
Cryptanalyses of Branching Program
Obfuscations over GGH13 Multilinear

Map from the NTRU Problem

Jung Hee Cheon, Minki Hhan(B), Jiseung Kim, and Changmin Lee

Seoul National University, Seoul, Republic of Korea
{jhcheon,hhan ,tory154,cocomi11}@snu.ac.kr

Abstract. In this paper, we propose cryptanalyses of all existing indis-
tinguishability obfuscation (iO) candidates based on branching programs
(BP) over GGH13 multilinear map for all recommended parameter set-
tings. To achieve this, we introduce two novel techniques, program con-
verting using NTRU-solver and matrix zeroizing, which can be applied to
a wide range of obfuscation constructions and BPs compared to previous
attacks. We then prove that, for the suggested parameters, the existing
general-purpose BP obfuscations over GGH13 do not have the desired
security. Especially, the first candidate indistinguishability obfuscation
with input-unpartitionable branching programs (FOCS 2013) and the
recent BP obfuscation (TCC 2016) are not secure against our attack
when they use the GGH13 with recommended parameters. Previously,
there has been no known polynomial time attack for these cases.

Our attack shows that the lattice dimension of GGH13 must be set
much larger than previous thought in order to maintain security. More
precisely, the underlying lattice dimension of GGH13 should be set to
n = Θ̃(κ2λ) to rule out attacks from the subfield algorithm for NTRU
where κ is the multilinearity level and λ the security parameter.

Keywords: Obfuscations · Multilinear maps
Graded encoding schemes · NTRU

1 Introduction

Constructing a general-purpose program obfuscation has been a long stand-
ing coveted open problem [8,9] in spite of their fruitful applications. At FOCS
2013, Garg et al. suggested the first plausible candidate general-purpose indis-
tinguishability obfuscation (GGHRSW) [23] using branching program (BP) rep-
resentation of functions [10]. This first candidate of iO has ignited the various
subsequent studies [3,5–7,15,24,30,32,34] on obfuscations, all of which stand on
the cryptographic multilinear maps.

To date, there are three plausible candidates of multilinear map; the first is
due to Garg, Gentry, and Halevi [22] (GGH13), the second is due to Coron,
Lepoint, and Tibouchi [19] and the last is due to Gentry, Gorbunov, and
c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 184–210, 2018.
https://doi.org/10.1007/978-3-319-96878-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_7&domain=pdf

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 185

Halevi [25]. The security of three candidates are not well clarifed, whereas some
works [3,7,15,30,34] claim the security under the idealized model, so-called the
generic multilinear map model.

Recently several works try to overcome this gap [6,24,29]. In particular, Garg
et al. proved the security of the slightly modified first candidate iO construction
(GMMSSZ) under the weak multilinear map model of GGH13, which captures
all existing polynomial time attacks on BP obfuscations over GGH13 multilinear
map [24]. Despite the provable security under these models, the practical security
of obfuscations over GGH13 is still in dubious nature.

Direct attack to GGH13. As a direct method of analyzing obfuscations over
GGH13, we may consider attacks on the GGH13 encoding scheme. The latent
hardness problems of GGH13 are the (overstretched) NTRU problem and the
short generator of principal ideal generator problem (SPIP).

The subfield attacks, proposed by Albrecht et al. and Cheon et al. indepen-
dently [1,18], are the most notable algorithms to solve the NTRU problem. These
attacks shows that the underlying NTRU problem of GGH13-based obfuscation
is solved in polynomial time whenever the multilinear level κ is larger than the
security parameter λ. By combining this with the algorithms to solve SPIP [12–
14,20], GGH13 is broken in classical subexponential time on security parameter
λ for the instantiations in [2,27] or quantum polynomial time. This work shows
that the parameters of GGH13 should be set to prevent either the algorithms
for NTRU or PIP.1

Attacks on BP Obfuscations over GGH13. For obfuscations over GGH13
multilinear map, several cryptanalyses have also been suggested. The annihila-
tion attack introduced by Miles et al. [31] showed that some constructions of
single/dual input BP obfuscations [3,6,7,30] do not have the desired security
when they are used for general-purpose and implemented with GGH13. The
authors presented a very simple example of BPs which are threatened by anni-
hilation attacks. Soon after, Apon et al. [4] extended the range of annihilation
attacks to BPs generated by Barrington’s theorem [10] which is the fundamental
method to transform NC1 circuits into bounded width BPs.

Chen et al. [16] presented another attack on BP obfuscation over GGH13
multilinear map. They showed that there exist two functionally equivalent pro-
grams with a special property called input-partitionable, and their obfuscated
programs by GGHRSW can be efficiently distinguished.

Limitations of Previous Works. Despite the diverse attacks on BP obfusca-
tions over GGH13 multilinear map, GGHRSW remains secure against all known
PPT attack when it only takes input-unpartitionable BPs as input, such as BPs
generated by Barrington’s theorem. Meanwhile, there is no known polynomial

1 Indeed, the parameters of original paper [22] are already set to be n = Θ̃(κλ2) so
that known classical algorithms for PIP require exponential time for λ. On the other
hands, the improved parameters [2,27] allow the subexponential time attacks.

186 J. H. Cheon et al.

time attack for multi-input branching program obfuscations including GMMSSZ.
We also remark that the direct approach [1], with the current best algorithm to
solve SPIP [13,20], has the classical exponential running time with respect to
security parameter λ when the dimension n of the base number field satisfies
n = Ω(λ2).

Our Contribution. We present distinguishing attacks on candidates BP iO
over GGH13 multilinear map based on the algorithm to solve the NTRU prob-
lem. With the novel two techniques, program converting and matrix zeroizing
attack, we show that existing general-purpose BP obfuscations cannot achieve
the desired security when the obfuscations use GGH13 with proposed parame-
ters in [2,22,27]. In other words, there are two functionally equivalent BPs with
same length such that their obfuscations obtained by an existing BP obfusca-
tions over GGH13 can be distinguished in polynomial time for the suggested
parameters.

Our attack is applicable to wide range of obfuscations and BPs compared to
the previous attacks. In particular, we show that multi-input BP obfuscations
such as GMMSSZ construction are insecure in the NTRU-solvable parameter
regime. Further, we show that the first candidate indistinguishability obfusca-
tion GGHRSW based on GGH13 with current parameters also does not have the
desired security even if it only obfuscates input-unpartitionable BPs including
branching programs generated by Barrington’s theorem. Although a new prop-
erty of BPs called linear relationally inequivalence is exploited in our attack, we
show that various pairs of BPs satisfy this property.

As a result, we show that the BP obfuscations based on GGH13 multilinear
map with suggested parameters are broken using the algorithm for NTRU solely.
Therefore the underlying lattice dimension n of GGH13 should be set to n =
Θ̃(κ2λ) to maintain 2λ security of obfuscation schemes. This implies the iO based
on GGH13 is even much inefficient than the previous results [1,28].

1.1 Technical Overview

Here we briefly show how our attack is applied to simplified GGHRSW.

Simplified GGHRSW Obfuscation. Let P = {Mi,b ∈ Z
d×d}b∈{0,1},1≤i≤� be

a set of matrices corresponding to a single input BP such that

P (x) :=

{
0 if

∏�
i=1Mi,xi

= Id

1 if
∏�

i=1Mi,xi
�= Id,

where xi is the i-th bit of x. The obfuscator randomizes the given BP over several
steps.

1. Sample random and independent scalars {αi,b, α
′
i,b}b∈{0,1},1≤i≤� such that∏�

i=1 αi,xi
=
∏�

i=1 α′
i,xi

for all x ∈ {0, 1}�.2

2 In fact αi,b = α′
i,b should holds in this simplified setting, but we do not use this

equality to give the idea of our attack.

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 187

2. Sample bookend vectors {s, t, s′, t′} such that s · t = s′ · t′.
3. Sample invertible matrices {Ki,K

′
i ∈ Z

d×d}0≤i≤� and set

R0 = s · K−1
0 , R′

0 = s′ · K ′−1
0

Ri,b = αi,b · Ki−1 · Mi,b · K−1
i , R′

i,b = α′
i,b · K ′

i−1 · Id · K ′−1
i

R�+1 = K� · t, R′
�+1 = K ′

� · t′.

For the sake of simplicity, we write R0,b, R�+1,b, R′
0,b, and R′

�+1,b to denote R0,
R�+1, R′

0, and R′
�+1, respectively. The randomized BP can then maintain the

same functionality as the following evaluation, where x0, x�+1 are 0.

P (x) =

{
0 if

∏�+1
i=0Ri,xi

−∏�+1
i=0R

′
i,xi

= 0
1 if

∏�+1
i=0Ri,xi

−∏�+1
i=0R

′
i,xi

�= 0.

As a final step, each entry of the Ri and R′
i is encoded through the GGH13

multilinear map. Let R = Z[X]/〈Xn + 1〉. The plaintext space and encoding
space of GGH13 multilinear map is specified by Rg = R/〈g〉 with some small
element g ∈ R and Rq = R/〈q〉 with some large integer q ∈ Z, respectively. In
GGH13 multilinear map, a random and invertible element z ∈ Rq is sampled.
Then the encoding of m is of the form enc(m) = [(r · g + m)/z]q for some small
random element r ∈ R. The smallness of g and r implies that the size of the
numerator is quite smaller than q. We write enc(Ri,b) to denote the matrix whose
entries are encoding of entries of Ri,b.

Then, in the case of P (x) = 0, evaluation of the encoded BP over input x
can be computed as follows:

�+1∏
i=0

enc(Ri,xi
) −

�+1∏
i=0

enc(R′
i,xi

) =
[e · g

z�+2

]
q

where the term e is the small noise element of R. If it is evaluated for another
input x, the numerator of the evaluated value cannot be a multiple of g.

In order to check whether the numerator of the evaluation value of the
encoded BP is a zero or not, the GGH13 multilinear map provide a zerotest-
ing parameter pzt = [(h · z�+2)/g]q for some element h ∈ R of size ≈ √

q. More
precisely, when the pzt is multiplied by the evaluated value, it is of the form h ·r′

and its size is much smaller than q if the numerator is a multiple of g. Otherwise
it is a large value. Hence, one can publicly test that whether the plaintext of the
encoding is zero or not and an encoded BP give the same functionality with the
original BP by employing the zerotesting parameter pzt.

In summary, the GGHRSW obfuscator outputs the following set as an obfus-
cated BP.

{enc(Ri,b), enc(R′
i,b),pzt}

Goal of Cryptanalysis on Simplified GGHRSW Obfuscation. The sim-
plified GGHRSW obfuscation given above is called indistinguishability obfus-
cation if the following statement holds: For every two BPs P 0 = {M0

i,b}, and

188 J. H. Cheon et al.

P 1 = {M1
i,b} with the same size and the same functionality and randomly cho-

sen c ∈ {0, 1}, any PPT adversary cannot recover c from the given obfuscated
program {enc(Rc

i,b), enc(R
′c
i,b),pzt}.

In other words, our purpose of the cryptanalysis is to recover such c for
appropriately given P 0, P 1 and its obfuscation.

Program Converting Technique. In the first step, we remove the modulus q
using the algorithm for NTRU. The (1, 1) and (1, 2) components of the enc(R1,1)
are of the form [(r1,1 · g + m1,1)/z]q and [(r1,2 · g + m1,2)/z]q, respectively. The
ratio [(r1,1 · g + m1,1)/(r1,2 · g + m1,2)]q of two encodings can be understood as
an instance of the NTRU problem.

By solving the NTRU problem, we can obtain multiples of the denominator
and numerator

β · (r1,1 · g + m1,1, r1,2 · g + m1,2) ∈ R2

for some small element β ∈ R. Further, dividing β · (r1,1 · g + m1,1) by a
[(r1,1 · g + m1,1)/z]q, we can compute [β · z]q. By multiplying this value to all
entries of enc(Ri,b) and enc(R′

i,b), we replace 1/z with a small element β. The
obtained entries are of the form β · (rj,k · g + mj,k), which can be understood as
an element defined in R, not Rq due to its small size. We denote these new BP
matrices with entries in R by {Di,b} and {D′

i,b}, respectively.
Next we consider an input x such that P (x) = 0.3 The corresponding com-

putation of matrices R is zero, thus the following equation holds over R for such
input.

�+1∏
i=0

Di,xi
−

�+1∏
i=0

D′
i,xi

= e · g · β�+2

Hence, the term is a multiple of g. Using the same procedure for other zeros of
P , one can recover several multiples of g and then we can recover a basis of ideal
〈g〉 using lattice algorithms.

Then we can do a plain-like procedure using the above results. More precisely,
the following equations hold.

EvalD (x) :=
�+1∏
i=0

Di,xi
=

�+1∏
i=0

αi,xi
· s ·

�∏
i=1

M c
i,xi

· t (mod g)

Eval′D (x) :=
�+1∏
i=0

D′
i,xi

=
�+1∏
i=0

α′
i,xi

· s′ ·
�∏

i=1

Id · t′ (mod g)

Removing Scalars. In the above step, we removed the modulus q using the
solutions of the NTRU problem and obtained matrices {Di,b,D

′
i,b} and a basis

of ideal 〈g〉. We now remove the effects of scalars α. EvalD (x) and Eval′D (x)

3 Because of this step, our attack cannot be applied to BP obfusaction for evasive
functions.

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 189

share the same scalar
∏�+1

i=0 αi,xi
=
∏�+1

i=0 α′
i,xi

due to its definition. Thus, we can
compute

EvalD (x)/Eval′D (x) = 1/(s′ · t′) ·
(

s ·
�∏

i=1

M c
i,xi

· t

)
(mod g).

We note that these values EvalD (x)/Eval′D (x) all share the same scalar
1/(s′ · t′) (mod g).

Matrix Zeroizing Attack. At last we introduce the matrix zeroizing attack.
We denote EvalM 0(x) and ẼvalD (x) as

∏�
i=1 M0

i,xi
and EvalD (x)/Eval′D (x),

respectively.
Then, for several EvalM 0(xj) for 1 ≤ j ≤ τ , we can find a vector q =

(q1, · · · , qτ) such that
∑τ

j=1 qj · EvalM 0(xj) = 0d, where 0d is a zero matrix. If
c = 1 so that the obfuscated BP is derived from P 0, the following equation also
holds.

τ∑
j=1

cj · ẼvalD (xj) = 0d (mod g)

Otherwise, it would not be zero (mod g).
As a result, we can distinguish two obfuscated program efficiently when we

know corresponding branching programs. We remark that the matrix zeroizing
attack and removing scalars step are slightly different for the other BP obfusca-
tions.

Organization. In Sect. 2, we introduce the indistinguishability obfuscation,
matrix branching program and GGH13 multilinear map. In Sect. 3, we show
main results of our cryptanalyses on BP obfuscations over GGH13 multilinear
map. We describe the attackable BP obfuscation Model over GGH13 throughout
the Sect. 4. In addition, we present the algorithm called program converting
technique in Sect. 5. We last propose the matrix zeroizing attack in Sect. 6.

2 Preliminaries

Notations. The set {1, · · · , n} is denoted by [n] for a positive integer n. The set
of integers modulo p is denoted by Zp := Z/pZ. All elements in Zp are considered
as integers in (−p/2, p/2]. We use the bold letters to denote matrices, vectors
and elements of ring. For a = a0 + · · · + an−1 · Xn−1 ∈ R = Z[X]/〈Xn + 1〉, the
size of a means the Euclidean norm of the coefficient vector (a0, · · · , an−1). We
denote (j, k)-th entry of matrix M by M [j, k].

2.1 Matrix Branching Program

A branching program consists of several matrix chains and input functions with
indices of input bit. To evaluate a matrix branching program, we multiply all
matrices and output 0 or 1 depending on whether the product of the matrices is
the same as a given matrix or not. We briefly review matrix branching programs.

190 J. H. Cheon et al.

Definition 1 (w-ary Matrix Branching Programs). Let A0 be a d1 × d�+1

matrix and w, �, d, and N be natural numbers. A w-ary matrix branching
program BP with length � over N -bit inputs consists of the following data;
a set of input functions {inpμ : [�] → [N]}μ∈[w], a set of matrices {Mi,b ∈
Z

di×di+1}i∈[�],b∈{0,1}w . It has a domain for evaluations {0, 1}N , and evaluation
of BP at x = (xv)v∈[w] is computed by

BP (x) = BP(inpμ)μ∈[w],M (x) =

⎧⎨
⎩

0 if
∏�

i=1Mi,(xμ
inpμ(i))μ∈[w]

= A0

1 if
∏�

i=1Mi,(xμ
inpμ(i))μ∈[w]

�= A0

.

When w is set to 1 and ≥ 2, the matrix branching program is called a single-
input and a multi-input matrix branching program, respectively. Throughout
this paper, a matrix A0 is used as the zero matrix 0 or the identity matrix Id if
di = d for all i. Moreover, we simplify the notation (xμ

inpμ(i)
)μ∈[w] as xinp(i).

Barrington proved all boolean functions can be expressed in the form of
matrix branching program with bounded width [10]. The first candidate for
iO [23] and following obfuscations [7,15,30,32] exploit Barrington’s theorem to
transform circuits into BPs.

We also note that there are other methods to convert circuits into branching
programs. Ben-Or and Cleve proved that the similar result to Barrington’s the-
orem for arithmetic circuits [11]. Follow-up studies such as [3,6] suggest more
efficient methods for transformation. Their methods bypass the Barrington’s the-
orem and make a circuit into a branching program directly. However, they still
preserve the length of program, in other words, the length of branching program
is equal to or larger than the size of circuit (number of gates).

We assume a mild condition on the branching programs: The length of
branching program is Ω(N) for the number of input bits N . This is plausible
since all input bits may affect the program, and the existing methods give much
longer lengths. On the other hand, we do not restrict that the width/properties
of the matrices in branching programs and the input function (such as single or
dual input).

2.2 Indistinguishability Obfuscation

Definition 2 (Indistinguishability Obfuscation (iO)). A PPT algorithm
iO is an indistinguishability obfuscation for a circuit class C if the following
conditions are satisfied:

– For all security parameters λ ∈ N, for all circuits C ∈ C, for all inputs x, the
following probability holds:

Pr [C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

– For any PPT distinguisher D, there exists a negligible function α satisfying
the following statement: For all security parameters λ ∈ N and all pairs of
circuits C0, C1 ∈ C, C0(x) = C1(x) for all inputs x implies

|Pr [D(iO(λ,C0)) = 1] − Pr [D(iO(λ,C1)) = 1] | ≤ α(λ).

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 191

Hereafter, we denote iO(P) by an obfuscated program or obfuscation of a
program, or a branching program P .

2.3 GGH13 Multilinear Map

Garg et al. suggest a candidate of multilinear map based on ideal lattice [22]. It
is used to realize the indistinguishable obfuscation [23]. In this section, we briefly
describe the GGH13 multilinear map. For more details, we recommend readers to
refer [22]. Any parameters of multilinear maps are induced by the multilinearity
parameter κ and the security parameters λ. For the sake of simplicity, we denote
the multilinear maps which has the previous mentioned parameter as (κ, λ)-GGH
multilinear map.

The multilinear map is sometimes called the graded encoding scheme. i.e.,
All encodings of message have corresponding levels. Let g be a secret element in
R = Z[X]/〈Xn +1〉 and q a large integer. Then, the message space and encoding
space are set by M = R/〈g〉 and Rq = R/〈q〉, respectively. In order to represent
a level of encodings, the set of secret invertible elements L = {zi}1≤i≤κ ⊂ Rq is
chosen. We call a subset of L level set and elements in L level parameters.

For a small message m ∈ M, level-L(⊂ L) encoding of m is:

encL(m) =
[
r · g + m∏

i∈L zi

]
q

,

where r ∈ R is a small random element. We call encL(m), enc{zi}(m) a top-level
and level 1 encoding of m, respectively. In addition, for a matrix M , we denote
a matrix whose entries are level-L encodings of corresponding entries of M by
encL(M).

The arithmetic operations between encodings are defined as follows:

encL(m1) + encL(m2) = encL(m1 + m2),
encL1(m1) · encL2(m2) = encL1�L2(m1 · m2).

Additionally, the (κ, λ)-GGH scheme provides a zerotesting parameter which
can be used to determine whether a hidden message of a top-level encoding is
zero or not. The zerotesting parameter pzt is of the form:

pzt =
[
h ·
∏

i∈L
zi

g

]
q

,

where h is an O(
√

q)-size element of R. Given a top-level encoding of zero
encL(0) = [r · g/

∏
i∈L

zi]q, a zerotesting value is:

[pzt · encL(0)]q =
[
h ·
∏

i∈L
zi

g
· r · g∏

i∈L
zi

]
q

= [h · r]q = h · r ∈ R.

We remark that a zerotesting value for a top-level encoding of nonzero gives an
element of the form [h · (r + m · g−1)]q, which is not small by Lemma 4 in [22].
Thus one can decide whether a message is zero or not by the zerotesting value.

192 J. H. Cheon et al.

Several papers [2,22,27] proposed the parameters of (κ, λ)-GGH13 multi-
linear map. Here we introduce the minimum conditions that satisfy the three
works.

– log q = Θ̃(κ · log n)
– n = Θ̃(κε · λδ) for constants δ, ε
– M = Õ(nΘ(1))

Here M is the size bound of numerators r · g + m of level 1 encodings.4 We
note that the suggested parameters in [2,27] choose δ = ε = 1, which enables
the subexponential attack with respect to λ for small κ [1,13]. When δ ≥ 2, all
known direct attacks on GGH13 multilinear map require exponential time for
classical adversary.

3 Main Theorem

In this section, we present the results from our attacks. We denote the obfus-
cation within our attack range as the attackable obfuscation, which is formally
defined by the attackable model in the next section. The attackable obfuscation
model encompasses all suggested BP obfuscations based on GGH13 multilinear
map.

Proposition 1 (Universality of the Attackable Model). BP obfuscations
[3,6,7,23,24,30,32] satisfy all the constraints of the attackable model.5

As a result, we obtain the following main theorem.

Theorem 1. Let O be an attackable obfuscator, κ, λ be the multilinearity level
and the security parameter of underlying GGH13 multilinear map. Suppose that
the modulus q, dimension n, size bound M of numerators of level 1 encoding of
underlying GGH13 satisfy log q = Θ̃(κ·log n),M = Õ(nΘ(1)). Then the following
propositions hold:

1. For n = Θ̃(κ ·λδ) for a constant δ as in [2,22,27], there exist two functionally
equivalent branching programs with Ω(λδ)-length such that their obfuscated
programs by O can be distinguished with high probability in polynomial time
with respect to λ.

2. Moreover, for new parameter constraints n = Θ̃(κε ·λδ) for constants ε < 2, δ,
there exist two functionally equivalent branching programs with Ω(λδ/(2−e))-
length such that their obfuscated programs by O can be distinguished with high
probability in polynomial time with respect to λ.

4 The coefficients of random values are usually sampled from the Gaussian distribu-
tion. This do not hurt the result of this paper because the coefficients are bounded
with overwhelming probability.

5 We deal with easier model in the main body for simplicity. We can extend the model
to capture the construction in [15]. This extended model is placed in Appendix A.

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 193

The main theorem is proven by combining converting program technique and
matrix zeroizing attack which are described in Sects. 5 and 6. The bottleneck of
the attack is the algorithm for NTRU, which is exploited in the middle step of
converting technique; the other process can be done in polynomial time, while
the time complexity to solve the NTRU problem relies on the parameters. The
detailed analysis for the time complexity will be discussed in Sect. 5.3.

4 Attackable BP Obfuscations

In this section, we present a new BP obfuscation model which is attackable by
our attack, the attackable model. We call a BP obfuscation captured by our model
an attackable BP obfuscation.

The attackable model is composed of two steps; for a given BP, randomize
BP, and encode randomized BPs by GGH13 multilinear map. More precisely,
for a given branching program BP of the form

P =
{
Mi,b ∈ Z

di×di+1
}

i∈[�],b∈{0,1}w ,

we randomize P by several methods satisfying Definition 3 which will be
described later. And then we encode each entries of randomized matrices and
outputs the obfuscated program as the set

O(P) =
{

S̃, S̃′ ∈ Rd0×(d1+e1)
q

}
∪
{

{M̃i,b ,M̃
′
i,b ∈ R(di+ei)×(di+1+ei+1)

q }i∈[�],b∈{0,1}w ,
}

∪
{

T̃ , T̃ ′ ∈ R(d�+1+e�+1)×d�+2
q

}
and the public parameters of GGH13 multilinear map. S,T denote bookend
matrices, and matrices with apostrophe mean the matrices of dummy program.
In the attackable model, we specify the following property instead of establishing
how to evaluate the program exactly. To evaluate the input value, a new function
Eval

˜M
: {0, 1}N → Rd0×d�+2

q is computed as follows:

Eval
˜M

(x) = S̃ ·
�∏

i=1

M̃i,x inp(i) · T̃ − S̃′ ·
�∏

i=1

M̃ ′
i,x inp(i)

· T̃ ′ ∈ Rd0×d�+2
q .

Proposition 2 (Evaluation of Obfuscation). For a program P and program
O(P) obfuscated by the attackable model, the evaluation of O(P) at a root x
of P yields a top-level GGH13 encoding of zero in specific entry of the matrix
Eval

˜M
(x). In other words, there are two integers u, v such that Eval

˜M
(x)[u, v]

is an encoding of zero at level L for every input x satisfying P (x) = 0.

In the rest of this section, we explain specified descriptions of the attackable
model in Sects. 4.1 and 4.2, and present a constraint of BPs to execute our attack
in Sect. 4.3.

194 J. H. Cheon et al.

4.1 Randomization for Attackable Obfuscation Model

We introduce the conditions for BP randomization of attackable obfuscation
model. These conditions for randomization covers all of the BP randomization
methods suggested in the first candidate iO [23] and its subsequent works [3,6,7,
24,30,32]. In other words, higher dimension embedding, scalar bundling, Kilian
randomization, bookend matrices (vectors), and dummy programs are captured
by the attackable conditions.

Definition 3 (Attackable Conditions for Randomization). For a branch-
ing program P =

{
Mi,b ∈ Z

di×di+1
}

i∈[�],b∈{0,1}w , the attackable randomized
branching program is the set

Rand(P) =
{

RS ,R′
S ∈ Z

d0×(d1+e1)
}

∪
{

{Ri,b ,R
′
i,b ∈ Z

(di+ei)×(di+1+ei+1)}i∈[�],b∈{0,1}w ,
}

∪
{

RT ,R′
T ∈ Z

(d�+1+e�+1)×d�+2

}
satisfying the following properties, where d0, d�+2, ei’s are integers.

1. There exist matrices S0,S
′
0 ∈ Z

d0×d1 ,T0,T
′
0 ∈ Z

d�×d�+1 and scalars αS ,α′
S ,

αT ,α′
T , {αi,b ,α

′
i,b}i∈[�],b∈{0,1}w such that the following equations hold for all

{bi ∈ {0, 1}w}i∈[�]:

RS ·
�∏

i=1

Ri,bi
· RT = αS ·

�∏
i=1

αi,bi
· αT ·

(
S0 ·

�∏
i=1

Mi,bi
· T0

)
,

R′
S ·

�∏
i=1

R′
i,bi

· R′
T = α′

S ·
�∏

i=1

α′
i,bi

· α′
T ·
(

S′
0 ·

�∏
i=1

M ′
i,bi

· T ′
0

)
.

2. The evaluation of randomized program is done by checking whether the fixed
entries of RP (x) := RS ·∏�

i=1 Ri,x inp(i) · RT − R′
S ·∏�

i=1 R′
i,x inp(i)

· R′
T are

zero or not. Especially, there are two integers u, v such that P (x) = 0 ⇒
RP (x)[u, v] = 0.

Matrices with apostrophe are called dummy matrices, RS ,R′
S ,RT ,R′

T bookend
matrices (vectors), and α’s bundling scalars. When some elements of Rand(P)
(or bundling scalars) are trivial elements, we say that there is no such element.

4.2 Encoding by Multilinear Map

After the randomization, we encode the randomized matrix branching program
by GGH13 multilinear map. We stress that we do not encode dummy/bookend
matrices if there are no dummy/bookends, respectively.

For each randomized matrices, Ri,b ,R
′
i,b and randomized bookend matrices

RS ,R′
S ,RT ,R′

T , we obtain the encoded matrices encLi,b
(Ri,b) whose entries

are encoding of corresponding entries of randomized matrix Ri,b . For brevity we

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 195

write M̃i,b to denote encLi,b
(Ri,b), and the other matrices M̃ ′

i,b , S̃, S̃′, T̃ , T̃ ′

are defined in similar manner.
Two conditions should hold in the attackable model

1. the evaluation of valid input is top-level, in other words, for all input x,(∪�
i=1Li,x inp(i)

) ∪ LS ∪ LT = L where L denotes top-level set,
2. the sizes of set L’s are all similar, that is, there is a constant C such that

|Li,b |/|Lj,b′ | ≤ C for all i, j, b, b′ and similar inequalities hold for LS , LT .

In practice, the level L’s is determined by the straddling set system introduced
in [7,30], and these constructions satisfy our conditions. Using the condition
1 and Definition 3, Proposition 2 can be easily verified. We also note that the
condition 2 implies � = Θ(κ), where κ is the level of underlying multilinear map.

4.3 Linear Relationally Inequivalent Branching Programs

At last, we explain the condition, linear relationally inequivalence, for branching
programs of attackable BP obfuscation. This condition is used at the last section,
but we note that there are several linear relationally inequivalence BPs as stated
in Proposition 3.

To define the linear relationally inequivalence, we consider evaluations of
invalid inputs of branching program and denote

∏�
i=1 Mi,bi

by M(b) for b =
(b1, · · · , b�). We define linear relations of two BPs and the linear relationally
inequivalence of BPs as

Definition 4 (Linear Relations of Branching Program). For a given
branching program

PM =
{
Mi,b ∈ Z

di×di+1
}

i∈[�],b∈{0,1}w ,

the set of linear relations of PM is

LM :=

⎧⎨
⎩(qb)b∈{0,1}w×� :

∑
b∈{0,1}w×�

qb · M(b) = 0d1×d�+1

⎫⎬
⎭

Definition 5 (Linear Relationally Inequivalence). We say that two
branching programs PM and PN with the same length are linear relationally
inequivalent if LM �= LN .

The set of linear relations of a given BP is easily computed by computing the
kernel, considering BP matrices as vectors. It is clear that LM is a lattice. We
note that the set of linear relations of BP is not determined by the functionality
of BP, and indeed it seems that they are irrelevant.

Further, one can observe that if PM , PN are linear relationally inequivalent
BPs, then so do two extended BPs P ′

M , P ′
N which are obtained by concatenating

some other (functionally equivalent) BPs on the right (or left) of PM , PN . There-
fore we can show that there exist arbitrary large two functionally equivalent BPs
which are linear relationally inequivalent.

We conclude this section by presenting a proposition that shows concrete
examples of linear relationally inequivalent BPs, which are placed in AppendixC.

196 J. H. Cheon et al.

Proposition 3. There are two functionally equivalent, but linear relationally
inequivalent branching programs. Especially, there are examples satisfying the
linear relationally inequivalence which are

(1) generated by Barrington’s theorem and input-unpartitionable or
(2) from non-deterministic finite automata and read-once, in other words, inp

is a bijection.

5 Program Converting Technique

In this section, we describe the program converting technique, which remove the
hindrance of modulus q and g. We first define new notion Y program (of P) if
all entries of branching program matrices corresponding a program P are in a
space Y while preserving many properties. For example, the obfuscated program
O(P) is Rq program. Suppose that the obfuscated program O(P) of program P
is given.

We will convert given obfuscated program O(P) into R and R/〈g〉 program
using the algorithm to solve the NTRU problem, especially subfield attacks [1,18]
which solves the problem with large modulus q.

Proposition 4 ([1,17,18,26]). Let q be a large integer, n a power of two, M
a constant much smaller than q, R = Z[X]/〈Xn + 1〉 and Rq = R/qR. For
a given [f1/f2]q ∈ Rq for f1,f2 ∈ R with size smaller than M , there is an
algorithm to compute (c ·f2, c ·f1) ∈ R2 such that sizes of c, c ·f1 and c ·f2 are
much smaller than q in time 2O(β) ·poly(n) for a constant β satisfying β/ log β =
Θ(n log M/ log2 q).

We note that the similar results hold for other non-cyclotomic ring [17,26] or for
f1,f2 from certain distribution [1]. Throughout in this paper, we only consider
the bounded coefficient f1f2 in cyclotomic ring for brevity.

For given obfuscated program in Rq, we first make the NTRU instances and
solve the problem, and then convert to R program by some computations on
obfuscated matrices. This procedure replaces the level parameter zi with a small
element ci. The R program preserves same functionality with the Rq program.
Subsequently, we convert this R program to R/〈g〉 program by recovering the
ideal 〈g〉.

5.1 Converting to R Program

In order to remove the modulus q, we employ the algorithm for solving NTRU
problem. Let M̃i,b be the obfuscated matrix of Ri,b . Then, each (j, k)-th entries
of obfuscated matrix M̃i,b is of the form

dj,k,b =
[
rj,k,b · g + aj,k,b

zi

]
q

,

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 197

where aj,k,b is the (j, k)-th entry of the matrix Ri,b and rj,k,b ∈ R are ran-
dom small elements. Consider an element v = [d1,1,0/d1,2,0]q = [(r1,1,0 · g +
a1,1,0)/(r1,2,0 · g +a1,2,0)]q. Then, v is the instance of the NTRU problem since
the size of denominator and numerator of v is much smaller than q in the param-
eter setup of GGH13 multilinear map.

Applying Proposition 4 to an instance v, one can find a pair (ci · (r1,1,0 · g +
a1,1,0), ci · (r1,2,0 · g + a1,2,0)) ∈ R2 with relatively small ci ∈ R. Further, for
any element dj,k,b ∈ M̃i,b , we can remove the modulus q by computing

ci · (r1,1,0 · g + a1,1,0) · [dj,k,b/d1,1,0]q = ci · (rj,k,0 · g + aj,k,0) ∈ R

because of the small size of ci. Consequently, one can obtain a new matrix Di,b

over R whose (j, k)-th entry is ci · (rj,k,0 · g + aj,k,0).
Similarly, a new dummy matrix D′

i,b over R can be obtained because M̃ ′
i,b

shares the level parameter zi with M̃i,b by multiplying ci · (rj,k,0 · g + aj,k,0)
to [d′

j,k,b/d1,1,0]q where d′
j,k,b is a (j, k)-th entry of S̃′

i,b . We easily observe that
2 · 2w matrices Di,b and D′

i,b share the parameter ci.

For all matrices M̃i,b and M̃ ′
i,b with i ∈ [�] and b ∈ {0, 1}w, we can obtain

new matrices Di,b and D′
i,b over R. In the case of bookend matrices S̃ and

T̃ , they are converted into matrices over R with small constants cS and cT ,
respectively. Note that this step runs in polynomial time if κ is large [1,17,18,26].
Detailed analysis of this part is discussed in Sect. 5.3.

Therefore, we can convert Rq-program O(P) into a new program, R-program
of P :

R(P) = {DS ,DT ,D′
S ,D′

T , {Di,b ,D
′
i,b}i∈[�],b∈{0,1}w}.

Note that the matrix Di,b of R(P) is of the form ci · Ri,b (mod 〈g〉) in R/〈g〉.
Dummy and bookend matrices satisfies similar relations. We denote ci · αi,b

and ci · α′
i,b by ρi,b , ρ′

i,b for simplicity. The properties of Definition 3 is natu-
rally extended to the following. The Proposition 5 means an evaluation of R(P)
preserves the functionality up to constant on the valid input x.

Proposition 5 (Evaluation of R and R/〈g〉 Branching Program). For a
R program given in this section, the following propositions holds:

1. The higher dimension embedding matrices U ’s are eliminated in the product
of randomized matrix branching program, that is, there are matrices S0,S

′
0 ∈

Z
d0×d1 ,T0,T

′
0 ∈ Z

d�+1×d�+2 such that the following equations hold for all input
x:

DS ·
�∏

i=1

Di,bi
· DT = ρS ·

�∏
i=1

ρi,bi
· ρT ·

(
S0 ·

�∏
i=1

Mi,bi
· T0

)
(mod 〈g〉),

D′
S ·

�∏
i=1

D′
i,bi

· D′
T = ρ′

S ·
�∏

i=1

ρ′
i,bi

· ρ′
T ·
(

S′
0 ·

�∏
i=1

M ′
i,bi

· T ′
0

)
(mod 〈g〉).

198 J. H. Cheon et al.

2. The evaluation of R program is done by checking whether the fixed entries of
EvalD (x) := DS ·∏�

i=1 Di,x inp(i) · DT − D′
S ·∏�

i=1 D′
i,x inp(i)

· D′
T is multiple

of g or not. Especially, there are two integers u, v such that P (x) = 0 ⇒
EvalD (x)[u, v] = 0 (mod 〈g〉)

5.2 Recovering 〈G〉 and Converting to R/〈g〉 Program

Next, we will compute a basis of the plaintext space 〈g〉 to transform R program
into R/〈g〉-program. Unlike other attacks, we do not use the assumption ‘input
partitionability’. We exploits the fact that R program which comes from Rq

program has the same functionality up to constant. However, existing attacks
with input partitionable assumption and our cryptanalysis cannot be applied to
a BP program for an ‘evasive function’ since it does not output multiples of g.
It consists of following two steps:

Finding a multiple of g. This step is done by computing EvalD at the zeros
of program P . We compute EvalD (x) for R program R(P) at x satisfying
P (x) = 0. Then, Proposition 5 implies that EvalD (x)[u, v] is a multiple of g.
More precisely, EvalD (x)[u, v] is of the form

cS · cT ·
�∏

i=1

ci · a · g

when pzt · Eval
˜M

(x)[u, v] = a · h (mod q) for some a ∈ R such that ‖a · h‖2 is
less than q3/4.

This procedure outputs the value which is not only multiple of g but also ci’s.
However, we can generate several different R program from O(P) for different
solutions of Proposition 4. We assume that the multiples of g from different R
program are independent multiples of g, with the randomized lattice reduction
algorithm as in [21].

Computing Hermite Normal Form of 〈g〉. For given several random multi-
ples fi·g of g, we can recover a basis of 〈g〉 by computing sum of sufficiently many
ideal 〈f · g〉 represented by a lattice with basis {f · g,f · g · X, · · · ,f · g · Xn−1}
or computing the Hermite Normal Form of union of their generating sets by
applying the lemma [1, Lemma 1].

Both computations are done in polynomial time in λ and κ, since the evalua-
tions and computing the Hermite normal form has a polynomial time complexity.
Eventually, we recover the basis of ideal lattice 〈g〉 and we can efficiently compute
the arithmetics in R/〈g〉. In other words, we get a R/〈g〉 program correspond-
ing to O(P) (or P), whose properties are characterized by Proposition 5. For
convenience, we abuse the notation; from now, R(P) is the R/〈g〉 program and
DS ,DT and Di,b for all i ∈ [�], b ∈ {0, 1}w are matrices over R/〈g〉.

5.3 Analysis of the Converting Technique

We discuss the time complexity of our program converting technique. The pro-
gram converting consists of converting to R program, evaluating of R program,

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 199

computing a Hermite Normal Form of an ideal lattice 〈g〉. The last two steps
take polynomial time complexity, so the total cost is dominated by the first
step. More precisely, solving the NTRU problem for each encoded matrix is the
dominant part of the program converting.

To estimate the cost of solving the NTRU problem, we assume that each
component of branching program is encoded by GGH13 multilinear map in level-
1. The general cases are similar but a bit more complex when we assume that
the size of level sets are not too different so that � = Θ(κ).

Suppose that an obfuscated branching program O(P) over (κ, λ)-GGH13
multilinear map is given. As we written in Sect. 2.3, for constants δ, e and security
parameter λ, multilinearity level κ, n, M , and log q are set to be Θ̃(κe ·λδ), nΘ(1),
and Θ̃(κ · log n), respectively. Proposition 4 implies that one can convert the pro-
gram in 2O(β) · poly(λ, κ) time for β

log β = Θ(n log M
log2 q

) = Θ̃
(

λδ

κ2−e

)
. Therefore, the

program converting technique is done in polynomial time for κ = Ω̃(λδ/(2−e)).
Alternatively, the program converting technique is done in polynomial time for
obfuscated programs with length � = Ω̃(λδ/(2−e)).

We note that choosing large n to make the subfield attack work in exponential
time rules out our attack as well. More concretely, if one chooses n = Θ̃(κ2λ) then
the underlying NTRU problem is hard enough to block known subexponential
time attacks.

6 Matrix Zeroizing Attack

In this section, we present a distinguishing attack on R programs to complete our
cryptanalysis of attackable BP obfuscation model. We note that we can evaluate
the R program at invalid inputs, or mixed input, since the multilinearity level
which was the obstacle of mixed inputs is removed in the previous step. We
recall that M(b) denotes

∏�
i=1 Mi,bi

for b = (b1, · · · , b�) and the set of linear
relations

LM =

⎧⎨
⎩(qb)b∈{0,1}w×� :

∑
b∈{0,1}w×�

qb · M(b) = 0d1×d�+1

⎫⎬
⎭

which was defined in Sect. 4.3. We also recall that the two program M and N
are linear relationally inequivalent if LM �= LN .

For two functionally equivalent but linear relationally inequivalent BPs PM

and PN , we will zeroize the R program corresponding to PM by exploiting the
linear relation, whereas R program corresponding to PN would not be a zero
matrix. The result of the matrix zeroizing attack is as follows.

Proposition 6 (Matrix Zeroizing Attack). For functionally equivalent but
linear relationally inequivalent branching programs PM , PN , there is a PPT
algorithm which can distinguish between two R programs R(PM) and R(PN)
obtained by the method in Sect. 5 with non-negligible probability.

200 J. H. Cheon et al.

Now we explain how to distinguish two R programs using linear relationally
inequivalence. Despite the absence of multilinearity level, we still have obsta-
cles to directly exploit linear relationally inequivalence: scalar bundlings. To
explain the main idea of the attack, we assume that, for the time being, all
scalar bundling are trivial in the obtained program in Sect. 5. We later explain
how to deal the scalar bundlings.

Suppose that two BPs PM , PN and an R program

R(PX) = {DS ,DT ,DS ′ ,DT ′ , {Di,b ,D
′
i,b}i∈[�],b∈{0,1}w}

are given. Our goal is to determine X = N or X = M . We can compute a linear
relation (qb) which is an element of LM \LN in polynomial time6 by computing
a basis of kernel, and solve the membership problems of lattice for each vector
in the basis. Then the following equation holds

∑

b∈{0,1}w×�

(
qb · DS ·

�∏

i=1

Di,bi · DT

)
=

∑

b∈{0,1}w×�

(
qb · S0 ·

�∏

i=1

Mi,bi · T0

)

= S0 ·
∑

b∈{0,1}w×�

(
qb ·

�∏

i=1

Mi,bi

)
· T0 = S0 · 0d1×d�+1 · T0 = 0d0×d�+2 (mod 〈g〉)

when X = M whereas this is not hold when X = N . Therefore, the matrix
zeroizing attack works when the scalar bundlings are all trivial.

When the scalar bundlings are not trivial, we can do the similar computation
after recovering ratios of bundling scalars. Assume that we know ρi,u/ρi,v for
every 1 ≤ i ≤ � and u,v ∈ {0, 1}w. Consequently, for r(b) :=

∏
i∈[�] ρi,bi

where
b = (b1, · · · , b�), we can compute r(b)/r(c) for b, c ∈ {0, 1}w×� by multiplying
ratios of bundling scalars. Then, we can calculate

∑
b∈{0,1}w×�

(
qb · r(0)

r(b)
· DS ·

�∏
i=1

Di,bi
· DT

)

=
∑

b∈{0,1}w×�

(
qb · ρS · r(0) · ρT · S0 ·

�∏
i=1

Mi,bi
· T0

)

= ρS · r(0) · ρT · S0 ·
∑

b∈{0,1}w×�

(
qb ·

�∏
i=1

Mi,bi

)
· T0 (mod 〈g〉),

which is a zero matrix if and only if X = M .
Accordingly, we should remove the scalar bundlings or recover ratios of scalar

bundlings to execute the matrix zeroizing attack. In the rest of this section, we
6 The dimension of (qb)b∈{0,1}w×� is 2w×�, which is exponentially large. However, we

can reduce this exponential part by considering a polynomial number of b so that
there are linear relations.

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 201

show how to recover or remove (ratios of) scalar bundlings in several cases.
In Sect. 6.2, we explain how to recover all ratios in general cases by complex
techniques.

6.1 Existing BP Obfuscations

In this section, we show how to apply the matrix zeroizing attack on two remark-
able obfuscations, GGHRSW and GMMSSZ. The other examples on obfusca-
tions [6,32] are placed in AppendixB.

GGHRSW. As the first case, we consider the first BP obfuscation, GGHRSW,
which has the identity dummy program. We note that the attack for this case
works for the attackable BP obfuscations with fixed dummy program as well.
For this case, a constraint on the bundling scalars αx = α′

x for every input x is
given where αx = αS ·∏�

i=1 αi,x inp(i) ·αT , α′
x = α′

S ·∏�
i=1 α′

i,x inp(i)
·α′

T . Suppose
R program of P is given by

R(P) = {DS ,DT ,DS ′ ,DT ′ , {Di,b ,D
′
i,b}i∈[�],b∈{0,1}w}.

By Proposition 5, the following equations hold

DS ·
�∏

i=1

Di,x inp(i) · DT = ρS ·
�∏

i=1

ρi,x inp(i) · ρT ·
(

S0 ·
�∏

i=1

Mi,x inp(i) · T0

)
mod 〈g〉,

D′
S ·

�∏

i=1

D′
i,x inp(i)

· D′
T = ρ′

S ·
�∏

i=1

ρ′
i,x inp(i)

· ρ′
T ·

(
S′

0 ·
�∏

i=1

M ′
i,x inp(i)

· T ′
0

)
mod 〈g〉.

Here we assume that each M ′
i,x inp(i)

are identity matrices. Now we consider

the two quantity of evaluations PlainD (x) := DS · ∏�
i=1 Di,x inp(i) · DT and

DummyD (x) := D′
S ·∏�

i=1 D′
i,x inp(i)

· D′
T .

According to the condition of scalar bundlings, ρS · ∏�
i=1 ρi,x inp(i) · ρT =

ρ′
S ·∏�

i=1 ρ′
i,x inp(i)

·ρ′
T since the value c’s are shared for plain and dummy program.

It is possible to remove scalar bundlings by dividing PlainD (x) by DummyD (x).
In other words, we can get d · S0 ·∏�

i=1 Mi,x inp(i) · T0 for some fixed d from the
above division. Since we know all M ’s, the matrix zeroizing attack works well
for the computed quantities.

We remark that the previous analysis [16] analyzed the first candidate iO [23].
Whereas the work in [16] heavily relies on the input partitionable property of
the single input branching program, our algorithm do not need this property.
Moreover, our algorithm can be applied to dual input branching program, so
this attack can be applied to wider range of branching programs.

GMMSSZ. Most notable result for BP obfuscation, GMMSSZ, is suggested by
Garg et al. in TCC 2016 [24]. The authors claim the security of their construc-
tion against all known attack. Nevertheless, the matrix zeroizing attack can be
applied to their obfuscation.

202 J. H. Cheon et al.

GMMSSZ obfuscates low-rank matrix branching program, which is evalu-
ated by checking whether the product M0 ·∏i∈[�] Mi,bi

· M�+1 is zero or not.
There are two distinctive property of the obfuscation; the uniform random
higher dimension embedding and given bookend vectors as inputs. Let M0 =
(β1, · · · , βd1),M�+1 = (γ1, · · · , γd�+1)

T are the given bookend vectors. The book-
end vectors are also extended as H0 = (M0||0),H�+1 = (M�+1||U�+1)T for
randomly chosen U�+1 in the higher dimension embedding step to remove the
higher dimension embedding matrices. Note that the branching programs of this
obfuscation are square, we do not restrict the shape of matrices in this section.

For the evaluation, one compute M̃0 ·∏i∈[�] M̃i,bi
· M̃�+1, which is corre-

sponding to

DS ·
�∏

i=1

Di,bi
· DT = ρS ·

�∏
i=1

ρi,bi
· ρT ·

(
M0 ·

�∏
i=1

Mi,bi
· M�+!

)
(mod 〈g〉)

in R program by Proposition 5. Since we know all M ’s, we can compute the
ratios of scalar bundlings by

ρj,bj
/ρj,b′

j
=

DS ·∏i∈[�] Di,bi
· DT /M0

∏
i∈[�] Mi,bi

· M�+1

DS ·∏i∈[�] Di,b′
i
· DT /M0

∏
i∈[�] Mi,b′

i
· M�+1

for b, b′ which are same at all but j-th bit. Therefore, the matrix zeroizing attack
well works for the construction of [24]. We remark that this method works for
unknown bookend matrices with more complicated technique, see Sect. 6.2.

6.2 Attackable BP Obfuscation, General Case

Now we consider the attackable BP obfuscations in general. We note that an
attackable obfuscation without bookends can be considered as the obfuscation
with bookends by re-naming the matrices. For example, if we name DS :=
D1,0 = ρ1,0 ·D1, then we can regard that DS is a left bookend matrix and ρ1,0

the corresponding scalar bundling.
The case of obfuscation with bookend matrices is most complex, and requires

complicated technique. We will recover the bookend matrices up to constant
multiplication, and proceed the algorithm similar to the case of [24].

Recovering the Bookends. For the sake of simplicity, we only consider the
case of bookend vectors. To tackle constructions using bookend matrices, it is
suffice to consider a fixed (u, v)-entry of output matrix given in Proposition 2.

If the obfuscation has bookend vectors, then the evaluation of R program is
computed by

DS ·
�∏

i=1

Di,bi
· DT = ρS ·

�∏
i=1

ρi,bi
· ρT ·

(
S0 ·

�∏
i=1

Mi,bi
· T0

)
(mod 〈g〉)

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 203

for some vectors S0 ∈ (R/〈g〉)1×d1 and T0 ∈ (R/〈g〉)d�+1×1. Let S0 = (β1, · · · ,

βd1), T0 = (γ1, · · · ,γd�+1) and the evaluation DS ·∏�
i=1 Di,bi

· DT is denoted
by EvalD (b1, · · · , b�).

Our idea is removing ρ’s to make equations over S0,T0. Let bi,t ∈ {0, 1}w

for 1 ≤ i ≤ � and t ∈ {0, 1} and t = (t1, · · · , t�) ∈ {0, 1}w. Then the following
two values share the same ρ’s, precisely (ρS ρT)2 ·∏i∈[�] ρi,bi,0ρi,bi,1 :

EvalD (b1,0, · · · , b�,0)·EvalD (b1,1, · · · , b�,1),
EvalD (b1,t1 , · · · , b�,t�

)·EvalD (b1,1−t1 , · · · , b�,1−t�
).

We denote S0 ·∏�
i=1 Mi,bi

· T0 by EqnM (b1, · · · , b�). Then, by the above
relations, we get a equation for β1, · · · ,βd1 ,γ1, · · · ,γd�+1 :

EqnM (b1,0, · · · , b�,0) · EqnM (b1,1, · · · , b�,1)
EvalD (b1,0, · · · , b�,0) · EvalD (b1,1, · · · , b�,1)

=
EqnM (b1,t1 , · · · , b�,t�

) · EqnM (b1,1−t1 , · · · , b�,1−t�
)

EvalD (b1,t1 , · · · , b�,t�
) · EvalD (b1,1−t1 , · · · , b�,1−t�

)
.

Both side of the equation is homogeneous polynomial of degree 4. If we sub-
stitute each degree 4 monomials by another variables, this equation become a
homogeneous linear equation of new variables. The number of new variable is
O(d21d

2
�+1).

Now we assume that we can obtain sufficient number of linearly indepen-
dent equations generated by the explained way. Then, since the system of linear
equations can be solved in O(M3) time by Gaussian elimination for the number
of variable M , we can find all ratios of degree 4 monomials.7 In other words, we
can compute δβ1, · · · , δβd1 , δγ1, · · · , δγd�+1 for some constant δ.

Matrix Zeroizing Attack. The remaining part of the attack is exactly same
with the attack on GMMSSZ. Precisely, we can recover the ratios of scalar
bundlings by computing

ρj,bj
/ρj,b′

j
=

DS ·∏i∈[�] Di,bi
· DT /S0

∏
i∈[�] Mi,bi

· T0

DS ·∏i∈[�] Di,b′
i
· DT /S0

∏
i∈[�] Mi,b′

i
· T0

for b, b′ which are same at all but j-th bits. We note that we do not know exact
values of S0,T0, but we recovered δS0, δT0 in the above step. Thus we can
compute ρj,bj

/ρj,b′
j

by

DS ·∏i∈[�] Di,bi
· DT /(δS0)

∏
i∈[�] Mi,bi

· (δT0)

DS ·∏i∈[�] Di,b′
i
· DT /(δS0)

∏
i∈[�] Mi,b′

i
· (δT0)

.

Therefore the matrix zeroizing attack can be applied to the attackable BP obfus-
cations, which include all existing BP obfuscations over GGH13.
7 Here we assume that g is hard to factorize. If g is factorized in the Gaussian elimi-

nation procedure, we can proceed the algorithm for a factor of g.

204 J. H. Cheon et al.

Acknowledgement. We sincerely thank the anonymous reviewers of Crypto 2018
for their fruitful comments. This work was supported by Institute for Information &
communication Technology Promotion (IITP) grant funded by the Korea government
(MSIT) (No. 2016-6-00598, The mathematical structure of functional encryption and
its analysis) and was based upon work supported by the ARO and DARPA under
Contract No. W911NF-15-C-0227.

References

1. Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
153–178. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 6

2. Albrecht, M.R., Cocis, C., Laguillaumie, F., Langlois, A.: Implementing candidate
graded encoding schemes from ideal lattices. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9453, pp. 752–775. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48800-3 31

3. Prabhanjan, A., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding
Barrington’s theorem. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pp. 646–658. ACM (2014)

4. Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguisha-
bility obfuscations of circuits over GGH13. In: LIPIcs-Leibniz International Pro-
ceedings in Informatics, vol. 80. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
(2017)

5. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded
encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 528–
556. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 21

6. Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation:
new mathematical tools, and the case of evasive circuits. In: Fischlin, M., Coron, J.-
S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 764–791. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49896-5 27

7. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 13

8. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44647-8 1

9. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. J. ACM (JACM) 59(2), 6
(2012)

10. Barrington, D.A.: Bounded-width polynomial-size branching programs recognize
exactly those languages in NC 1. In: Proceedings of the Eighteenth Annual ACM
Symposium on Theory of Computing, pp. 1–5. ACM (1986)

11. Ben-Or, M., Cleve, R.: Computing algebraic formulas using a constant number
of registers. In: Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, pp. 254–257 (1988)

12. Biasse, J.-F.: Subexponential time relations in the class group of large degree num-
ber fields. Adv. Math. Commun. 8(4), 407–425 (2014)

https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-48800-3_31
https://doi.org/10.1007/978-3-662-46497-7_21
https://doi.org/10.1007/978-3-662-49896-5_27
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 205

13. Biasse, J.-F., Espitau, T., Fouque, P.-A., Gélin, A., Kirchner, P.: Computing gen-
erator in cyclotomic integer rings. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10210, pp. 60–88. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56620-7 3

14. Biasse, J.-F., Song, F.: Efficient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number fields. In: Pro-
ceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 893–902. SIAM (2016)

15. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 1

16. Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching program
obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10212, pp. 278–307. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56617-7 10

17. Cheon, J.H., Hhan, M., Lee, C.: Cryptanalysis of the overstretched NTRU problem
for general modulus polynomial. IACR Cryptology ePrint Archive, 2017:484 (2017)

18. Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and cryptanalysis
of the GGH multilinear map without a low-level encoding of zero. LMS J. Comput.
Math. 19(A), 255–266 (2016)

19. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-
4 26

20. Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators of prin-
cipal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 20

21. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3 3

22. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

23. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: Pro-
ceedings of the 2013 IEEE 54th Annual Symposium on Foundations of Computer
Science, pp. 40–49. IEEE Computer Society (2013)

24. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53644-5 10

25. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lat-
tices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 20

26. Kirchner, P., Fouque, P.-A.: Revisiting lattice attacks on overstretched NTRU
parameters. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56620-7 1

https://doi.org/10.1007/978-3-319-56620-7_3
https://doi.org/10.1007/978-3-319-56620-7_3
https://doi.org/10.1007/978-3-642-54242-8_1
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-56620-7_1

206 J. H. Cheon et al.

27. Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: more efficient multilinear maps
from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 239–256. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 14

28. Lewi, K., Malozemoff, A.J., Apon, D., Carmer, B., Foltzer, A., Wagner, D., Archer,
D.W., Boneh, D., Katz, J., Raykova, M.: 5Gen: a framework for prototyping appli-
cations using multilinear maps and matrix branching programs. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pp. 981–992. ACM (2016)

29. Ma, F., Zhandry, M.: The MMAP strikes back: obfuscation and new multilinear
maps immune to CLT13 Zeroizing attacks. Cryptology ePrint Archive, Report
2017/946 (2017). https://eprint.iacr.org/2017/946

30. Miles, E., Sahai, A., Weiss, M.: Protecting obfuscation against arithmetic attacks.
IACR Cryptology ePrint Archive, 2014:878 (2014)

31. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: crypt-
analysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 22

32. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014.
LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44371-2 28

33. Sahai, A., Zhandry, M.: Obfuscating low-rank matrix branching programs. IACR
Cryptology ePrint Archive, 2014:773 (2014)

34. Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 15

A Extended Attackable BP Obfuscation Model

In this section we introduce an extended model of attackable BP obfuscation
by our attack. The extended attackable BP obfuscation is modified in the ran-
domization step to embraces the obfuscation in [15]. The definition of extended
attackable conditions for randomization is as follows, which is similar to Defini-
tion 3:

Definition 6 (Extended Attackable Conditions for Randomization).
For a branching program P =

{
Mi,b ∈ Z

di×di+1
}

i∈[�],b∈{0,1}w , the extended
attackable randomized branching program is the set

Rand(P) =
{
Ri,b ,R

′
i,b ∈ Z

di×di+1
}

i∈[�],b∈{0,1}w

∪{RS ,R′
S ∈ Z

d0×d1 ,RT ,R′
T ∈ Z

d�+1×d�+2
}

∪{auxJ,b , aux
′
J,b

}
J⊂[N],b∈{0,1}w×|J|

satisfying the following properties, where d0, d�+2, ei’s are integers.

https://doi.org/10.1007/978-3-642-55220-5_14
https://doi.org/10.1007/978-3-642-55220-5_14
https://eprint.iacr.org/2017/946
https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/978-3-662-44371-2_28
https://doi.org/10.1007/978-3-662-44371-2_28
https://doi.org/10.1007/978-3-662-46803-6_15

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 207

1. There exist matrices S0,S
′
0 ∈ Z

d0×d1 ,T0,T
′
0 ∈ Z

d�×d�+1 and scalars αS ,α′
S ,

αT ,α′
T , {αi,b ,α

′
i,b}i∈[�],b∈{0,1}w such that the following equations hold for all

{bi ∈ {0, 1}w}i∈[�]:

RS ·
�∏

i=1

Ri,bi
· RT = αS ·

�∏
i=1

αi,bi
· αT ·

(
S0 ·

�∏
i=1

Mi,bi
· T0

)
,

R′
S ·

�∏
i=1

R′
i,bi

· R′
T = α′

S ·
�∏

i=1

α′
i,bi

· α′
T ·
(

S′
0 ·

�∏
i=1

M ′
i,bi

· T ′
0

)
.

2. The evaluation of randomized program is done by checking whether the fixed
entries of

RP (x) =
∏

J⊂[N]

auxJ,x |J ·RS ·
�∏

i=1

Ri,x inp(i) ·RT −
∏

J⊂[N]

aux′
J,x |J ·R′

S ·
�∏

i=1

R′
i,x inp(i)

·R′
T

is zero or not. Especially, there are two integers u, v such that P (x) = 0 ⇒
RP (x)[u, v] = 0.

After randomizing matrices, we encode every entries and scalars of Rand(P)
separately by GGH13 multilinear map with respect to the level corresponding
to the first index of elements. We denote enc(auxJ,a) by ãuxJ,a for each J ⊂ [N]
and a ∈ {0, 1}w×|J|.

We note that aux’s were not discussed in the main body of our paper. How-
ever, our program converting technique is applied with small modification for
auxiliary scalars as well. More precisely, for each ãuxJ,a , ãuxJ,b , we compute
h = ãuxJ,a/ãuxJ,b and solve the NTRU problem for the instance h. Then we
obtain cJ ·(auxJ,a +ra ·g) for small cJ . For an auxiliary scalar ãuxJ,c correspond-
ing to J , we compute cJ · (auxJ,c + rc · g) = cJ · (auxJ,a + ra · g) · ãuxJ,c/ãuxJ,a .
We can recover dummy auxiliaries as well.

From this calculation, R program is obtained for extended model. the other
step such as recovering the ideal 〈g〉 and the matrix zeroizing attack work cor-
rectly as well.

B Examples of Matrix Zeroizing Attack

Obfuscation in [32]. In this section, we prove that obfuscation in [32] cannot be
iO for general-purpose. This scheme is characterized by several special random-
izations; converting to merged branching program which consists of permutation
matrices, and choose the right bookend vector T = e1 and no left bookend vec-
tor, and then choose identity Kilian matrix K0 = I at the first left position. It
implies that, by Proposition 5, the evaluation of the program is of the form:

�∏
i=1

Di,bi
· DT = ρT ·

�∏
i=1

ρi,bi
·

�∏
i=1

Mi,bi
· e1 = ρT ·

�∏
i=1

ρi,bi
· ek (mod〈g〉),

208 J. H. Cheon et al.

where k is an integer computed by M ’s. Therefore, we can compute ρT ·∏�
i=1 ρi,bi

from the computed value. As a next step, we recover ratios of scalar
bundlings ρj,bj

/ρj,b′
j

for b, b′ which satisfies bi = b′
i for all i ∈ [�] except j

by computing the ratio ρT ·∏�
i=1 ρi,bi

/ρT ·∏�
i=1 ρi,b′

i
. Finally, we can run the

matrix zeroizing attack.

Obfuscation in [6]. Badrinarayanan et al. suggest a construction for obfusca-
tion based on branching program, especially for evasive functions [6].8. In this
section, we prove that obfuscation of Badrinarayanan et al. cannot be a general-
purpose iO. This construction is for low-rank branching program, thus it do not
have dummy matrices and also does not apply higher dimension embeddings.

The original method for their construction is in the bookend; the authors use
no bookend matrices and use special form of Kilian randomization at the first
and last matrices. The first and last Kilian matrices are given as follows:

K0 = diag(β1, · · · , βd1),K
−1
�+1 = diag(γ1, · · · , γd�+1),

where βu, γv are randomly chosen scalars.
To evaluate the obfuscated program, we see

(∏�
i=1 M̃i,bi

)
[u, v] for some u, v.

This is corresponding to the following value, which is computed by Proposition 5,⎛
⎝∏

i∈[�]

Di,bi

⎞
⎠ [u, v] = βu · γv ·

∏
i∈[�]

ρi,bi
·
⎛
⎝∏

i∈[�]

Mi,bi

⎞
⎠ [u, v] (mod 〈g〉)

since S0,T0 are exactly K0,K
−1
�+1. We then can recover the ratio of scalar

bundlings by computing
∏

i∈[�] Di,bi
[u, v]/

∏
i∈[�] Di,b′

i
[u, v] for b, b′ which satis-

fies bi = b′
i for all i ∈ [�] except j. Since we computed ratios of scalar bundlings

ρj,bj
/ρj,b′

j
, we can run the matrix zeroizing attack.

C Examples of Linear Relationally Inequivalent BPs

We exhibit two examples of two functionally equivalent but linear relationally
inequivalent branching programs here. This examples also certify Proposition 3.
The first simple example from nondeterministic finite automata is read-once
BPs, and the second example comes from Barrington’s theorem and thus input-
unpartitionable.

C.1 Read-Once BPs from NFA

Two read-once BPs in Table 1 are from non-deterministic finite automata and
linear relationally inequivalent.
8 We remark that the construction of [6] is similar to the construction of [33], which

is used as a foundation of recent implementation 5Gen [28] and our attack is also
applied to [33] in the same manner.

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 209

These two BPs are the point function which output 1 only for input 01, but
they are linear relationally inequivalent. For example,

M0,1 · M1,0 − M0,1 · M1,1 �= 0,

N0,1 · N1,0 − N0,1 · N1,1 = 0.

We note that the matrix Mi,b is the adjacent matrix between {Ai,c}c∈{0,1} and
{Ai+1,c}c∈{0,1}, and N ’s are defined similarly.

Table 1. BPs from NFA

A0,0

A0,1

A1,0

A1,1

A2,0

A2,1

0

0,1

1

0

1

B0,0

B0,1

B1,0

B1,1

B2,0

B2,1

0

1
0

1

0

0,1

0,1

M0,0 =

(
1 0
1 0

)
, M1,0 =

(
1 0
0 0

)
, N0,0 =

(
1 0
1 0

)
, N1,0 =

(
1 0
1 1

)
,

M0,1 =

(
0 0
1 1

)
, M1,1 =

(
0 0
0 1

)
. N0,1 =

(
0 1
0 1

)
, N1,1 =

(
0 0
1 1

)
.

C.2 Input-Unpartionable BPs from Barrington’s Theorem

In the case of Barrington’s theorem, the linear relationally inequivalent matrix
BPs are more complex. We consider the following two functionally equivalent
circuits:

C0 = (X1 ∧ X2) ∧ (¬X1 ∧ X3),
C1 = (¬X1 ∧ X2) ∧ (X1 ∧ X3).

We transform two circuits into the following BPs by Barrington theorem as
follow9:
9 Barrington theorem can be implemented in various ways, but we only consider the

first description in [10]. This description also can be found in [4].

210 J. H. Cheon et al.

PC0 = 0: αρ βρ α−1
ρ β−1

ρ e βδ e β−1
δ · · ·

1: e e e e αδ e α−1
δ e · · ·

PC1 = 0: e βρ e β−1
ρ αδ βδ α−1

δ β−1
δ · · ·

1: αρ e α−1
ρ e e e e e · · ·

input bits 1 2 1 2 1 3 1 3 · · ·
where τσ denotes στσ−1 for permutations τ, σ ∈ S5. In the matrix representation,
the permutations α, β, γ, ρ, δ are of the form

α =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

⎤
⎥⎥⎥⎥⎦

, β =

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

, γ =

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

, ρ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

, δ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0

⎤
⎥⎥⎥⎥⎦

.

We note that two functionally equivalent branching programs PC0 and
PC1 are clearly input-unpartitionable. Now if we consider two (invalid) inputs
x = 0110110111111111 and y = 1111101011111111. These yield, for example,
PC0(x) = αρ · e · e · β−1

ρ · αδ · e · e · e · · · · = αρ · β−1
ρ · αδ = β. The terms in the

right · · · are canceled. Then the equation

PC0(x) − PC0(y) = 0,
PC1(x) − PC1(y) �= 0

hold. Thus two branching programs PC0 and PC1 are functionally equivalent but
linear relationally inequivalent.

	Cryptanalyses of Branching Program Obfuscations over GGH13 Multilinear Map from the NTRU Problem
	1 Introduction
	1.1 Technical Overview

	2 Preliminaries
	2.1 Matrix Branching Program
	2.2 Indistinguishability Obfuscation
	2.3 GGH13 Multilinear Map

	3 Main Theorem
	4 Attackable BP Obfuscations
	4.1 Randomization for Attackable Obfuscation Model
	4.2 Encoding by Multilinear Map
	4.3 Linear Relationally Inequivalent Branching Programs

	5 Program Converting Technique
	5.1 Converting to R Program
	5.2 Recovering "426830A G "526930B and Converting to R/ "426830A g"526930B Program
	5.3 Analysis of the Converting Technique

	6 Matrix Zeroizing Attack
	6.1 Existing BP Obfuscations
	6.2 Attackable BP Obfuscation, General Case

	References
	A Extended Attackable BP Obfuscation Model
	B Examples of Matrix Zeroizing Attack
	C Examples of Linear Relationally Inequivalent BPs
	C.1 Read-Once BPs from NFA
	C.2 Input-Unpartionable BPs from Barrington's Theorem

