
From Laconic Zero-Knowledge
to Public-Key Cryptography

Extended Abstract

Itay Berman1, Akshay Degwekar1, Ron D. Rothblum1,2(B),
and Prashant Nalini Vasudevan1

1 MIT, Cambridge, USA
{itayberm,akshayd,prashvas,ronr}@mit.edu

2 Northeastern University, Boston, USA

Abstract. Since its inception, public-key encryption (PKE) has been
one of the main cornerstones of cryptography. A central goal in
cryptographic research is to understand the foundations of public-
key encryption and in particular, base its existence on a natural and
generic complexity-theoretic assumption. An intriguing candidate for
such an assumption is the existence of a cryptographically hard language
L ∈ NP ∩ SZK.

In this work we prove that public-key encryption can be based on
the foregoing assumption, as long as the (honest) prover in the zero-
knowledge protocol is efficient and laconic. That is, messages that the
prover sends should be efficiently computable (given the NP witness) and
short (i.e., of sufficiently sub-logarithmic length). Actually, our result
is stronger and only requires the protocol to be zero-knowledge for
an honest-verifier and sound against computationally bounded cheat-
ing provers.

Languages in NP with such laconic zero-knowledge protocols are
known from a variety of computational assumptions (e.g., Quadratic
Residuocity, Decisional Diffie-Hellman, Learning with Errors, etc.).
Thus, our main result can also be viewed as giving a unifying frame-
work for constructing PKE which, in particular, captures many of the
assumptions that were already known to yield PKE.

We also show several extensions of our result. First, that a certain
weakening of our assumption on laconic zero-knowledge is actually equiv-
alent to PKE, thereby giving a complexity-theoretic characterization
of PKE. Second, a mild strengthening of our assumption also yields a
(2-message) oblivious transfer protocol.

1 Introduction

Underlying symmetric key encryption is a centuries-old idea: shared secrets
enable secure communication. This idea takes many forms: the Caeser cipher,
the unconditionally secure one-time pads, fast heuristic constructions like AES,

Full version available at: https://eccc.weizmann.ac.il/report/2017/172.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 674–697, 2018.
https://doi.org/10.1007/978-3-319-96878-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_23&domain=pdf
https://eccc.weizmann.ac.il/report/2017/172

From Laconic Zero-Knowledge to Public-Key Cryptography 675

and a multitude of candidates based on the hardness of a variety of problems.
The discovery of public-key encryption, by Diffie and Hellman [DH76] and Rivest,
Shamir and Adleman [RSA78], was revolutionary as it gave us the ability to com-
municate securely without any shared secrets. Needless to say, this capability is
one of the cornerstones of secure communication in today’s online world.

As is typically the case in cryptography, we are currently very far from
establishing the security of public-key cryptography unconditionally. Rather, to
establish security, we rely on certain computational intractability assumptions.
Despite four decades of extensive research, we currently only know constructions
of public-key encryption from a handful of assumptions, most notably assump-
tions related to the hardness of factoring, finding discrete logarithms and compu-
tational problems related to lattices (as well as a few more exotic assumptions).

One of the central open problems in cryptography is to place public-key
encryption on firmer complexity-theoretic grounding, ideally by constructing
public-key encryption from the minimal assumption that one-way functions exist.
Such a result seems well beyond current techniques, and by the celebrated result
of Impagliazzo and Rudich [IR89] requires a non-blackbox approach. Given that,
a basic question that we would like to resolve is the following:

From what general complexity-theoretic assumptions can we construct

public-key cryptography?

Our motivation for asking this question is twofold. First, we seek to under-
stand: Why is it the case that so few assumptions give us public-key encryption?
What kind of “structured hardness” is required? Secondly, we hope that this
understanding can guide the search for new concrete problems that yield public-
key encryption.

1.1 Our Results

Our main result is a construction of a public-key encryption scheme from a gen-
eral complexity-theoretic assumption: namely, the existence of a cryptographi-
cally hard language L ∈ NP that has a laconic (honest-verifier) statistical zero-
knowledge argument-system. We first discuss the notions mentioned above, and
then proceed to state the main result more precisely (yet still informally).

By a cryptographically hard language we mean an NP language that is average-
case hard to decide with a solved instance generator. Namely, that there are two
distributions Y and N, over YES and NO instances of the language respectively,
such that (1) Y and N are computationally indistinguishable; and (2) there
exists an efficient solved instance generator for the YES distribution.1 A proof-
system is laconic [GH98,GVW02] if the number of bits sent from the prover
1 Loosely speaking, a solved-instance generator for the YES distribution Y of an

average-case hard language L ∈ NP is an algorithm that generates samples
(x,w) ∈ RL (where RL is the NP relation) and where x is distributed according
to Y.

676 I. Berman et al.

to the verifier is very small.2 An argument-system is similar to an interactive
proof, except that soundness is only required to hold against computationally
bounded (i.e., polynomial time) cheating provers. Honest verifier zero-knowledge
means that the honest verifier learns no more in the interaction than the fact
that x ∈ L (i.e., the verifier can simulate the honest interaction by itself). Thus,
our main result can be stated as follows:

Theorem 1.1 (Informally Stated, see Theorem 2.6). Assume that there
exists a cryptographically hard language L ∈ NP with an r-round statistical
honest-verifier zero-knowledge argument-system, with constant soundness, that
satisfies the following two requirements:

– Efficient Prover: The strategy of the honest prover can be implemented in
polynomial-time, given the NP witness.3

– Laconic Prover: The prover sends at most q bits in each of the r rounds,
such that r2 · q3 = O(log n), where n is the input length.

Then, there exists a public-key encryption (PKE) scheme.

We emphasize that requiring only honest-verifier zero-knowledge (as opposed
to full-fledged zero-knowledge) and computational soundness (i.e., an argument-
system) weakens our assumption, and therefore only strengthens our main result.
We also comment that we can handle provers that are less laconic (i.e., send
longer messages) by assuming that the language L is sub-exponentially hard.
Lastly, we remark the assumption in Theorem 1.1 may be viewed as a gener-
alization of the notion of hash proof systems [CS02].4 We discuss this point in
more detail in Sect. 1.2.

1.1.1 Instantiations
Many concrete assumptions (which are already known to yield public-key encryp-
tion schemes) imply the conditions of Theorem 1.1. First, number-theoretic
assumptions such as Quadratic Residuosity (QR) and Decisional Diffie-Hellman
(DDH) can be shown to imply the existence of a cryptographically hard NP lan-
guage with a laconic and efficient SZK argument-system and therefore satisfy the
conditions of Theorem1.1 (these and the other implications mentioned below are
proven in the full version of this paper).
2 Laconic proof-systems with constant soundness and very short communication (e.g.,

just a single bit) are indeed known. As a matter of fact, many of the known hard
problems that are known to yield public-key encryption schemes have such laconic
SZK proof-systems (see Sect. 1.1.1).

3 In the context of argument-systems (in contrast to general interactive proofs), the
assumption that the honest prover is efficient goes without saying. Nevertheless, we
wish to emphasize this point here.

4 As a matter of fact, hash proof systems can be viewed as a special case of our
assumption in which the (honest) prover is deterministic or, equivalently, sends only
a single bit. In contrast, we handle arbitrary randomized provers (that are sufficiently
laconic) and indeed most of the technical difficulty arises from handling this more
general setting. See additional details in Sect. 1.2.

From Laconic Zero-Knowledge to Public-Key Cryptography 677

We can also capture assumptions related to lattices and random linear codes
by slightly relaxing the conditions of Theorem1.1. Specifically, Theorem1.1 holds
even if we relax the completeness, soundness and zero-knowledge conditions
of the argument-system to hold only for most (but not necessarily all) of the
instances (chosen from the average-case hard distribution). We call arguments
with these weaker properties average-case SZK arguments.

It is not hard to see that lossy encryption [PVW08,BHY09] yields such an
average-case laconic and efficient zero-knowledge argument-system. Recall that a
PKE scheme is lossy if its public-keys are indistinguishable from so-called “lossy
keys” such that a ciphertext generated using such a lossy key does not contain
information about the underlying plaintext. Consider the following proof-system
for the language consisting of all valid public-keys: given an allegedly valid public-
key, the verifier sends to the prover an encryption of a random bit b and expects
to get in response the value b. It is not hard to see that this protocol is a laconic
and efficient average-case SZK argument-system.

Several concrete assumptions yield cryptographically hard languages with
average-case laconic and efficient SZK arguments (whether via lossy encryption
or directly). Most notably, Learning With Errors (LWE) [Reg05], Learning Parity
with Noise (LPN) with small errors [Ale03] and most of the assumptions used
by Applebaum et al. [ABW10] to construct PKE, all imply the existence of such
languages.

Thus, Theorem 1.1 gives a common framework for constructing public-key
encryption based on a variety of different intractability assumptions (all of which
were already known to yield public-key encryption via a variety of somewhat ad
hoc techniques), see also Fig. 1.

One notable hardness assumption that we do not know to imply our assump-
tion (even the average-case variant) is integer factorization (and the related RSA
assumption). We consider a further weakening of our assumption that captures
also the factoring and RSA assumptions. As a matter of fact, we show that this
further relaxed assumption is actually equivalent to the existence of a public-key
encryption scheme. We discuss this in more detail in Sect. 1.1.3.

1.1.2 Perspective — From SZK-Hardness to Public-Key Encryption
As noted above, one of the central goals in cryptography is to base public-key
encryption on a general notion of structured hardness. A natural candidate for
such structure is the class SZK of statistical zero-knowledge proofs, since many
of the assumptions that are known to yield public-key encryption have SZK
proof-systems. Indeed, it is enticing to believe that the following dream version
of Theorem 1.1 holds:

Open Problem 1.1. Assume that there exists a cryptographically-hard
language L ∈ NP ∩ SZK. Then, there exists a public-key encryption scheme.

678 I. Berman et al.

Our Assumption:
Laconic SZK Argument-System for

Cryptographically Hard NP Language
LWE

DDH

QR

LPN

[ABW10]*

Public-Key
Encryption

Theorem 1.1

Fig. 1. Instantiations of our assumption. Dashed arrows means that we only obtain
average-case completeness, soundness and zero-knowledge. The (*) sign means that
most, but not all, assumptions from [ABW10] imply our assumption.

(Here by SZK we refer to the class of languages having statistical zero-knowledge
proof-systems rather than argument-systems as in Theorem 1.1. Assuming this
additional structure only makes the statement of Open Problem1.1 weaker and
therefore easier to prove.)

Solving Open Problem1.1 would be an outstanding breakthrough in cryp-
tography. For instance, it would allow us to base public-key cryptography on the
intractability of the discrete logarithm (DLOG) problem,5 since (a decision prob-
lem equivalent to) DLOG has a perfect zero-knowledge proof-system6 [GK93], or
under the plausible quasi-polynomial average-case7 hardness of the graph iso-
morphism problem (via the perfect zero-knowledge protocol of [GMW87]).

We view Theorem 1.1 as an initial step toward solving Open Problem1.1.
At first glance, it seems that Theorem 1.1 must be strengthened in two ways in
order to solve Open Problem1.1. Namely, we need to get rid of the requirements
that the (honest) prover is (1) efficient and (2) laconic. However, it turns out
that it suffices to remove only one of these restrictions, no matter which one, in
order to solve Open Problem1.1. We discuss this next.

Handling Inefficient Provers. Sahai and Vadhan [SV03] showed a problem, called
statistical distance, which is both (1) complete for SZK, and (2) has an extremely
laconic honest-verifier statistical zero-knowledge proof in which the prover only
sends a single bit (with constant soundness error). The immediate implication
5 Public-key schemes based on assumptions related to discrete log such as the deci-

sional (or even computational) Diffie Hellman assumption are known to exist. Never-
theless, basing public-key encryption solely on the hardness of discrete log has been
open since the original work of Diffie and Hellman [DH76].

6 That proof-system is actually laconic but it is unclear how to implement the prover
efficiently.

7 Graph isomorphism is in fact known to be solvable in polynomial-time for many
natural distributions, and the recent breakthrough result of Babai [Bab16] gives
a quasi-polynomial worst-case algorithm. Nevertheless, it is still conceivable that
Graph Isomorphism is average-case quasi-polynomially hard (for some efficiently
samplable distribution).

From Laconic Zero-Knowledge to Public-Key Cryptography 679

is that any SZK protocol can be compressed to one in which the prover sends
only a single bit.

Unfortunately, the foregoing transformation does not seem to maintain the
computational efficiency of the prover. Thus, removing the requirement that the
prover is efficient from Theorem 1.1 (while maintaining the laconism require-
ment) would solve Open Problem 1.1.

Handling Non-Laconic Provers. Suppose that we managed to remove the lacon-
ism requirement from Theorem 1.1 and only required the prover to be efficient.
It turns out that the latter would actually imply an even stronger result than
that stated in Open Problem1.1. Specifically, assuming only the existence of
one-way functions, Haitner et al. [HNO+09] construct (non-laconic) statistical
zero-knowledge arguments for any NP language, with an efficient prover. Thus,
removing the laconism requirement from Theorem1.1 would yield public-key
encryption based merely on the existence of one-way functions.

In fact, even a weaker result would solve Open Problem1.1. Suppose we
could remove the laconism requirement from Theorem1.1 while insisting that
the proof-system has statistical soundness (rather than computational). Such a
result would solve Open Problem1.1 since Nguyen and Vadhan [NV06] showed
that every language in NP ∩ SZK has an SZK protocol in which the prover is
efficient (given the NP witness).

To summarize, removing the laconism requirement from Theorem 1.1, while
still considering an argument-system, would yield public-key encryption from
one-way functions (via [HNO+09]). On the other hand, removing the lacon-
ism requirement while insisting on statistical soundness would solve Open Prob-
lem 1.1 (via [NV06]). (Note that neither the [NV06] nor [HNO+09] proof-systems
are laconic, so they too cannot be used directly together with Theorem 1.1 to
solve Open Problem 1.1.)

1.1.3 Extensions
We also explore the effect of strengthening and weakening our assumption. A nat-
ural strengthening gives us oblivious transfer, and as mentioned above, a certain
weakening yields a complete complexity-theoretic characterization of public-key
encryption.

A Complexity-Theoretic Characterization. The assumption from which we con-
struct public-key encryption (see Theorem 1.1) requires some underlying hard
decision problem. In many cryptographic settings, however, it seems more nat-
ural to consider hardness of search problems (e.g., integer factorization). Thus,
we wish to explore the setting of laconic SZK arguments when only assuming the
hardness of computing a witness for an instance sampled from a solved instance
generator. Namely, an NP relation for which it is hard, given a random instance,
to find a corresponding witness.

680 I. Berman et al.

We introduce a notion of (computationally sound) proof-systems for such NP
search problems, which we call arguments of weak knowledge (AoWK). Loosely
speaking, this argument-system convinces the verifier that the prover with which
it is interacting has at least some partial knowledge of some witness. Or in other
words, no efficient cheating prover can convince the verifier to accept given only
the input. We further say that an AoWK is zero-knowledge if the verifier learns
nothing beyond the fact that the prover has the witness.

We show that Theorem 1.1 still holds under the weaker assumption that
there is an efficient and laconic SZK-AoWK (with respect to some hard solved
instance generator). Namely, the latter assumption implies the existence of PKE.
Furthermore, we also show that the same assumption is also implied by any PKE
scheme, thus establishing an equivalence between the two notions which also
yields a certain complexity-theoretic characterization of public-key encryption.

Oblivious Transfer. Oblivious Transfer (OT) is a fundamental cryptographic
primitive, which is complete for the construction of general secure multiparty
computation (MPC) protocols [GMW87,Kil88]. We show that by making a
slightly stronger assumption, Theorem1.1 can extended to yield a (two-message)
semi-honest OT protocol.

For our OT protocol, in addition to the conditions of Theorem1.1, we need
to further assume that there is a way to sample instances x such that it is hard
to tell whether x ∈ L or x �∈ L even given the coins of the sampling algorithm.8

We refer to this property as enhanced cryptographic hardness in analogy to the
notion of enhanced trapdoor permutations.

1.2 Related Works

Cryptography and Hardness of SZK. Ostrovsky [Ost91] showed that the existence
of a language in SZK with average-case hardness implies the existence of one-
way functions. Our result can be interpreted as an extension of Ostrovsky’s
result: By assuming additional structure on the underlying SZK protocol, we
construct a public-key encryption scheme. In fact, some of the ideas underlying
our construction are inspired by Ostrovsky’s one-way function.

Average-case SZK hardness also implies constant-round statistically hiding
commitments [OV08], a primitive not implied by one-way functions in a black-
box way [HHRS15]. Assuming the existence of an average-case hard language
in a subclass of SZK (i.e., of languages having perfect randomized encodings),
Applebaum and Raykov [AR16] construct Collision Resistant Hash functions.

In the other direction, some cryptographic primitives like homomorphic
encryption [BL13], lossy encryption, witness encryption and indistinguishabil-
ity obfuscators [KMN+14,PPS15], and PIR (computational private information

8 In particular, the sampling algorithm that tosses a coin b ∈ {0, 1} and outputs x ∈ L
if b = 0 and x �∈ L otherwise does not satisfy the requirement (since the value of b
reveals whether x ∈ L).

From Laconic Zero-Knowledge to Public-Key Cryptography 681

retrieval) [LV16] imply the existence of average-case hard problems in SZK.9 We
also mention that many other primitives, such as one-way functions, public-key
encryption and oblivious transfer do not imply the existence of average-case hard
problems in SZK (under black-box reductions) [BDV16].

Hash Proof-Systems. Hash Proof-Systems, introduced by Cramer and Shoup
[CS02], are a cryptographic primitive which, in a nutshell, can be described as a
cryptographically hard language in NP with a one-round SZK protocol in which
the honest prover is efficient given the NP witness and deterministic (and without
loss of generality sends only a single bit). This is precisely what we assume for
our main result except that we can handle randomized provers that send more
bits of information (and the protocol can be multi-round). This special case
of deterministic provers is significantly simpler to handle (and will serve as a
warmup when describing our techniques). Our main technical contribution is
handling arbitrary randomized provers.

Public-key encryption schemes have been shown to imply the existence of cer-
tain weak hash proof-systems [HLWW16]. Hash proof-systems were also shown
in [GOVW12] to yield resettable statistical zero-knowledge proof-systems.

Laconic Provers. A study of interactive proofs in which the prover is laconic (i.e.,
transmits few bits to the verifier) was initiated by Goldreich and H̊astad [GH98]
and was further explored by Goldreich, Vadhan and Wigderson [GVW02]. These
focus in these works is on general interactive proofs (that are not necessarily zero-
knowledge) and their main results are that laconic interactive proofs are much
weaker than general (i.e., non-laconic) interactive proofs.

1.3 Techniques

To illustrate the techniques used, we sketch the proof of a slightly simplified ver-
sion of Theorem 1.1. Specifically, we construct a PKE given a cryptographically
hard language L with a single-round efficient-prover and laconic SZK argument-
system (we shall briefly mention the effect of more rounds where it is most
relevant). For simplicity, we also assume that the SZK protocol has perfect com-
pleteness and zero-knowledge. In the actual construction, given in the technical
sections, we handle constant completeness error, negligible simulation error, and
more rounds of interaction. Lastly, since we find the presentation more appeal-
ing, rather than presenting a public-key scheme, we construct a single-round
key-agreement protocol.10 Any such protocol can be easily transformed into a
public-key encryption scheme.

9 On a somewhat related note, we mention that combining [BL13] with our result gives
a construction of public-key encryption from symmetric-key additively homomorphic
encryption. This was already shown in [Rot11] via a direct construction.

10 Loosely speaking, a key agreement protocol allows Alice and Bob to agree on a
common key that is unpredictable to an external observer that has wire tapped their
communication lines.

682 I. Berman et al.

Let L ∈ NP be a cryptographically hard language with an SZK argument-
system with prover P, verifier V and simulator S. We assume that the argument-
system has perfect completeness, no simulation error and soundness error s, for
some s > 0. Let YL be a solved-instance generator for L producing samples of
the form (x,w), where x ∈ L and w is a valid witness for x. The fact that L
is cryptographically hard means that there exists a sampler NL that generates
NO instances for L that are computationally indistinguishable from the YES
instances generated by YL.

Deterministic Prover. As a warmup, we assume first that the honest prover in
the SZK argument-system is deterministic. As will be shown below, this case is
significantly easier to handle than the general case, but it is a useful step toward
our eventual protocol.

We construct a key-agreement protocol between Alice and Bob as follows.
First Alice generates a solved instance-witness pair (x,w) ← YL. Alice then sends
x across to Bob. Bob runs the simulator S(x) to generate a transcript (a′, b′, r′),
where a′ corresponds to the verifier’s message, b′ corresponds to the prover’s
message and r′ correspond to the simulated random string for the verifier.11

Bob sends the first message a′ across to Alice. Bob then outputs the simulated
second message b′. Alice uses the witness w to generate the prover’s response b
(i.e., the prover P’s actual response given the message a′ from the verifier) and
outputs b. The protocol is also depicted in Fig. 2.

Alice Bob

(x,w) ← YL x (a′, b′, r′) ← S(x)

Output b = P(x,w, a′) a′
Output b′

Fig. 2. Key agreement from deterministic provers

To argue that Fig. 2 constitutes a key-agreement protocol, we need to show
that Alice and Bob output the same value, and that no efficient eavesdropper
Eve (who only sees their messages) can predict this output with good probability.

That they agree on the same value follows from the fact that the prover is
deterministic and the simulation is perfect. More specifically, since the simulation
is perfect, the distribution of the simulated verifier’s message a′ is the same as
that of the actual verifier’s message; and now since the prover is deterministic,
given (x,w, a′), the prover’s response b, which is also Alice’s output, is fixed.

11 Throughout this paper, we use the convention that primed symbols are for objects
associated with a simulated (rather than real) execution of the protocol.

From Laconic Zero-Knowledge to Public-Key Cryptography 683

Since the simulation is perfect and x ∈ L, if the simulator outputs (a′, b′, r′),
then b′, which is Bob’s output, is necessarily equal to b.

Next, we show that any eavesdropper Eve who is able to guess Bob’s output
in the protocol can be used to break the cryptographic hardness of L. Suppose
Eve is able to guess Bob’s output in the protocol with probability p. This means
that given only x and a′, where (a′, b′, r′) is produced by the simulator S(x),
Eve is able to find the message b′:

Pr
(x,·)←YL

(a′,b′,r′)←S(x)

[b′ = b′′ where b′′ ← Eve(x, a′)] = p.

As the SZK argument has perfect completeness, and the simulation is also
perfect, the transcripts produced by the simulator (on YES instances) are always
accepted by the verifier. As Eve is able to produce the same prover messages as
the simulator, her messages will also be accepted by the verifier. Namely,

Pr
(x,·)←YL

(a′,b′,r′)←S(x)

[V(x, a′, b′′; r′) = 1 where b′′ ← Eve(x, a′)] ≥ p.

Again using the fact that the simulation is perfect, we can replace the simu-
lated message a′ and simulated coin tosses r′ with a verifier message a and coins
r generated by a real execution of the protocol:

Pr
(x,·)←YL
a←V(x;r)

[V(x, a, b′′; r) = 1 where b′′ ← Eve(x, a)] ≥ p.

Recall that NL samples no-instances that are computationally indistinguish-
able from the YES instances generated by YL. If x had been a NO instance
sampled using NL, then the (computational) soundness of the SZK argument
implies that the verifier would reject with probability 1 − s:

Pr
x←NL

a←V(x;r)

[V(x, a, b′′; r) = 1 where b′′ ← Eve(x, a)] < s,

where s is the soundness error. If p is larger than s by a non-negligible amount,
then we have a distinguisher, contradicting the cryptographic hardness of L. So,
no efficient eavesdropper can recover the agreed output value with probability
noticeably more than s, the soundness error of the SZK argument.

Notice that so far we have only guaranteed that the probability of success
of the eavesdropper is s, which may be as large as a constant (rather than
negligible).12 Nevertheless, using standard amplification techniques (specifically
those of Holenstein and Renner [HR05]) we can compile the latter to a full-
fledged key-agreement protocol.
12 This error can be made negligible by parallel repetition [BIN97] (recall that parallel

repetition preserves honest-verifier zero-knowledge). Doing so however makes the
prover’s messages longer. While this is not an issue when dealing with deterministic
provers, it will prove to be problematic in the general case of a randomized prover.

684 I. Berman et al.

Randomized Prover. So far we have handled deterministic provers. But what
happens if the prover were randomized? Agreement is now in jeopardy as the
prover’s message b is no longer completely determined by the instance x and
the verifier’s message a. Specifically, after Alice receives the simulated verifier
message a′ from Bob, she still does not know the value of b′ that Bob obtained
from the simulator – if she ran P(x,w, a′), she could get one of several possible
b’s, any of which could be the correct b′. Roughly speaking, Alice only has access
to the distribution from which b′ was sampled (but not to the specific value that
was sampled).

Eve, however, has even less to work with than Alice; we can show, by an
approach similar to (but more complex than) the one we used to show that no
polynomial-time eavesdropper can guess b′ in the deterministic prover case, that
no polynomial-time algorithm can sample from any distribution that is close to
the true distribution of b′ for most x’s and a′’s.

We make use of this asymmetry between Alice and Eve in the knowledge
of the distribution of b′ (given x and a) to perform key agreement. We do so
by going through an intermediate useful technical abstraction, which we call
a Trapdoor Pseudoentropy Generator, that captures this asymmetry. We first
construct such a generator, and then show how to use any such generator to do
key agreement.

Trapdoor Pseudoentropy Generator. A distribution is said to possess pseudoen-
tropy [HILL99] if it is computationally indistinguishable from another distribu-
tion that has higher entropy13. We will later claim that in the protocol in Fig. 2
(when used with a randomized prover), the distribution of b′ has some pseudoen-
tropy for the eavesdropper who sees only x and a′. In contrast, Alice, who knows
the witness w, can sample from the distribution that b′ was drawn from. This
set of properties is what is captured by our notion of a trapdoor pseudoentropy
generator.

A trapdoor pseudoentropy generator consists of three algorithms. The key
generation algorithm KeyGen outputs a public and secret key pair (pk, sk). The
encoding, given a public key pk, outputs a pair of strings (u, v), where we call
u the public message and v the private message.14 The decoding algorithm Dec,
given as input the corresponding secret key and the public message u, outputs
a value v′. These algorithms are required to satisfy the following properties
(simplified here for convenience):

– Correctness: The distributions of v and v′ are identical, given pk, sk,
and u.

– Pseudoentropy: The distribution of v has some pseudoentropy given pk
and u.

13 By default, the measure of entropy employed is that of Shannon entropy.
The Shannon entropy of a variable X given Y is defined as: H(X|Y) =
Ey

[− ∑
x Pr[X = x|y] · log(Pr[X = x|y])].

14 We refer to this procedure as an encoding algorithm because we think of the public
message as an encoding of the private message.

From Laconic Zero-Knowledge to Public-Key Cryptography 685

Correctness here only means that the secret key can be used to sample from
the distribution of the private message v corresponding to the given public mes-
sage u. This captures the weaker notion of agreement observed in the protocol
earlier when Alice had sampling access to the distribution of Bob’s output.

The pseudoentropy requirement says that without knowledge of the secret
key, the private message v seems to have more entropy – it looks “more random”
than it actually is. This is meant to capture the asymmetry of knowledge between
Alice and Eve mentioned earlier.

Constructing a Trapdoor Pseudoentropy Generator. Our construction of a trap-
door pseudoentropy generator is described in Fig. 3. It is an adaptation of the
earlier key exchange protocol for deterministic provers (from Fig. 2). The pub-
lic key is an instance x in the language L and the corresponding secret key is
a witness w for x – these are sampled using the solved-instance generator. To
encode with public key x, the simulator from the SZK argument for L is run on
x and the simulated verifier message a′ is set to be the public message, while the
simulated prover message b′ is the private message. To decode given x, w and
a′, the actual prover is run with this instance, witness and verifier message, and
the response it generates is output.

KeyGen

1. Sample (x,w) ← YL
2. Output (pk = x, sk = w)

Enc(pk = x)

1. Sample (a′, b′, r) ← S(x)
2. Output (u = a′, v = b′)

Dec(pk = x, sk = w, u = a′)

1. Sample v′ ← P(x,w, a′)
2. Output v′

Fig. 3. Trapdoor pseudoentropy generator

Now we argue that this is a valid pseudoentropy generator. Since we will need
to be somewhat precise, for the rest of this section, we introduce the jointly-
distributed random variables X, A and B, where X represents the instance
(sampled from YL), A represents the verifier’s message (with respect to X), and
B represents the prover’s response (with respect to X and A). Note that since the
simulation in the SZK argument is perfect, A and B represent the distributions
of the messages output by the simulator as well.

The correctness of our construction follows from the perfect zero knowledge
of the underlying SZK argument – the private message v produced by Enc here is
the simulated prover’s message b′, while the output of Dec is the actual prover’s

686 I. Berman et al.

response b with the same instance and verifier’s message. Both of these have the
same distribution, which corresponds to that of B conditioned on X = x and
A = a′.

In order to satisfy the pseudoentropy condition, the variable B needs to have
some pseudoentropy given X and A. What we know, as mentioned earlier, is that
B is unpredictable given X and A – that no polynomial-time algorithm, given x
and a′, can sample from a distribution close to that of the corresponding prover’s
message b. Towards this end, we will use a result of Vadhan and Zheng [VZ12],
who give a tight equivalence between unpredictability and pseudoentropy. Applied
to our case, their results say what we want – that the variable B has additional
pseudoentropy log(1/s) given X and A, where s is the soundness error from the
SZK argument. More precisely, there exists a variable C such that:

(X,A,B) ≈c (X,A,C) and H(C|X,A) > H(B|X,A) + log(1/s), (1)

where the above expressions refer to Shannon entropy. The result of Vadhan and
Zheng applies only when the variable B has a polynomial-sized domain, which
holds since the proof-system is laconic (this is the first out of several places in
which we use the laconism of the proof-system). The above shows that the con-
struction in Fig. 3 is indeed a trapdoor pseudoentropy generator. Finally, and this
will be crucial ahead, note that the private message produced by Enc is short (i.e.,
the same length as the prover’s message in the SZK argument we started with).

In the case of an SZK protocol with r rounds, the above construction would
be modified as follows. The encoder Enc samples a transcript from S(x), picks
i ∈ [r] at random, sets the public message u to be all the messages in the
transcript upto the verifier’s message in the ith round, and the private message
v to be the prover’s message in the ith of the transcript. The decoder Dec samples
v′ by running the prover on the partial transcript u to get the actual prover’s
response in the ith round.15 Zero knowledge ensures that v′ and v are distributed
identically, and unpredictability arguments similar to the ones above tell us that
v′ has pseudoentropy at least log(1/s)/r.

From Laconic Trapdoor Pseudoentropy Generator to Key Agreement. Next, given
a trapdoor pseudoentropy generator, such as the one in Fig. 3, we show how to
construct a single-round key agreement protocol. We start with a pseudoentropy
generator in which the public key is pk, the private key is sk, the public message
is u, the private message is v, and the output of Dec is v′. The random variables
corresponding to these are the same symbols in upper case. v and v′ come from
the distribution Vpk,u (V conditioned on PK = pk and U = u), and V has
additional pseudo-Shannon-entropy η given PK and U , where η can be thought
of as a constant (η was log(1/s) in the foregoing construction).

In the key agreement protocol, first Alice samples a key pair (pk, sk) for
the pseudoentropy generator and sends the public key pk to Bob. Bob runs
(u, v) ← Enc(pk), keeps the private message v and sends the public message u

15 For simplicity, assume that the prover is stateless so it can be run on a partial
transcript. In the actual proof we handle stateful provers as well.

From Laconic Zero-Knowledge to Public-Key Cryptography 687

to Alice. We would like for Alice and Bob to agree on the string v. In order for
this to be possible, Bob needs to send more information to Alice so as to specify
the specific v that was sampled from Vpk,u. A natural idea is for Bob to send,
along with the message u, a hash h(v) of v, where h is a sampled from a pairwise
independent hash function family H.

Alice, on receiving the hash function h and the hash value h(v), uses rejection
sampling to find v. She can sample freely from the distribution Vpk,u by running
Dec(sk, u) because she knows the secret key sk of the pseudoentropy generator
and the public message u. She keeps drawing samples v′ from Vpk,u, until she
finds one that hashes to h(v). Note that this brute force search is only feasible
if the number of strings in the support of V is small, which is the case if the
number of bits in v is small – considering the big picture, this is one of the
reasons we want the prover from the SZK argument to be laconic.

The main question now is how to set the length of the hash function. On the
one hand, having a long hash helps agreement, as more information is revealed
to Alice about v. On the other hand, security demands a short hash that does
not leak “too much” information about v.

For agreement, roughly speaking, if the hash length were more than the max-
entropy16 of V given PK and U , which we denote by Hmax(V |PK,U), then the
set of possible prover responses is being hashed to a set of comparable size, so
with good probability, the hash value h(v) will have a unique pre-image, which
Alice can identify.

For security we would like to argue, using the Leftover Hash Lemma, that to
any eavesdropper h(v) looks uniformly random given (pk, u, h). This would be
true if the hash length were less than the min-entropy17 of V given PK and U ,
which we denote by Hmin(V |PK,U). Unfortunately, both of the above conditions
cannot hold simultaneously because the min-entropy is upper-bounded by the
max-entropy.

At this point we use the fact that Eve is computationally bounded. Hence,
a computational analogue of high min-entropy, which we will call pseudo-min-
entropy, would suffice for security. Concretely, consider a random variable C such
that (PK,U,C) is computationally indistinguishable from (PK,U, V). Further-
more, suppose that the min-entropy of C given PK and U is considerably larger
than the hash length. We can then use the Leftover Hash Lemma to argue that
h(V) looks uniform to efficient eavesdroppers:

(PK,U, h, h(V)) ≈c (PK,U, h, h(C)) ≈s (PK,U, h,R)

where R is the uniform distribution over the range of h.
The benefit of this observation is that, since C is only required to be com-

putationally close and not statistically close to V , the min-entropy of C given

16 The max entropy corresponds to the logarithm of the support size. The condi-
tional max entropy of a random variable X given Y is defined as: Hmax(X|Y) =
maxy log(|Supp(X|Y = y)|).

17 The min-entropy of a variable X given Y is defined as: Hmin(X|Y) =
− log(maxx,y Pr[X = x|Y = y]).

688 I. Berman et al.

PK and U could be much larger than that of V given PK and U . And if we can
find a C such that Hmin(C|PK,U) is sufficiently larger than Hmax(V |PK,U),
then we will indeed be able to choose a hash length that is both large enough
for agreement and small enough for security.

Also notice that for the agreement to work, it is not necessary for the hash
length to be larger than the max-entropy of V (given PK and U) itself – instead,
if there was another variable D such that (PK,U,D) is statistically close to
(PK,U, V), and also Alice is somehow able to sample from D given PK = pk
and U = u, then it is sufficient for the hash to be longer than Hmax(D|PK,U).
Given such a variable, Bob will operate as he did earlier, but Alice can assume
that he is actually sampling from Dpk,u instead of Vpk,u, and since these two
distributions are close most of the time, the probability of Alice’s subsequent
computation going wrong is small. This helps us because now we might be able
to find such a D that has lower max-entropy given PK and U than V , and then
Hmin(C|PK,U) would only have to be larger than this.

Following these observations, we set ourselves the following objective: find
variables C and D such that:

(PK,U,D) ≈s (PK,U, V) ≈c (PK,U,C)
and (2)

Hmax(D|PK,U) < Hmin(C|PK,U)

What we do know about V is that it has some pseudo-Shannon-entropy given
PK and U . That is, there is a variable C such that:

(PK,U, V) ≈c (PK,U,C) and H(C|PK,U) > H(V |PK,U) + η (3)

The rest of our construction deals with using this pseudo-Shannon-entropy
to achieve the objectives above. This we do using a technique from Information
Theory dating back to Shannon [Sha48] which is often referred to in the cryptog-
raphy literature as flattening of distributions, which we describe next. We note
that this technique has found use in cryptography before [HILL99,GV99,SV03].

Flattening and Typical Sets. The central idea here is that repetition essentially
reduces the general case to the case where the distribution is “almost flat”.
Namely, if we start with a distribution that has Shannon entropy ξ and repeat
it k times, then the new distribution is close to being uniform on a set whose
size is roughly 2kξ. This set is called the typical set ; it consists of all elements
whose probability is close to 2−kξ.

In our case, consider the distribution (PKk, Uk, V k), which is the k-fold
product repetition of (PK,U, V). Roughly speaking, we define the typical set of
V k conditioned on any (pk,u) in the support18 of (PKk, Uk) as follows19:

18 The support of (PKk, Uk) consists of vectors with k elements. We represent vectors
by bold symbols, e.g., v.

19 The actual definition quantifies how different from 2−kH the probability is allowed
to be.

From Laconic Zero-Knowledge to Public-Key Cryptography 689

TV k|pk,u =
{

v : Pr
[
V k = v

∣∣(PKk, Uk) = (pk,u)
]

≈ 2−kH(V |PK,U)
}

Considering the typical set is useful for several reasons. On the one hand, the
typical set is quite small (roughly 2kH(V |PK,U)) in size, which means that any
distribution supported within it has somewhat low max-entropy. On the other
hand, there is an upper bound on the probability of any element that occurs in
it, which could be useful in lower bounding min-entropy, which is what we want
to do.

The most important property of the typical set it that it contains most of
the probability mass of the conditional repeated distribution. That is, for most
(pk,u,v) sampled from (PKk, Uk, V k), it holds that v lies in the typical set
conditioned on (pk,u); quantitatively, Holenstein and Renner [HR11] show the
following:

Pr
(pk,u,v)←(PKk,Uk,V k)

[
v �∈ TV k|pk,u

]
< 2−Ω(k/q2) (4)

where q is the number of bits in each sample from V . Recall that in our earlier
construction of the trapdoor pseudoentropy generator, this corresponds to the
length of the prover’s message in the SZK argument we started with. We want
the above quantity to be quite small, which requires that k � q2. This is one of
the considerations in our ultimate choice of parameters, and is another reason
we want the prover’s messages to not be too long.

Back to PKE Construction. We shall use the above facts to now show that V k has
pseudo-min-entropy given PKk and Uk. Let C be the random variable from the
expression (3) above that we used to show that V has pseudo-Shannon-entropy.
After repetition, we have that:

(PKk, Uk, V k) ≈c (PKk, Uk, Ck) and

H(Ck|PKk, Uk) = k · H(C|PK,U) > k · (H(V |PK,U) + η).

Next, consider the variable C ′ that is obtained by restricting, for each pk and u,
the variable Ck to its typical set conditioned on (pk,u). By applying the bound
of Holenstein and Renner (4) with an appropriate choice of k, we infer that:

(PKk, Uk, Ck) ≈s (PKk, Uk, C ′).

Further, the upper bound on the probabilities of elements in the typical set
tells us that C ′ has high min-entropy20 given PKk and Uk:

20 Hmin(C
′|PKk, Uk) could actually be slightly less than the approximate lower bound

presented here because there is some slack allowed in the definition of the typical set
– it can contain elements whose probabilities are slightly larger than 2−kH(C|PK,U).
We need to pick this slack carefully – if it is too large, C′ loses its min-entropy, and
if it is too small the typical set also becomes too small and the bound in (4), which
actually depends on this slack, becomes meaningless. This is another constraint on
our choice of parameters.

690 I. Berman et al.

Hmin(C ′|PKk, Uk) ≈ H(Ck|PKk, Uk) ≥ k · (H(V |PK,U) + η).

Putting the above few expressions together tells us that V k has some pseudo-
min-entropy given PKk and Uk, which is in fact somewhat more than its Shan-
non entropy:

(PKk, Uk, V k) ≈c (PKk, Uk, C ′)
and (5)

Hmin(C ′|PKk, Uk) � H(V k|PKk, Uk) + k · η.

This satisfies our objective of getting a variable – V k here – that has high
pseudo-min-entropy (given PKk and Uk). Our goal is now to find another vari-
able that is statistically close to V k given PKk and Uk, and also has small
max-entropy given PKk and Uk. We do this using the same approach as above.
Consider the variable V ′ that is constructed from V k in the same way C ′ was
from Ck – for each (pk,u), restrict V k to its typical set conditioned on (pk,u).
Again, bound (4) tells us that the new distribution is close to the old one. And
also, because of the upper bound on the size of the typical set, we have an upper
bound on the max-entropy21 of V ′ given PKk and Uk.

(PKk, Uk, V k) ≈s (PKk, Uk, V ′)
and (6)

Hmax(V ′|PKk, Uk) � H(V k|PKk, Uk).

Putting together expressions (5) and (6), we find that the relationship we
want between these entropies of C ′ and V ′ is indeed satisfied:

Hmin(C ′|PKk, Uk) � Hmax(V ′|PKk, Uk) + k · η.

To summarize, we manage to meet the conditions of expression (2) with respect
to (PKk, Uk, V k) (instead of (PK,U, V)) with C ′ taking the role of C and V ′

taking the role of D. We can now finally fix the length of our hash – call it �
– to be between Hmax(V ′|PKk, Uk) and Hmin(C ′|PKk, Uk), which can be done
by setting it to a value between H(V k|PKk, Uk) and H(V k|PKk, Uk) + kη for
an appropriate k, and emulate the earlier protocol. We will be able to use the
Leftover Hash Lemma as desired to argue security and use the low max-entropy
of V ′ to argue agreement.

The final key agreement protocol from a trapdoor pseudoentropy generator
is presented in Fig. 4.

21 The same caveats as in Footnote 20 regarding the min-entropy of C′ apply here as
well.

From Laconic Zero-Knowledge to Public-Key Cryptography 691

Alice Bob

{(pki, ski) ← KeyGen}i∈[k]
pk = (pk1, pk2 . . . pkk) {(ui, vi) ← Enc(pki)}i∈[k]

Use the samplers {Dec(pki, ski, ui)} to recover

the distribution of V k conditioned on (pk,u).

Find v′ such that:

1. v′ is in the typical set of this distribution

2. h(v′) = h(v)

u, h, h(v) h ← H�

Output v′ Output v

Fig. 4. Key agreement from trapdoor pseudoentropy generator

How Laconic? To examine how long the prover’s message can be, lets recall the
restrictions of our construction. First, we need both parties to be efficient. While
Bob is clearly efficient, Alice performs an exhaustive search over the domain
of possible prover messages. The size of this domain is 2q·k because the parties
repeat the underlying protocol k times and the length of each prover’s message is
q bits. For Alice to be efficient, this domain has to be polynomial-sized, requiring
that q · k = O(log n), where n is the input length. Second, we need that the
concentration bound for the typical set (Eq. (4)) to be meaningful; that is, we
need k/q2 to be at least a constant. Together, these imply that q3 needs to be
O(log n). Lastly, this setting of parameters also suffices for the [VZ12] result that
we used in Eq. (1).

2 The Assumption and Main Theorem

In this section, we specify our assumption on the existence of laconic zero-
knowledge proof-systems, and state our main theorem regarding its implication
for public-key encryption. Due to space limitations, the formal descriptions of
our constructions and the proof of our theorem are deferred to the full version
of this paper.

We first introduce some necessary definitions and notations. Throughout this
section, we use L to denote an NP language with witness relation RL. We use
YL and NL to denote probabilistic polynomial-time algorithms that are to be
seen as sampling algorithms for YES and NO instances of L. More specifically,
the sampler YL(1λ) outputs samples of the form (x,w) such that with all but
negligible probability (in λ), it holds that (x,w) ∈ RL. We call YL a solved
instance generator. On the other hand, NL(1λ) outputs samples x such that with
all but negligible probability, x /∈ L. We shall not rely on the fact that the NO
sampler NL is an efficient algorithm. Still we find it easier to present it as such
for symmetry with YL (which must be efficient).

We shall be concerned with properties of the tuple (L,YL,NL) – the language
L equipped with (efficiently sampleable) distributions over its YES and NO
instances (where YES instances come with corresponding witnesses). Since the

692 I. Berman et al.

choice of YES and NO distributions is always clear from the context, we often
simply refer to the above tuple as the language (although we actually mean
the language L with these specific distributions over its instances). We start by
defining what we mean when we say that such a language is cryptographically
hard.

Definition 2.1 (Cryptographic Hardness). Let t = t(λ) ∈ N and ε = ε(λ) ∈
[0, 1]. The language (L,YL,NL) is (t, ε)-cryptographically hard if YL is a solved
instance generator, and for every probabilistic algorithm A that on input (1λ, x)
runs in time t(λ) and for all sufficiently large λ ∈ N it holds that:

∣∣∣∣ Pr
(x,·)←YL(1λ)

[
A(1λ, x) = 1

]
− Pr

x←NL(1λ)

[
A(1λ, x) = 1

]∣∣∣∣ ≤ ε(λ),

where the above probabilities are also over the random coins of A. We say that
(L,YL,NL) is cryptographically hard if it is (λc, 1/λc)-hard for every constant
c > 0.

Being cryptographically hard is a stronger requirement than the usual notion
of average-case hardness (the latter means that it is hard to distinguish a random
YES instance from a random NO instance). Specifically, cryptographic hardness
requires both (1) average-case hardness and (2) the existence of a solved instance
generator (wrt the average-case hard distribution). In particular, the existence
of a cryptographically hard language is equivalent to the existence of one-way
functions.22 As noted above, when we say that the language L is cryptograph-
ically hard we are actually implicitly referring to the sampling algorithms YL
and NL.

Next we define honest-verifier statistical zero-knowledge (SZK) arguments,
which are similar to statistical honest-verifier zero-knowledge proofs but the
soundness condition is only required to hold against malicious provers that run
in polynomial-time. We remark that since we will be using the existence of
SZK arguments to construct other objects, both the relaxations that we employ
(namely requiring only computational soundness and honest verifier zero knowl-
edge) only strengthen our results.

Below, we use (P,V)(1λ, x) to refer to the transcript of an execution of an
interactive protocol with prover P and verifier V on input (1λ, x). We also use
(P(w),V)(1λ, x) to denote a similar execution where the prover is additionally
given a witness w as an auxiliary input. In both cases, we sometimes also use the
22 That YES instances are indistinguishable from NO instances implies that it is hard

to compute a witness for a YES instance. Given this, a function that takes coins for
YL and outputs the instance (but not the witness) generated by YL is one-way (c.f.,
[Gol08, Proposition 7.2]). For the other direction, assuming that one-way functions
exist implies the existence of a linear-stretch pseudorandom generators (PRG) G
[HILL99]. The language that is cryptographically hard contains those strings that
are in the range of G. The solved instance generator samples a random string r and
outputs G(r) as the input and r as the witness. The corresponding NO distribution
is that of a random string in the range of the PRG.

From Laconic Zero-Knowledge to Public-Key Cryptography 693

same notation to refer to the result (i.e., verifier’s output) of such an execution
– the appropriate interpretation will be clear from context.

Definition 2.2 (SZK Arguments). Let c = c(λ) ∈ [0, 1] and s = s(λ) ∈
[0, 1]. An interactive protocol (P,V) is an Honest Verifier SZK Argument with
completeness error c and soundness error s for a language L ∈ NP, with witness
relation RL, if the following properties hold:

– Efficiency: Both P and V are probabilistic polynomial-time algorithms.
– Completeness: For any (x,w) ∈ RL, and all large enough λ:

Pr
[
(P(w),V)(1λ, x) accepts

]
≥ 1 − c(λ),

where the parameter c is called the completeness error.
– Soundness: For any probabilistic polynomial-time cheating prover P�, any

x /∈ L, and large enough λ:

Pr
[
(P∗,V)(1λ, x) accepts

]
≤ s(λ),

where the parameter s is called the soundness error.
– Honest Verifier Statistical Zero Knowledge: There is a probabilistic

polynomial-time algorithm S (called the simulator) that when given any x ∈ L
simulates the transcript of the interactive proof on input x. That is, for any
(x,w) ∈ RL and for all sufficiently large λ:

SD
(
(P(w),V)(1λ, x),S(1λ, x)

)
≤ negl(λ).

Note that our definition only deals with NP languages and requires that the
prover is efficient. Typically, when defining an SZK proof (rather than argu-
ment) this is not done, and the honest prover is allowed to be computationally
unbounded. However, this is the natural choice since we focus on argument sys-
tems (where the soundness requirement is only against malicious provers that
are also efficient).

Remark 2.3 (Restricted-view Simulation). For our main result, it suffices that
the simulator only simulates the transcript of the interactive proof and not the
random-coins of the verifier. The standard definition of simulation is stronger – it
also requires that the simulator output random-coins for the verifier that are con-
sistent with the transcript. Ostrovsky [Ost91] called the weaker notion restricted-
view simulation, and showed that average-case hard languages with honest-
verifier SZK proofs with restricted-view simulation (without efficient provers)
imply the existence of one-way functions.

We will be dealing with SZK arguments that have additional properties cap-
tured by the next definition. Recall that a round in an interactive proof is a pair
of messages, the first one (possibly empty) from V to P, and the next the other
way.

694 I. Berman et al.

Definition 2.4 (Laconism). Let q = q(λ) ∈ N and r = r(λ) ∈ N. An inter-
active protocol (P,V) is said to be r-round and q-laconic if it has at most r(λ)
rounds, and each message from P to V is at most q(λ) bits long when run on
any input (1λ, x), for large enough λ.

We can now state our main assumption as follows.

Assumption 2.5. There exists a cryptographically hard language (L,YL,NL)
for which there is an r-round and q-laconic honest-verifier SZK argument with
completeness error c and soundness error s such that:

– There is a constant β > 0 such that 1 − c(λ) > s(λ) + β, for large enough
λ ∈ N.

– q and r are such that r2 · q3 = O(log(λ)).

Our main result is given in the next theorem.

Theorem 2.6. (PKE from Laconic SZK). If Assumption 2.5 holds, then there
exists a public-key encryption scheme.

The construction of our public-key encryption scheme from Assumption 2.5,
and the proof of Theorem2.6, are presented in the full version of this paper.
There, in addition, we consider two relaxations of Assumption 2.5, each of which
still suffices for our construction. We also present a comparison of our assump-
tions to concrete assumptions that have been used in the past to construct
public-key encryption.

Acknowledgments. We thank Vinod Vaikuntanathan for his encouragement and for
helpful discussions. We thank the anonymous reviewers for very useful comments and
in particular for suggesting the abstraction of trapdoor pseudoentropy generator.

Research supported in part by NSF Grants CNS-1413920 and CNS-1350619, and
by the Defense Advanced Research Projects Agency (DARPA) and the U.S. Army
Research Office under contracts W911NF-15-C-0226 and W911NF-15-C-0236. The
third author was also supported by the SIMONS Investigator award agreement dated
6-5-12 and the Cybersecurity and Privacy Institute at Northeastern University.

References

[ABW10] Applebaum, B., Barak, B., Wigderson, A.: Public-key cryptography from
different assumptions. In: Proceedings of the 42nd ACM Symposium on
Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5–8
June 2010, pp. 171–180 (2010)

[Ale03] Alekhnovich, M.: More on average case vs approximation complexity. In:
Proceedings of the 44th Symposium on Foundations of Computer Science
(FOCS 2003), Cambridge, MA, USA, 11–14 October 2003, pp. 298–307.
IEEE Computer Society (2003)

[AR16] Applebaum, B., Raykov, P.: On the relationship between statistical zero-
knowledge and statistical randomized encodings. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 449–477. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53015-3 16

https://doi.org/10.1007/978-3-662-53015-3_16

From Laconic Zero-Knowledge to Public-Key Cryptography 695

[Bab16] Babai, L.: Graph isomorphism in quasipolynomial time [extended
abstract]. In Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, 18–21 June
2016, pp. 684–697 (2016)

[BDV16] Bitansky, N., Degwekar, A., Vaikuntanathan, V.: Structure vs hardness
through the obfuscation lens. IACR Cryptology ePrint Archive 2016:574
(2016)

[BHY09] Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for
encryption and commitment secure under selective opening. In: Joux, A.
(ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 1

[BIN97] Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the
error in computationally sound protocols? In: 38th Annual Symposium
on Foundations of Computer Science, FOCS 1997, Miami Beach, Florida,
USA, 19–22 October 1997, pp. 374–383 (1997)

[BL13] Bogdanov, A., Lee, C.H.: Limits of Provable Security for Homomorphic
Encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 111–128. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40041-4 7

[CS02] Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46035-7 4

[DH76] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans.
Inf. Theory 22(6), 644–654 (1976)

[GH98] Goldreich, O., H̊astad, J.: On the complexity of interactive proofs with
bounded communication. Inf. Process. Lett. 67(4), 205–214 (1998)

[GK93] Goldreich, O., Kushilevitz, E.: A perfect zero-knowledge proof system for
a problem equivalent to the discrete logarithm. J. Cryptol. 6(2), 97–116
(1993)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: Proceedings
of the 19th Annual ACM Symposium on Theory of Computing, New York,
New York, USA, pp. 218–229 (1987)

[Gol08] Goldreich, O.: Computational Complexity - A Conceptual Perspective.
Cambridge University Press, Cambridge (2008)

[GOVW12] Garg, S., Ostrovsky, R., Visconti, I., Wadia, A.: Resettable statistical
zero knowledge. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp.
494–511. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
28914-9 28

[GV99] Goldreich, O., Vadhan, S.P.: Comparing entropies in statistical zero knowl-
edge with applications to the structure of SZK. In: Proceedings of the 14th
Annual IEEE Conference on Computational Complexity, Atlanta, Georgia,
USA, 4–6 May 1999, p. 54 (1999)

[GVW02] Goldreich, O., Vadhan, S., Wigderson, A.: On interactive proofs with a
laconic prover. Comput. Complex. 11(1–2), 1–53 (2002)

[HHRS15] Haitner, I., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in inter-
active protocols–tight lower bounds on the round and communication com-
plexities of statistically hiding commitments. SIAM J. Comput. 44(1),
193–242 (2015)

https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-642-40041-4_7
https://doi.org/10.1007/978-3-642-40041-4_7
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-642-28914-9_28
https://doi.org/10.1007/978-3-642-28914-9_28

696 I. Berman et al.

[HILL99] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gen-
erator from any one-way function. SIAM J. Comput. 28(4), 1364–1396
(1999)

[HLWW16] Hazay, C., López-Alt, A., Wee, H., Wichs, D.: Leakage-resilient cryptog-
raphy from minimal assumptions. J. Cryptol. 29(3), 514–551 (2016)

[HNO+09] Haitner, I., Nguyen, M.-H., Ong, S.H., Reingold, O., Vadhan, S.P.: Statis-
tically hiding commitments and statistical zero-knowledge arguments from
any one-way function. SIAM J. Comput. 39(3), 1153–1218 (2009)

[HR05] Holenstein, T., Renner, R.: One-way secret-key agreement and applica-
tions to circuit polarization and immunization of public-key encryption. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 478–493. Springer,
Heidelberg (2005). https://doi.org/10.1007/11535218 29

[HR11] Holenstein, T., Renner, R.: On the randomness of independent experi-
ments. IEEE Trans. Inf. Theory 57(4), 1865–1871 (2011)

[IR89] Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-
way permutations. In: Proceedings of the Twenty-First Annual ACM Sym-
posium on Theory of Computing, pp. 44–61. ACM (1989)

[Kil88] Kilian, J.: Founding crytpography on oblivious transfer. In: Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing, pp.
20–31. ACM (1988)

[KMN+14] Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.:
One-way functions and (im)perfect obfuscation. In: 55th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2014, Philadel-
phia, PA, USA, 18–21 October 2014, pp. 374–383. IEEE Computer Society
(2014)

[LV16] Liu, T., Vaikuntanathan, V.: On basing private information retrieval on
NP-hardness. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part I.
LNCS, vol. 9562, pp. 372–386. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-49096-9 16

[NV06] Nguyen, M.-H., Vadhan, S.P.: Zero knowledge with efficient provers. In:
Proceedings of the 38th Annual ACM Symposium on Theory of Comput-
ing, Seattle, WA, USA, 21–23 May 2006, pp. 287–295 (2006)

[Ost91] Ostrovsky, R.: One-way functions, hard on average problems, and statisti-
cal zero-knowledge proofs. In: Proceedings of the Sixth Annual Structure
in Complexity Theory Conference, Chicago, Illinois, USA, 30 June - 3 July
1991, pp. 133–138 (1991)

[OV08] Ong, S.J., Vadhan, S.: An equivalence between zero knowledge and
commitments. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp.
482–500. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78524-8 27

[PPS15] Pandey, O., Prabhakaran, M., Sahai, A.: Obfuscation-based non-black-
box simulation and four message concurrent zero knowledge for NP. In:
Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp.
638–667. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46497-7 25

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient
and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-85174-5 31

https://doi.org/10.1007/11535218_29
https://doi.org/10.1007/978-3-662-49096-9_16
https://doi.org/10.1007/978-3-662-49096-9_16
https://doi.org/10.1007/978-3-540-78524-8_27
https://doi.org/10.1007/978-3-540-78524-8_27
https://doi.org/10.1007/978-3-662-46497-7_25
https://doi.org/10.1007/978-3-662-46497-7_25
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31

From Laconic Zero-Knowledge to Public-Key Cryptography 697

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th
Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA,
22–24 May 2005, pp. 84–93. ACM (2005)

[Rot11] Rothblum, R.: Homomorphic encryption: from private-key to public-key.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 219–234. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 14

[RSA78] Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126
(1978)

[Sha48] Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech.
J. 27(3), 379–423 (1948)

[SV03] Sahai, A., Vadhan, S.: A complete problem for statistical zero knowledge.
J. ACM (JACM) 50(2), 196–249 (2003)

[VZ12] Vadhan, S., Zheng, C.J.: Characterizing pseudoentropy and simplify-
ing pseudorandom generator constructions. In: Proceedings of the Forty-
Fourth Annual ACM Symposium on Theory of Computing, pp. 817–836.
ACM (2012)

https://doi.org/10.1007/978-3-642-19571-6_14

	From Laconic Zero-Knowledge to Public-Key Cryptography
	1 Introduction
	1.1 Our Results
	1.2 Related Works
	1.3 Techniques

	2 The Assumption and Main Theorem
	References

