to be controlled by the adversary
if it is only emulated by corrupt real parties, and let us define a virtual party to
be observed by the adversary if it is emulated by at least one corrupt real party.
In the proof of Theorem 1, we need to ensure two conditions for our trans-
form to be secure. (1) No virtual party can be controlled by the adversary and,
(2) the number of virtual parties observed by the adversary must be smaller than
the privacy threshold of the passively secure protocol Πf ′ .

We now show that we can set the parameters of the protocol in a way that
these two properties are satisfied (except with negligible probability) and in a
way that produces better corruption bounds than our original transform.

In the analysis we assume that n = Θ(λ), where n is, as before, the number
of virtual and real parties, while λ is the statistical security parameter. We also
assume that the security threshold of the underlying passively secure protocol
Πf ′ is cn for some constant c. Finally, let e be the number of real parties that
emulate each virtual party, and let e = u log n for a constant u. The number
of corrupt real parties that can be tolerated by our transform is then at most
d · n/ log n for some constant d. We choose the constants d and u such that
c < 1 − du.

To show (1), it is easy to see that (by a union bound) the probability that
at least one virtual party is fully controlled by the adversary (i.e., it is emulated
only by corrupt real parties) is at most:

n

(
dn

n log n

)e

= n

(
d

log n

)e

Since we set e = u log n, this probability is negligible.
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As for (2), the probability that a virtual party is not observed by the adver-
sary (i.e., it is emulated only by honest parties) is (1 − d/ log n)e, so that the
expected number of such parties is n(1 − d/ log n)e which for large n (and hence
small values of d/ log n) converges to

n(1 − de/ log n) = n(1 − du).

As we choose d and u such that c < 1 − du, it then follows immediately from a
Chernoff bound that the number of virtual parties with only honest emulators
is at least cn with overwhelming probability. Let Π̄f denote the protocol using
this probabilistic emulation strategy. We then have:

Corollary 2. Let n = Θ(λ). Suppose Πf ′ realizes the n-party functionality Ff ′

with passive and static cn-security for a constant c. Then Π̄f realizes Ff with
active and static d · n/ log n-security in the (Fbcast,Fcflip)-hybrid model, for a
constant d.

Moreover, compared to the protocol obtained using our adaptively secure
transform, Π̄f has asymptotically better multiplicative overhead of only
O((log n)2).

3.2 Achieving Constant Fraction Corruption Threshold

A different approach for improving the bound of corruptions that we can tolerate
is to combine our compiler with the results of Cohen et al. [7].

In [7], the authors show how to construct a multiparty protocol for any
number of parties from a protocol for a constant number k of parties and a
log-depth threshold formula of a certain form. The formula must contain no
constants and consist only of threshold gates with k inputs that output 1 if at
least j input bits are 1. The given k-party protocol should be secure against j−1
(active) corruptions. In [7], constructions are given for such formulae, and this
results in multiparty protocols tolerating essentially a fraction (j − 1)/(k − 1)
corruptions.

For instance, from a protocol for 5 parties tolerating 2 passive corruptions
(in the model without preprocessing), our result constructs a 5 party protocol
tolerating 1 active corruption. Applying the results from [7], we get a protocol for
any number n of parties tolerating n/4 − o(n) malicious corruptions. This pro-
tocol is maliciously secure with abort, but we can instead start from a protocol
for 7 parties tolerating 3 passive corruptions and use Corollary 1 to get a proto-
col for 7 parties, 1 active corruption and guaranteed output delivery. Applying
again the results from [7], we get a protocol for any number n of parties toler-
ating n/6 − o(n) malicious corruptions with guaranteed output delivery. These
results also imply that if we accept that the protocol construction is not explicit,
or we make a computational assumption, then we get threshold exactly n/4,
respectively n/6.
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4 Achieving Security with Complete Fairness

The security notion achieved by our previous results is active security with
abort, namely the adversary gets to see the output and then decides whether the
protocol should abort – assuming we want to tolerate the maximal number of
corruptions the construction can handle. However, security with abort is often
not very satisfactory: it is easy to imagine cases where the adversary may for
some reason “dislike” the result and hence prefers that it is not delivered.

However, there is a second version that is stronger than active security with
abort, yet weaker than full active security, which is called active security with
complete fairness [8]. Here the adversary may tell the functionality to abort or
ask for the output, but once the output is given, it will also be delivered to the
honest parties.

In this section we show how to get general MPC with complete fairness
from MPC with abort, with essentially the same efficiency. This will work if
we have honest majority and if the given MPC protocol has a compute-then-
open structure, a condition that is satisfied by a large class of protocols. The
skeptical reader may ask why such a result is interesting, since with honest
majority we can get full active security without abort anyway. Note, however,
that this is only possible if we assume that unconditionally secure broadcast with
termination is given as an ideal functionality. In contrast, we do not need this
assumption as our results above can produce compute-then-open protocols that
only need detectable broadcast (which can be implemented from scratch) and
our construction below that achieves complete fairness does not need broadcast
with termination either.

We define the following:

Definition 2. Πf is a compute-then-open protocol for computing function f if
it satisfies the following:

– It implements Ff with active t-security, where t < n/2.2

– One can identify a particular round in the protocol, called the output round,
that has properties as defined below. The rounds up to but not including the
output round are called the computation phase.

– The adversary’s view of the computation phase is independent of the honest
party’s input. More formally, we assume that the simulator always simulates
the protocol up to the output round without asking for the output.

– The total length of the messages sent in the output round depends only on
the number of players, the size of the output and (perhaps) on the security
parameter3. We use di,j to denote the message sent from party i to party j
in the output round.

2 We believe that our results also extend to the computational case, but since we are
in an honest majority setting, we only focus on statistical and perfect security.

3 In particular, it does not depend on the size of the evaluated function.
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– At the end of the computation phase, the adversary knows whether a given
set of messages sent by corrupt parties in the output round will cause an
abort. More formally, there is an efficiently computable Boolean function
fabort which takes as input the adversary’s view v of the computation phase
and messages d = {di,j | 1 ≤ i ≤ t, 1 ≤ j ≤ n}, where we assume without loss
of generality that the first t parties are corrupted. Now, when corrupt parties
have state v and send d in the output round, then if fabort(v,d) = 0 then all
honest players terminate the protocol normally, otherwise at least one aborts,
where both properties hold except with negligible probability.

– One can decide whether the protocol aborts based only on all messages sent
in the output round4. More formally, we assume the function fabort can also
take as input messages dall = {di,j | 1 ≤ i ≤ t, 1 ≤ j ≤ n}. Then, if parties
P1, ..., Pn send messages dall in the output round and fabort(dall) = 0, then all
honest players terminate the protocol, otherwise some player aborts (except
with negligible probability).

Note that the function fabort is assumed to be computable in two different
ways: from the set of all messages sent in the output round, or from adversary’s
view. The former is used by our compiled protocol, while the latter is only used
by the simulator of that protocol.

A typical example of a compute-then-open protocol can be obtained by apply-
ing our compiler from Sect. 3 to a secret-sharing based and passively secure pro-
tocol, such as BGW: In the compiled protocol, the adversary can only make it to
the output round by following the protocol. Therefore he knows what he should
send in the output round and that the honest players will abort if they don’t see
what they expect. From the set of all messages sent in the output round, one
can determine if an abort will occur by simple equality checks. More generally,
it is straightforward to see that if one applies the compiler to a compute-then-
open passively secure protocol, then the resulting protocol also has the same
structure.

We can now show the following:

Theorem 2. Assume we are given a compiler that constructs from the circuit
for a function f a compute-then-open protocol Πf that realizes Ff , with active
t-security. Then we can construct a new compiler that constructs a compute-
then-open protocol Π ′

f that realizes F fair
f with active t-security. The complexity

of Π ′
f is larger than that of Πf by an additive term that only depends on the

number of players, the size of the outputs and the security parameter.

Proof. Let Deal be a probabilistic algorithm that on input a string s produces
shares of s in a verifiable secret sharing scheme with perfect t-privacy and
non-interactive reconstruction, we write Deal(s) = (Deal1(s), . . . , Dealn(s))
where Deali(s) is the i′th share produced. For t < n/2 this is easily constructed,

4 This restriction is only for simplicity, our results extend to the more general case
where termination also depends on some state information that parties keep private,
as long as the size of this state only depends on the size of the output.
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e.g., by first doing Shamir sharing with threshold t and then appending to each
share unconditionally secure MACs that can be checked by the other parties.
Such a scheme will reconstruct the correct secret except with negligible prob-
ability (statistical correctness) and has the extra property that given a secret
s and an unqualified set of shares, we can efficiently compute a complete set
Deal(s) that is consistent with s and the shares we started from.

Now given function f , we construct the protocol Π ′
f from Πf as follows:

1. Run the computation phase of Πf (where we abort if Πf aborts) and let
dall = {di,j | 1 ≤ i ≤ t, 1 ≤ j ≤ n} denote the messages that parties would
send in the output round of Πf . Note that each party Pi can compute what
he would send at this point.

2. Let f ′ be the following function: it takes as input a set of strings dall =
{di,j | 1 ≤ i ≤ t, 1 ≤ j ≤ n}. It computes Deal(di,j) for 1 ≤ i, j ≤ n and
outputs to party Pl Deal(di,j)l. Finally, it outputs fabort(dall) to all parties.
Now we run Πf ′ , where parties input the di,j ’s they have just computed.

3. Each player uses detectable broadcast to send a bit indicating if he terminated
Πf ′ or aborted.

4. If any player sent abort, or if Πf ′ outputs 1, all honest players abort. Oth-
erwise parties reconstruct each di,j from Deal(di,j) (which we have from the
previous step): each party Pl sends Deal(di,j)l to Pj , for 1 ≤ i ≤ n (recall
that Pj is the receiver of di,j), and parties apply the reconstruction algorithm
of the VSS.

5. Finally parties complete protocol Πf , assuming dall = {di,j | 1 ≤ i ≤ t, 1 ≤
j ≤ n} were sent in the output round.

The claim on the complexity of Π ′
f is clear, since Πf is a compute-then-open

protocol and steps 2–4 only depend on the size of the messages in the output
round and not on the size of the total computation.

As for security, the idea is that just before the output phase of the original
protocol, instead of sending the di’s we use a secure computation Πf ′ to VSS
them instead and also to check if they would cause an abort or not. This new
computation may abort or tell everyone that the di’s are bad, but the adversary
already knew this by assumption since Πf is a compute-then-open protocol. So
by privacy of the VSS, nothing is revealed by doing this. On the other hand, if
there is no abort and we are told the di’s are good, the adversary can no longer
abort, as he cannot stop the reconstruction of the VSSs.

More formally, we construct a simulator T as follows:

1. First run the simulator S for Πf up to the output round. Then run the sim-
ulator S′ for Πf ′ where T also emulates the functionality Ff ′ . In particular,
T can observe the inputs S′ produced for f ′ on behalf of the corrupt parties,
that is, messages d = {di,j | 1 ≤ i ≤ t, 1 ≤ j ≤ n} where we assume without
loss of generality that the first t parties are corrupt.
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2. Note that T now has the adversary’s view v of the computation phase of Πf

(from S) and messages d , so T computes fabort(v,d). Since Πf is a compute-
then-open protocol, this bit equals the output from f ′, so we give this bit to
S′, who will now, for each honest player, say whether that player aborts or
gets the output.

3. T can now trivially simulate the round of detectable broadcasts, as it knows
what each honest player will send. If anyone broadcasts “abort”, or the output
from f ′ was 1, T sends “abort” to Ff and stops. Otherwise, T asks for the
output y from f which we pass to S, who will now produce a set of messages
dhonest to be sent by honest players in the output round. In response, we
tell S the corrupt parties sent d . By assumption we know that this will not
cause S to abort. So we now have a complete set of messages dall (including
messages from the honest parties) that is consistent with y.

4. Now T exploits t-privacy of the VSS: during the run of Πf ′ t shares of each
Deal(di,j) have been given to the adversary. T now completes each set of
shares to be consistent with di,j , and sends the resulting shares on behalf of
the honest parties in Π ′

f .
5. Finally, we let S complete its simulation of the execution of Πf after the

output round (if anything is left).

It is clear that T does not abort after it asks for the output. Further the output
of T working with f is statistically close to that of the real protocol. This follows
easily from the corresponding properties of S and S′ and statistical correctness
of the VSS. �


The construction in Theorem 2 is quite natural, and works for a more general
class of protocols than those produced by our main result, but we were unable
to find it in the literature.

It should also be noted that when applying the construction to protocols
produced by our main result, we can get a protocol that is much more efficient
than in the general case. This is because the computation done by the function f ′

becomes quite simple: we just need a few VSSs and some secure equality checks.

5 Efficient Three-Party Computation Over Rings

To illustrate the potential of our compiler from Sect. 3, we provide a protocol for
secure three-party computation over arbitrary rings Zm that is secure against
one active corruption, and has constant online communication overhead for any
value of m. That is, during the online phase, the communication overhead does
not depend on the security parameter.

The protocol uses the preprocessing/online circuit evaluation approach firstly
introduced by Beaver [2]. During the preprocessing phase, independently of the
inputs and the function to be computed, the parties jointly generate a suf-
ficient amount of additively secret shared multiplication triples of the form
c = a · b ∈ Zm. During the online phase, the parties then consume these triples
to evaluate an arithmetic circuit over their secret inputs.



820 I. Damg̊ard et al.

The online phase of Beaver’s protocol tolerates 2 passive corruptions and
thus we can directly apply Theorem 1 to obtain a protocol for the online phase
that is secure against one active corruption. What is left is the preprocessing
phase, i.e., how to generate the multiplicative triples. Our technical contribution
here is a novel protocol for this task. Note that this protocol does not use our
compiler. Instead it produces the triples to be used by the compiled online pro-
tocol. Furthermore, since Beaver’s online phase is deterministic, our protocol, as
opposed to the general compiler, does not require to use any coin flip protocol.

For the sake of concreteness, in this section we give an explicit description
of the entire protocol. In the preprocessing protocol we create replicated secret
shares of multiplication triples5. Afterwards we briefly describe the online phase
we obtain from applying our compiler to Beaver’s online phase. The communica-
tion of our preprocessing protocol is only O(log m + λ) many bits per generated
triple, meaning that the overhead for active security is a constant when m is
exponential in the (statistical) security parameter.

5.1 The Preprocessing Protocol

The goal of our preprocessing protocol is to generate secret shared multiplication
triples of the form c = a · b ∈ Zm, where m is an arbitrary ring modulus. Our
approach can be split into roughly three steps. First, we optimistically generate
a possibly incorrect multiplication triple over the integers. In the second step,
we optimistically generate another possibly incorrect multiplication triple in Zp,
where p is some sufficiently large prime. We interpret our integer multiplication
triple from step one as a triple in Zp and “sacrifice” our second triple from Zp to
check its validity. In the third step we exploit the fact that the modulo operation
and the product operation are interchangeable. That is, each party reduces its
integer share modulo m to obtain a share of a multiplication triple in Zm.

The main idea in step one is, that we can securely secret share a value a ∈ Zm

over the integers by using shares that are log m + λ bits large. The extra λ bits
in the share size ensure that for any two values in Zm the resulting distributions
of shares are statistically close.

We now proceed with a more formal description of the different parts of
the protocol. We start by introducing some useful notation for replicated secret
sharing:

Replicated Secret Sharing – Notation and Invariant: We write [a]Z =
(a1, a2, a3) for a replicated integer secret sharing of a and [a]p = (a1, a2, a3) for
a replicated secret sharing modulo p. In both cases it holds that a = a1 +a2 +a3

(where the additions are over the integer in the first case and modulo p in the
latter). As an invariant for both kinds of secret sharing, each party Pi will know
the shares ai+1 and ai−1.

5 Note that for the three-party case an additively secret shared value among virtual
parties, corresponds to a replicated additively secret shared value among the real
parties.
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Replicated Secret Sharing – Input: When a party Pi wants to share a value
a ∈ Zp, Pi picks uniformly random a1, a2 ← Zp and defines a3 = a − a1 − a2

mod p. Then Pi sends shares aj−1 and aj+1 to Pj . Finally Pi+1 and Pi−1 echo
ai to each other and abort if the value they received in this echo phase differs
from what they received from Pi. When using integer secret sharing instead, the
shares need to be large enough to statistically hide the secret. That is, when a
party Pi wants to share a value a ∈ {0, . . . , m − 1}, Pi picks uniformly random
a1, a2 ← {0, . . . , 2�log m�+λ − 1} and defines a3 = a − a1 − a2. Then Pi sends
shares aj−1 and aj+1 to Pj . Now, Pj checks if |aj±1| ≤ 2�log m�+λ+1 and aborts
otherwise.6 Finally Pi+1 and Pi−1 echo ai to each other and abort if the value
they received in this echo phase differs from what they received from Pi.

Replicated Secret Sharing – Reveal: When parties want to open a share
[a], Pi sends its shares ai+1 and ai−1 to Pi+1 and Pi−1 respectively. When Pi

receives share ai from Pi+1 and share a′
i from Pi−1, Pi aborts if ai 
= a′

i or
outputs a = a1 + a2 + a3 otherwise.7

Replicated Secret Sharing – Linear Combination: Since the secret sharing
we use here is linear, we can compute linear functions without interaction i.e.,
when executing [c] = [a]+ [b] each party will locally add its shares8. We consider
three kind of additions:

– [c]p = [a]p + [b]p, where all the shares are added modulo p;
– [c]Z = [a]Z + [b]Z, where the shares are added over the integers (note that the

magnitude of the shares will increase when using integer secret sharing);
– [c]p = [a]p + [b]Z, where the shares are added modulo p. Note that in the this

case, if a is uniform modulo p then c is uniform modulo p.9

Replicated Secret Sharing – Multiplication: Given two sharings [a]p, [b]p,
we can compute a secret sharing of the product [c = a · b] in the following way:

1. Pi samples a random si ← Zp and computes ui = ai+1bi+1 + ai+1bi−1 +
ai−1bi+1 + si;

2. Pi sends ui to Pi+1 and si to party Pi−1;
3. Finally, party Pi defines its own two shares of c as ci+1 = ui−1 − si and

ci−1 = ui − si+1;

When performing multiplications with integer secret sharings, we need to
ensure that the chosen randomness is large enough to hide the underlying secrets.

6 To keep the protocol symmetric, we use the bound for a3 for all three shares.
7 There is no need to explicitly check for the size of a share in the reconstruction phase

since, by the assumption that at least one among Pi+1 and Pi−1 is honest, one of
the received shares will be the correct one.

8 The implementation of [c] = [a] + k and [c] = k · [a] i.e., addition and multiplication
by constant, follows trivially.

9 We will use this property twice in the protocol: once, when mixing integer triples
and p-modular triples in the multiplication checking phase, and finally, to argue that
the resulting triples will be uniform modulo m.
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In particular, given two sharings [a]Z, [b]Z, such that all shares are bounded by
B, we can compute a secret sharing of the product [c = a · b]Z in the following
way:

1. Pi samples a random si ← {0, . . . , 22�log B�+λ+2 − 1} and computes ui =
ai+1bi+1 + ai+1bi−1 + ai−1bi+1 + si;

2. Pi sends ui to Pi+1 and si to party Pi−1;
3. Pi checks that the received shares are of the correct size i.e., |ui−1| ≤

22�log B�+λ+3 and |si+1| ≤ 22�log B�+λ+2

4. Finally, party Pi defines its own two shares of c as ci+1 = ui−1 − si and
ci−1 = ui − si+1;

Armed with these tools we are now ready to describe our preprocessing pro-
tocol. The protocol is similar in spirit to previous protocols (e.g., [12,13]) for
generating multiplication triples, and like in previous work we start by gen-
erating two possibly incorrect triples, and then “sacrificing” one to check the
correctness of the other. The main novelty of this protocol is that the two triples
actually live in different domains. One is a an integer secret sharing, while the
others is a modular secret sharing. For the sake of exposition we describe the
protocol to generate a single multiplicative triple but, as with previous work, it
will be more efficient to generate many triples in parallel.

The Preprocessing Protocol – Generate Random Triples:

1. Every Pi picks random ai, bi ← Zm and generates sharings of [ai]Z, [bi]Z;
2. All parties jointly compute [a]Z = [a1]Z + [a2]Z + [a3]Z and [b]Z = [b1]Z +

[b2]Z + [b3]Z;10

3. All parties jointly compute [c]Z = [a]Z · [b]Z (optimistically using the multi-
plication protocol described above);

4. Every Pi picks random xi, yi, ri ← Zp and generates sharings of
[xi]p, [yi]p, [ri]p;

5. All parties jointly compute [x]p = [x1]p + [x2]p + [x3]p and [y]p = [y1]p +
[y2]p + [y3]p and [r]p = [r1]p + [r2]p + [r3]p;

6. All parties jointly compute [z]p = [x]p · [y]p (optimistically using the multi-
plication protocol described above);

7. All parties open r;
8. All parties jointly compute [e]p = r[x]p + [a]Z;
9. All parties jointly compute [d]p = [y]p + [b]Z;

10. All parties jointly open e, d, then compute and open

[t]p = de − rd[x]p − e[y]p + r[z]p − [c]Z

and abort if the result is not 0;

10 Note that if now we convert the sharing of [a]Z to [a]m by having each party take
their shares and locally reduce modulo m, we get that, from the adversary’s point
of view, a is uniformly random in Zm, since at least one honest party choose ai as a
uniform value modulo m; the same argument applies symmetrically to [b]Z.
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11. If the protocol did not abort, all parties output (modular) sharings
[a]m, [b]m, [c]m by reducing their integer shares modulo m;

We now argue that:

Theorem 3. The above protocol securely realizes Ftriple with statistical security
parameter λ in the presence of one active corruption when |p| = O(log m + λ).

Proof. We only give an informal argument for the security of the protocol, since
its proof is quite similar to the proof of many previous protocols in the literature
(such as [4,12,13], etc.).

We first argue for correctness of the protocol, focusing on steps 1,2 and 9:
Note that, if there is an output, the output is correct and uniform modulo m.
It is correct since, if c = ab over the integer then c = ab mod m as well. And
the values a, b, c are distributed uniformly since there is at least one honest
party (in fact, two), who will pick ai uniformly at random in Zm, therefore
a = a1 + a2 + a3 mod m will be uniform over Zm as well (the same applies of
course also to b and c).

We now describe the simulator strategy for the individual subroutines, and
then we build the overall simulator for the protocol in a bottom-up fashion. To
keep the notation simpler we assume that P1 is corrupt. This is w.l.o.g. due to
the symmetry of the protocol. To account for rushing adversaries, we always
let the adversary send their message after seeing the message output by the
simulator on behalf of the honest parties. As usual, the simulator keeps track
of the shares that all parties (honest and corrupt) are supposed to hold at all
times.

Simulator – Honest Parties Inputs: To simulate an honest party inputting
a value a the simulator follows the share procedure but replacing a with 0. The
simulator then sends a2, a3 to the adversary P1 and stores a1, a2, a3. Now the
simulator receives a′

2 (or a′
3 depending on whether we are simulating a P2 input

or a P3 input) back from the adversary and aborts if a′
2 
= a2 (as an honest party

would do).
When performing sharings modulo p, the distribution of the simulated a2, a3

are identical as in the real protocol (trivially for a2, and since a1 is random
and unknown to the adversary, a3 will be uniformly distributed in both cases).
When performing integer sharings, the distribution of the simulated a2 is trivially
identical in the real and simulated execution while a3 is statistically close. This
can be easily seen considering the distribution of a3 + a2 which is a − a1 in the
real protocol and −a1 in the simulated execution. Since a < m and a1 is uniform
between 0 and m · 2λ the distributions are statistically close with parameter λ.

Simulator – Corrupt Party Input: When simulating the input of the corrupt
party P1 the simulator receives (a1, a3) (on behalf of P2) and (a′

1, a2) on behalf
of P3. The simulator aborts if a1 
= a′

1 (like the two honest party would do).
When simulating an input in Zp the simulator reconstructs a =

∑
i ai mod p.

When simulating an integer input the simulator checks in addition that the
shares received are of the right size and then reconstructs a =

∑
i ai. Note that



824 I. Damg̊ard et al.

now |a| < 3 · 2�log m�+λ+1 which could be larger than m, but not larger than p
given our parameters.

Simulator – Multiplication: When simulating multiplications the simulator
picks random (u3, s2) (see below for the distribution) and sends them to P1.
Then the simulator receives (u1, s1) from P1. This uniquely defines the corrupt
party shares of c, namely c2 = u3 − s1 and c3 = u1 − s2. Note that the simulator
can already now compute the error δc = c−ab from the stored shares of a, b and
the received values u1, s1 i.e., δc = u1 − (a2b2 + a2b3 + a3b2 + s1). The simulator
sets the final share of c to be c1 = ab + δc − c2 − c3 and remembers (c1, c2, c3)
and δc.

When simulating multiplications in Zp the simulator picks (u3, s2) uniformly
at random, thus the view of the adversary is perfectly indistinguishable in the
real and simulated execution: this is trivial for s2, and for u3 we can see that
it will also be uniformly random as well since in the real protocol s3 is chosen
uniformly at random.

When simulating integer multiplications the simulator picks (u3, s2) uni-
formly at random in {0, . . . , 22�log B�+λ+2 − 1}, thus the view of the adversary
is statistically close in the real and simulated execution (trivially for s2, and
since in the protocol s3 is used to mask a value of magnitude at most 3B3, the
distributions are statistically close with parameter λ. Note that when simulating
integer multiplications the simulator will also abort if the received shares (u1, s1)
exceed their bounds. This means that at this point the value of |c| = |∑i ci| is
bounded by 24B22λ. As we know from the input phase that all shares are bound
by B = 2�log m�+λ+1 we get that by setting p to be e.g., larger than 100m222λ

we can ensure that even in the presence of a corrupt party the value of c will
not exceed p.

Simulator – Fake Reveal: At any point the simulator can open a sharing
(a1, a2, a3) to any value a + δ1 of its choice. To do so, the simulator sends two
identical shares (a1 + δ1) to P1 (simulating that both the honest P2 and P3 send
the same share to P1). Then, P1 sends its (possibly malicious) shares a2 + δ2
and a3 + δ3 to the simulator. Now the simulator aborts if δ2 
= 0 or if δ3 
= 0.
Note the aborting condition is exactly the same as in the real protocol, where
e.g., the honest P2 receives a2 from P1 and a′

2 from P3 and aborts if the two
values are different. Finally note that the view of the adversary is exactly the
same in the real and simulated execution.

Putting Things Together – Overall Simulator Strategy: We are now
ready to describe the overall simulation strategy. Note that all the settings in
which the simulator aborts in the previous subroutines are identical to the abort
conditions of the honest parties in the protocol and moreover are “predictable”
by the adversary (i.e., the adversary knows that sending a certain message will
make the protocol abort). The labels of the steps of the simulator refer to the
respective steps in the protocol.

0. As already described, the simulator keeps track of the shares that all parties
(honest and corrupt) are supposed to hold at all times.
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1a. (Send on behalf of P2 and P3) The simulator simulates P2 and P3 sharing
values a2, a3, b2, b3 as described above (e.g., the input are set to be 0);

1b. (Receive from P1) The simulator receives the (maliciously chosen) shares
of a1 using the procedure described above. In particular, now a1 is well
defined and bounded.

2. The simulator keeps track of the shares of a and b that all parties are
supposed to store after the addition; (note that since the shares of the
honest parties are simulated to 0 we have a = a1 and b = b1 at this point);

3. The simulator uses the simulation strategy for the multiplication protocol
as explained above. If the simulation does not abort the value of c and δc

are now well defined and bounded.
4. The simulator runs the sharing subroutine for x2, y2, r2, x3, y3, r3 (e.g., all

values are set to 0).
5. The simulator keeps track of the shares of x, y and r that all parties are

supposed to store after the addition; (at this point x, y and r are well
defined);

6. The simulator uses the simulation strategy for the multiplication protocol
as explained above. If the simulation does not abort the value of z and δz

are now well defined.
7. The simulator now runs the fake reveal subroutine and opens r to a uni-

formly random value;
8–9. The simulator keeps track of the shares of e, d that all parties are supposed

to store after the executions of the linear combination;
10a. The simulator runs the fake reveal subroutine and opens e, d to two uni-

formly random values;
10b. If the simulation did not abort so far the simulator runs the fake reveal

subroutine and opens t to rδz − δc mod p. The simulator aborts if t 
= 0
as an honest party do, but also aborts if δc 
= 0 or δz 
= 0.

11. If the simulator did not abort yet, then the simulator inputs the shares of
the multiplicative triple owned by the adversary (a2, a3, b2, b3, c2, c3) to the
ideal functionality Ftriple.

We have already argued for indistinguishability for the various subroutines
(thanks to the large masks used in the integer secret sharings). Note that when
we combine them in the overall simulator we add an extra aborting condition
between a real world execution of the protocol and a simulated execution, namely
that the simulation always aborts when the triple is incorrect (during the triple
check phase). We conclude that the view of the adversary in these two cases
are statistically close in λ thanks to the correctness check at steps 4–10: assume
that the multiplication triples are correct i.e., that z = xy mod p and c = ab
over the integers. Now, if we make sure that p is large enough such that the
shares of a,b, and c are the same over the integers and modulo p, then the
resulting t will always be 0. Note that this is guaranteed by the check, during
the sharing phase, of the magnitude of the shares chosen by the other parties.
Finally, assume that c 
= ab e.g., c = ab + δc (with δc 
= 0) and z = xy + δz.
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Now the result of the check will be t = rδz − δc mod p: Since the value
r is picked by the simulator after the values δc, δz have already been defined,
we finally have that t is equal to 0 with probability p−1 which is negligible as
desired.

5.2 Online Phase

Here we briefly sketch the online phase of our protocol i.e., the protocol resulting
by applying our compiler to Beaver’s passively protocol, which is secure against
1 active corruption. In what follows we describe the protocol explicitly i.e., we
describe directly the steps to be performed by the real parties and with no access
to helping ideal functionalities: since the online phase of Beaver’s protocol is
completely deterministic, we do not need the coin flip functionality and, since
we only have 3 parties, the broadcast functionality is easily implemented: when
Pi broadcasts to a set {Pi,Pj}, this is implemented by sending a message to
Pj and, when Pi broadcasts to a set {Pj ,Pk}, this is implemented by sending
the same message to both parties, who then echo it to each other and abort
if the two received messages are different. Finally, note that an additive secret
sharing a = a1 + a2 + a3 mod m among the virtual parties P1,P2,P3 (i.e., where
Pi knows ai) is exactly the same as a replicated secret sharing [a]m (as described
above) between the real parties P1,P2,P3, and therefore we can continue using
the notation introduced for the preprocessing phase.

Online Phase – Setup and Invariant: Let C be the arithmetic circuit that
the real parties wish to evaluate, where every input wire is associated to some
party Pi. As before, for a value x ∈ Zm we write [x]m to denote the situation
where Pi knows two shares xi+1, xi−1 such that

∑
i xi = x.

Online Phase – Input Gates: Remember that in our general compiler the
secret sharing happened “outside” of the passive MPC protocol and then we
modified the circuit to be evaluated by adding a layer of linear operations to
reconstruct the secret sharings of the inputs. This is not necessary in the special
case of Beaver’s protocol, since after a single sharing we already have the inputs
in the desired, replicated secret shared format. Therefore, for every input wire in
C associated to Pi with input x ∈ Zm, we let Pi pick random shares (x1, x2, x3) ∈
Z
3
m s.t.,

∑
i xi = x, and sends xi to Pi−1 and Pi+1. Finally Pi−1 and Pi+1 echo

xi to each other and abort if the value they received in this echo phase differs
from what they received from Pi.

Online Phase – Output Gates/Open Subroutine: Whenever the parties
need to be able to reveal the content of a shared value [z]m, we let Pi sends its
shares zi+1 and zi−1 to Pi+1 and Pi−1 respectively. When Pi receives share zi

from Pi+1 and share z′
i from Pi−1, Pi aborts if zi 
= z′

i or outputs z = z1+z2+z3
otherwise. During the circuit evaluation we open wires to output the result of
the computation and as a subroutine during the evaluation of multiplication
gates.
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Online Phase – Linear Gates: Linear gates (binary additions, unary additions
by constant and multiplication by constant) can be locally implemented by share
manipulations in the same way as for the preprocessing phase.

Online Phase – Multiplication Gates: Binary multiplication of two shared
values [x]m, [y]m is performed by finding an unused preprocessed multiplication
triple [a]m, [b]m, [c]m and then running Beaver’s protocol, i.e.:

1. Open e = [a]m + [x]m
2. Open d = [b]m + [y]m
3. Locally compute [z]m = [c]m + e · [y]m + d · [x]m − ed
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