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Abstract. At ICS 2010, Dziembowski, Pietrzak and Wichs introduced
the notion of non-malleable codes, a weaker form of error-correcting codes
guaranteeing that the decoding of a tampered codeword either corre-
sponds to the original message or to an unrelated value. The last few
years established non-malleable codes as one of the recently invented
cryptographic primitives with the highest impact and potential, with
very challenging open problems and applications.

In this work, we focus on so-called continuously non-malleable codes
in the split-state model, as proposed by Faust et al. (TCC 2014), where
a codeword is made of two shares and an adaptive adversary makes
a polynomial number of attempts in order to tamper the target code-
word, where each attempt is allowed to modify the two shares inde-
pendently (yet arbitrarily). Achieving continuous non-malleability in the
split-state model has been so far very hard. Indeed, the only known
constructions require strong setup assumptions (i.e., the existence of a
common reference string) and strong complexity-theoretic assumptions
(i.e., the existence of non-interactive zero-knowledge proofs and collision-
resistant hash functions).

As our main result, we construct a continuously non-malleable code in
the split-state model without setup assumptions, requiring only one-to-
one one-way functions (i.e., essentially optimal computational assump-
tions). Our result introduces several new ideas that make progress
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towards understanding continuous non-malleability, and shows interest-
ing connections with protocol-design and proof-approach techniques used
in other contexts (e.g., look-ahead simulation in zero-knowledge proofs,
non-malleable commitments, and leakage resilience).

Keywords: Continuously non-malleable codes · Split-state model
Minimal assumptions

1 Introduction

Dziembowski, Pietrzak and Wichs introduced the notion of a non-malleable code
(NMC) in [27]. Their new notion generated tremendous interest in recent years
both for the challenging theoretical questions raised by such codes, and for their
interesting applications in cryptography. An NMC is a key-less procedure that
allows to encode a message m in such a way that, upon input the encoding of
m, it is not possible (or it is hard in the computational case) to produce an
encoding of a value related to m.1

Obviously an NMC requires some restrictions on the view of the adversary.
Indeed, as the encoding/decoding are key-less procedures, an adversary could
always decode a codeword, change the underlying message to a related value, and
encode the result. For this reason, non-malleability is typically parameterized by
the set of allowed modifications Φ that can be applied by the adversary to a target
encoding, and previous work on NMCs focused on constructing non-malleable
codes for restricted (yet meaningful) classes Φ.

The split-state model. One of the most natural and investigated models is to
assume that a codeword c consists of two shares c = (c0, c1), and that each
tampering attempt φ = (φ0, φ1) ∈ Φ is characterized by two arbitrary functions
that can be applied to each share independently. Note that the two tampering
functions cannot run the decoding procedure, because both shares are needed in
order to decode a codeword, whereas each of the functions φ0, φ1 can access only
one share. This setting is often called the split-state model and is the focus of this
paper; we often use the terminology split-state code to denote a code in the split-
state model. We refer the reader to Sect. 1.5 for an overview of known construc-
tions of non-malleable codes for different classes Φ. Previous work showed how
to construct split-state non-malleable codes, both for the information-theoretic
setting [3,4,6,7,13,18,25,27,37] and the computational setting [2,22,30,38].

1.1 Continuous Non-Malleability

The original notion of NMCs provides a security guarantee only against adver-
saries that try to tamper the codeword once. The more general case of continuous

1 In this paper, we will only focus on efficient NMCs where both the encoding and
decoding procedures run in polynomial time.
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non-malleability was introduced by Faust et al. [30], with the goal of guarantee-
ing non-malleability even after multiple (adaptively chosen) tampering attempts;
that is, the adversary is allowed to choose the tampering functions to apply in the
next round based on the answers obtained in the previous rounds. As pointed out
also in [30], continuously non-malleable codes (CNMCs) are arguably the most
natural generalization of standard NMCs, and allow to significantly strengthen
their applications [19,20,31].

Different flavors of non-malleability. The work of [27] considered a default and a
strong flavor of non-malleability. In both cases, the adversary is allowed to see the
decoding m̃ of the modified codeword c̃ = φ(c). However, the default notion only
guarantees non-malleability as long as the decoded message is different from the
original message, i.e. it might be possible for the attacker to create an encoding
c̃ �= c such that c̃ still decodes to the original message m. In contrast, this is not
allowed in the case of strong non-malleability which guarantees that whenever
c̃ �= c the decoded value m̃ will be unrelated to m. An even stronger flavor,
known as super non-malleability [30,32,36], ensures that c̃ is independent of c
whenever c̃ �= c is a valid codeword. This is modeled by allowing the adversary
to actually see c̃ (as long as c̃ �= c and c̃ is valid).

Clearly, the above flavors of non-malleability can also be considered in the
continuous setting. In this paper, we focus only on the “default flavor” of con-
tinuous non-malleability. This in contrast to previous work on continuously non-
malleable codes (except [19,20,28]), which instead by default considered con-
tinuous super non-malleability. While the notion we consider is strictly weaker
than continuous strong or super non-malleability, to the best of our knowledge,
it is sufficient for all known applications of continuously non-malleable codes, in
particular [19,20,28,30,31].

Depending on the tampering functions being applied always to the initial
encoding c, or to the result of the previous tampering attempt, one can also
have notions called non-persistent and persistent tampering. In this paper we
focus on the setting of non-persistent tampering, which is the strongest2 flavor
of continuous non-malleability (and also the variant most useful for applications).

Self destruction. Unfortunately, even for very simple classes Φ, continuous non-
malleability as hinted above is actually impossible to achieve. Indeed, a simple
attack—proposed for the first time by Gennaro et al. [33] in the context of
“Algorithmic Tamper-Proof Security”—allows to completely recover a target
encoding by simply trying to guess each of its bits individually: the output
of the decoding corresponding to each tampering attempt will yield either the
original message or the special symbol ⊥ (denoting an invalid codeword), thus
revealing the entire codeword (and thus the underlying message) in a bit-wise
fashion. Remarkably, such an attack can be performed by looking at each bit of
the encoding independently, which is a special case of split-state tampering.
2 In fact, note that a persistent continuous attack specified as a sequence of (determin-

istic) tampering functions φ, φ′, φ′′, · · · , can always be emulated by a non-persistent
continuous attack specified as φ(·), φ′(φ(·)), φ′′(φ′(φ(·))), · · · .
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The standard way out is to relax continuous non-malleability, therefore cir-
cumventing the above impossibility result, assuming a special “self-destruct”
feature: After the first invalid encoding is processed, the system “blows-up” and
stops processing further queries.3

Message uniqueness. It is not hard to show that any code achieving continuous
non-malleability in the split-state model must satisfy a property called message
uniqueness. Informally, message uniqueness means that if we fix the left share
c0 of an encoding, it should be hard to come up with two distinct right shares
c1, c̄1 such that both (c0, c1) and (c0, c̄1) are valid codewords decoding to two
distinct messages, say m and m̄ respectively.4 (An analogous guarantee must
hold in case we fix the right share.)

To see why uniqueness is needed, assume it is possible to efficiently find two
encodings (c0, c1) and (c0, c̄1) violating message uniqueness, and let (c∗

0, c
∗
1) be

the target encoding that we want to maul via a split-state attack. Then, in a
continuous attack, we can simply consider the tampering functions (φ(i)

0 , φ
(i)
1 )

that always fix the left share to c0 (regardless of c∗
0) and, depending on the i-th

bit of c∗
1 either overwrite c∗

1 with c1 or with c̄1. The sequence of decoded messages
produced by such an attack allows an adversary to recover c∗

1 without the risk
of incurring a self-destruct. After c∗

1 is available, an additional tampering query
easily allows to encode a related value.5

The state of the art: trusted setup and strong computational assumptions. The
attack based on uniqueness implies that information-theoretic continuous non-
malleability in the split-state model is impossible. This is because message
uniqueness in the information-theoretic setting means that each share of a split-
state encoding must completely determine the message. So, an unbounded tam-
pering function accessing a single share of the codeword could just recover the
underlying message by simply brute forcing all possible values for the missing
share, and running the decoding algorithm until a valid message is found. After-
wards, it can complete the attack by setting (along with the other tampering
function that hardwires correlated randomness and performs the same steps) an
encoding of a related message.

The only known constructions of a CNMC in the split-state model (therefore
also achieving message uniqueness) are the codes of [28,30], but unfortunately

3 In practice self-destruct could be implemented using a single (untamperable) bit of
public state, or by having the device overwrite its own memory in case of an invalid
encoding.

4 Since [30] by default considered continuous super non-malleability, they require an
even stronger form of uniqueness called codeword uniqueness, which intuitively says
that it should be hard to find (c0, c1, c̄1) such that both (c0, c1) and (c0, c̄1) are
valid, and c1 �= c̄1, even if the two codewords encode the same message. This flavor
of uniqueness is not needed in this paper.

5 Message uniqueness is, instead, not necessary for the simpler case of continuous non-
malleability against persistent tampering. Split-state codes achieving such a weaker
security guarantee were recently constructed unconditionally in [7].
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these constructions rely on both trusted setup and strong computational assump-
tions. Indeed such codes require: (i) a “common reference string”, i.e., the
existence of a honestly generated string (with some given distribution) that is
assumed to be untamperable, and that is available to the encoding and decod-
ing functions, and to the adversary; (ii) the existence of non-interactive zero-
knowledge proofs and either collision-resistant hash functions [30] or public-key
encryption resilient to continual leakage [24,28] (which we only know how to
obtain under concrete number-theoretic assumptions over bi-linear groups).

The open problem. Unfortunately, in practical situations, trusted setup is very
difficult to come by (and also expensive to implement). Moreover, one should
always try to get the best possible security, limiting or avoiding the trust on
other parties, on some setup, and on strong computational assumptions. This
leads to the following major open question:

Q1: Can we construct a split-state CNMC under minimal complexity-
theoretic assumptions in the plain model (i.e., without trusted setup)?

Towards the above main question, one might also be interested in the follow-
ing natural question:

Q2: Is any split-state code satisfying both message uniqueness and one-
time non-malleability also continuously non-malleable?

1.2 Our Contribution

In this paper we give definitive answers to the above questions. Our main contri-
bution is a positive answer to question Q1, therefore providing the first construc-
tion of a split-state CNMC (for non-persistent tampering) without assuming any
trusted third party, or strong computational assumption. Indeed, we will show
that the sole existence of one-to-one one-way functions already suffices for our
purpose.

Theorem 1 (Informal). If one-to-one one-way functions exists, there is a con-
struction of a split-state code that satisfies continuous non-malleability in the
plain model.

In addition, we also give a negative answer to question Q2. In particular,
we show that there exist (albeit contrived) split-state codes that are one-time
non-malleable and satisfy message uniqueness, but can be broken by a simple
continuous attack.

Theorem 2 (Informal). If one-to-one one-way function exists, then there is a
construction of a split-state code that satisfies both (perfect) message uniqueness
and one-time non-malleability in the plain model, but that is insecure for two
tampering queries.
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We notice that the computational assumption that we use is essentially opti-
mal. In fact, each of the two shares of an encoding of a split-state non-malleable
code satisfying message uniqueness implicitly defines a non-interactive com-
mitment, and, as shown in [39], there is no black-box construction of a non-
interactive commitment scheme from general one-way functions.

1.3 Positive Result

Our positive result introduces new ideas that make progress towards understand-
ing continuous non-malleability, and shows interesting connections with protocol-
design and proof-approach techniques used in other contexts (e.g., look-ahead
simulation in zero-knowledge proofs [46], non-malleable commitments [43], and
leakage resilience [26]). We highlight some of the challenges below.

Hardness of constructing one-time NMCs with message uniqueness. Before
describing our encoding scheme, let us give some intuition why the problem
of obtaining both non-malleability and message uniqueness in the plain model
might be hard to tackle (even using non-standard assumptions). Let c = (c0, c1)
be a split-state codeword. Since we want to achieve message uniqueness, the left
share must completely determine the encoded message; an analogous property
must also hold for the right share. We can thus interpret each of the two shares
produced by the encoding as a non-interactive perfectly6 binding commitment.
On the other hand, c = (c0, c1) must also be non-malleable.

Now, consider the following natural candidate inspired by the recent con-
struction of [12]. We let c0 = (γ0, r1) and c1 = (γ1, r0), where γ0 and γ1 are
perfectly binding non-interactive non-malleable commitments of a message m,
using randomness r0 and r1 (respectively). In the plain model, such commitments
can be based on adaptive one-way functions [41], and, as shown by Pass [42], they
cannot be constructed under falsifiable assumptions (in a black-box sense).

Although, at least intuitively, the above scheme should satisfy both proper-
ties of non-malleability and message uniqueness, we now argue that this might be
very hard to prove. Recall that the experiment defining one-time non-malleability
in the split-state model proceeds as follows: First the adversary chooses two mes-
sages m0,m1, and then it is allowed to specify a single pair of tampering functions
φ = (φ0, φ1) that is applied to an encoding c = (c0, c1) of mb, for hidden bit b
that the adversary needs to guess, upon which the attacker receives the decoded
value corresponding to the tampered codeword. (Unless such value equals one of
m0,m1, in which case the adversary obtains a special output same∗.) Consider
the following pair of split-state functions φ = (φ0, φ1).

– Function φ0, by looking at γ0 recovers some of the bits of r0; function φ1 acts
similarly, i.e. it recovers some of the bits of r1 by looking at γ1.7

6 It is easy to see that, in the plain model, computational uniqueness implies perfect
uniqueness.

7 The assumption that the tampering functions can recover some bits of the random-
ness, is justified by the fact that we do not know of any (even non-adaptive) one-way
function that hides all the bits of its input.
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– As a consequence, φ0 and φ1 have some shared randomness ρ (coming from
the coins of the commitments). Let us now be generous, and further assume
that functions φ0, φ1 can recover the encoded value mb by looking at γ0 and
γ1 (respectively).8 Clearly, any reduction basing one-time non-malleability of
the above scheme on the assumption that the commitments are non-malleable
must in particular work for such a strong split-state attack.

– Finally, the functions (φ0, φ1) use the shared randomness ρ to coordinate
as follows: with probability 1/2 (with common coins derived from ρ) they
replace (c0, c1) with an encoding (c̃0, c̃1) of a value m̃ related to mb (com-
puted using common randomness derived from ρ), and with probability 1/2
(again with common coins derived from ρ) they replace (c0, c1) with uncorre-
lated encodings (therefore decoding to ⊥) of a value m̃ related to m1−b. The
decoded message will be related to mb with probability 1/2, and to m1−b

with probability 1/2.

The above attack is clearly successful. Consider now the reduction that, given
a target commitment γ, samples a random string r, runs (γ̃, r̃) = φ0(γ, r), and
returns γ̃ as mauled commitment. The advantage of such a reduction is zero,
as both φ0 and φ1 return either a commitment to a message related to mb

(with probability 1/2) or a commitment to a message related to m1−b (still with
probability 1/2). It is, thus, not clear how such functions could help in breaking
the non-malleability of the commitment scheme.

Message uniqueness and one-time non-malleability via commitments and leakage
resilience. Our first idea is to circumvent the problem that the adversary might
be able to coordinate φ0 and φ1 using common randomness coming from the com-
mitment, by hiding such randomness. To this end, we make use of a (non-unique)
primitive: an auxiliary split-state non-malleable code which encodes the message
m concatenated with the randomness r used to compute the commitment. The
reason why we can count on this non-unique tool is that in the security proof
we can have a first hybrid experiment where we disconnect the randomness r of
the commitment from the input of the auxiliary non-malleable code. Next, non-
malleability follows by a reduction to the hiding property of the commitment
scheme.

Remarkably, our proof works even if the underlying commitment is malleable;
hence, we can instantiate our construction based on standard cryptographic
assumptions, such as the existence of one-to-one one-way functions (which imply
standard perfectly binding and computationally hiding non-interactive commit-
ments [34]). Intuitively, the reason is that mauling the commitment does not
help, since the message is also input to the auxiliary non-malleable code. The
above trick is inspired by a beautiful idea of Pass and Rosen [44,45]. Indeed, they
constructed non-malleable commitments by composing regular (i.e., potentially
malleable) commitment schemes and non-malleable zero-knowledge arguments of
knowledge. One can see our technique as one more (though completely different)
8 Note that both functions recover the same value mb, because the commitments are

perfectly binding.
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application of the Pass-Rosen trick. We stress that despite the common spirit
of their and our technique, our construction has to deal with several difficulties
that go much beyond the simple use of the above trick.

In order to reduce a successful attack to our code to the security of the inner
auxiliary NMC, we need to use the tampering functions (φ0, φ1) chosen by the
adversary to define the tampering functions (φ′

0, φ
′
1) against the underlying code.

This requires two adjustments: (i) the input to the functions (φ′
0, φ

′
1) must be

enriched adding a commitment; (ii) the output of the functions (φ0, φ1) must
be shrunk removing the commitment. While the former adjustment is pretty
straightforward (indeed it can be accomplished by just hardwiring a commit-
ment and a description of φ0, φ1 in the description of φ′

0, φ
′
1), the latter is more

complicated since we can’t simply remove the commitment. In fact, the commit-
ments produced by the tampering functions could play an important role for the
success of the adversary! This issue will be resolved by additionally assuming
that the inner NMC be a leakage-resilient NMC,9 which allows us to obtain (via
a leakage query) the modified commitment as generated by the tampering func-
tions (φ0, φ1) chosen by the adversary. As we show, this leakage can be used by
the distinguisher of the inner auxiliary NMC to simulate consistently the view
of the distinguisher attacking the full code, thus reaching a contradiction.

The tough continuous case: we are short on leakage queries! The above technique
consisting of using a leakage query to adjust the output of the distinguisher
can be applied because the leaked information (i.e., a commitment) is small
compared to the size of the codewords, and such a small leakage is tolerated by
known constructions.

Consider now a continuous attack, where the adversary picks several tam-
pering functions adaptively. A naive adaptation of the above trick would clearly
result in too much leakage, since there is no a-priori fixed bound on the number
of tampering queries made by the adversary, and each query requires to leak the
corresponding modified commitment. Hence, the proof approach discussed so far
fails in the case of a continuous attack.

We overcome this obstacle using two additional ideas: (i) A new proof strat-
egy based on optimistic answers and rewinding simulation exploiting look-ahead
threads, and (ii) a special leakage-resilient NMC with unconditional security.

Optimistic answers and simulation through look-ahead threads. Our proof strat-
egy borrows the rewinding simulation used in zero-knowledge proofs, and com-
bines it with optimistic answers in order to save on the overall amount of leakage
queries. Recall that the main reason to use a leakage query is to obtain the mod-
ified commitments that are part of the tampered codewords produced by the
tampering functions chosen by the adversary. Note that, once the commitments
are leaked, they can also be decommitted via brute force search, since the goal

9 Roughly, this means that the code remains non-malleable even given some bounded,
independent (yet arbitrary), leakage on the two shares of a target encoding. See
Sect. 3 for a precise definition. Suitable codes were recently constructed in [6].
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is now to break unconditional security of the underlying leakage-resilient NMC,
and therefore the reduction is allowed to run in exponential time.

In order to save on leakage queries, we simulate the answers to the adver-
sary’s tampering queries by using an optimistic approach, essentially returning
the value that had more chances to be encoded by the tampering functions.
Such a value can be computed through brute-force search, by applying the tam-
pering functions to all possible encodings and returning the decoded message
that appears more often. This sequence of “simulated” answers can be seen as
a look-ahead thread [46], where the reduction tries to understand the correct
answers to be played in the main thread of the interaction with the adversary.
Indeed, when the adversary stops, the reduction will run a special leakage query
in order to learn the first point j of the simulation where the optimistic answer
was wrong, and the commitment γ that should have been considered instead.
This information implies that all answers up to the j-th query were correct,
therefore the reduction can complete the current lookahead thread, return to
the main thread, simulate the answer to the first j queries as before, and decom-
mit γ through brute-force search in order to answer the (j + 1)-th query. Next,
the reduction starts another look-ahead thread, and so on, until all queries have
been answered correctly. Through an induction argument, we will show that
the reduction can successfully break the underlying one-time NMC by carefully
adjusting the last pair of tampering functions chosen by the adversary.

The tricky bit is the following: How do we bound the number of look-ahead
threads? Indeed, there is a leakage query for each look-ahead thread, and there-
fore without bounding the number of threads we can not contradict security of
the underlying leakage-resilient NMC.

The small mutual information of [6]. The number of leakage queries is propor-
tional to the number of look-ahead threads, and thus to the number of errors
done by the reduction when giving optimistic answers. Hence, it is crucial to
study the consequences of a wrong optimistic answer.

Whenever an optimistic answer is wrong, we have that the two tampering
functions sent by the adversary modify the target codeword yielding a value
that is not the most likely outcome. Intuitively, this means that for each look-
ahead thread the adversary risks as decoding the special value ⊥ (leading to
self-destruct) with probability at least 1/2. In fact, notice that if one tampering
function sets a value that is not the most likely one, then with probability at
least 1/2 the other tampering function will set a different value, and therefore
the decoding will return ⊥. Clearly, if the adversary is risking ⊥ with probability
at least 1/2, the number of such look-ahead threads is at most poly-logarithmic.

While the above argument is intuitively appealing, the difficulty is that the
two tampering functions could coordinate their outputs using some correlated
information encoded in their inputs. In such a case, they could produce two
valid shares that encode a message which is different from the most likely out-
come, and still the probability of self-destruct is less than 1/2. We circumvent
this complication by assuming two additional properties of the underlying one-
time NMC, namely that the mutual information between the two shares of an
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encoding is not too high, and further that codewords are uniform over a subset of
all possible encodings. Hence, we argue that any such tampering query (yielding
a message that is different from the optimistic answer and incurring in a prob-
ability of self-destruct less than 1/2) will cost one bit of correlated information,
and thus, after a small number of such queries, the mutual information becomes
zero and the probability of ⊥ for each additional query is at least 1/2. The latter
allows our reduction to succeed.

Finally, we show that the code of [6] satisfies all the properties we need, and
moreover, by carefully selecting the parameters, it tolerates enough leakage in
order to apply our reduction.

1.4 Negative Result

Since in the split-state model continuous non-malleability implies message
uniqueness, a natural question is whether the two properties are actually equiv-
alent. We show that they are not equivalent in a very strong sense, indeed in
Sect. 5 we describe a code that is one-time non-malleable and satisfies message
uniqueness, but that is already insecure for 2 tampering queries. The scheme
makes black-box use of any one-time non-malleable code in the split-state model
additionally satisfying message uniqueness (such as our scheme from Sect. 4).
The idea is to encode both the message m and some random pad κ using the
underlying non-malleable code. Let us write (c10, c

1
1) and (c20, c

2
1) for the corre-

sponding encodings. The obtained codeword has c∗
0 := (c10, c

2
0, δ) as left share,

and c∗
1 := (c11, c

2
1, δ) as right share, where δ = m⊕κ is a one-time pad encryption

of the message m using pad κ. The decoding simply decodes the first compo-
nent of each share (i.e., the pair (c10, c

1
1)) using the decoding procedure of the

underlying non-malleable code (completely ignoring all other elements).
On the one hand, one can show that the modified scheme inherits both mes-

sage uniqueness and one-time non-malleability from the underlying auxiliary
code. Intuitively, this is because successfully mauling a codeword (c∗

0, c
∗
1) still

requires to maul (c10, c
1
1), which is hard by the one-time non-malleability of the

underlying NMC. (We refer the reader to Sect. 5 for a detailed proof sketch.) On
the other hand, using a first tampering query, a split-state adversary can swap
c10 with c20 on the left, and c11 with c21 on the right, thus obtaining the random
pad κ in the clear as a response. Once the pad is known, the second tampering
query can hard-wire the value κ, recover the message m = δ ⊕ κ in the clear
(both from the left and the right share), and finally encode a related value.

1.5 Additional Related Work

Non-malleable codes. Only a few constructions of continuously non-malleable
codes are known (besides the already mentioned constructions of [28,30]). In par-
ticular, continuous non-malleability is known to be achievable in the information-
theoretic setting, for the simpler cases of bit-wise independent tampering [19,20]
(where each bit of the codeword is tampered independently), and constant-state
tampering [5]. Jafargholi and Wichs [36] obtain different flavors of continuous
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non-malleability for the case of tampering functions with high min-entropy or few
fixed points. Aggarwal et al. [7] show that split-state continuous non-malleability
is achievable in the information-theoretic setting, when tampering is persistent.
Finally, Chattopadhyay et al. [14] construct one-many non-malleable codes that
are secure with respect to an adversary that can specify many tampering func-
tions to be applied to the one target codeword; the adversary succeeds if at least
one of the tampering functions produces a valid encoding of a related message.
Importantly, this notion does not rely on the self-destruct mechanism, but the
total number of tampering attempts must be a-priori bounded.

Several other constructions of (one-time) non-malleable codes exist in the
literature, achieving security for a plethora of tampering models, including: bit-
wise independent tampering and permutations [8,9,18], circuits of polynomial
size [17,27,32], constant-state tampering [16], block-wise tampering [12], space-
bounded algorithms [11,29], and bounded-depth circuits [10,15].

Applications. The typical application of non-malleable codes is the protection of
cryptographic algorithms from tampering attacks against the memory [27,30,38].
Non-malleable codes were also used to protect arbitrary computations (and not
only storage) against tampering [13,22,31].

A recent line of work shows interesting connections between the notions
of non-malleable codes and non-malleable commitments. In particular, [12]
proves that block-wise non-malleable codes (for two blocks) are equivalent to
non-interactive non-malleable commitments (w.r.t. opening). Recently Goyal
et al. [35] showed how to construct 3-round non-malleable commitments from
standard assumptions when the adversary plays left and right sessions in parallel.
Their scheme crucially relies on the power of split-state non-malleable codes.

Non-malleable codes can also be used to tackle the question of domain exten-
sion for non-malleable public-key encryption [19,20,40] and non-malleable com-
mitments [8].

2 Overview of Techniques

2.1 Description of Our Code

Our code Π = (Enc,Dec) is formally depicted in Fig. 1 on page 21, and it is based
on a non-interactive commitment scheme with message space M := {0, 1}k,
randomness space R := {0, 1}ρ and commitment space Γ ⊆ {0, 1}�, and on an
auxiliary split-state code Π ′ = (Enc′,Dec′) mapping bitstrings of length (k + ρ)
into bitstrings of length 2n′; the length of a codeword will be 2n = 2n′ + 2
. We
denote by Commit the commitment function. (We refer the reader to Sect. 3 for
the standard definitions of continuously non-malleable codes and non-interactive
commitments.)

Intuitively, the encoding algorithm Enc constructs a commitment γ ∈ {0, 1}�

of the message m ∈ {0, 1}k using randomness r ∈ {0, 1}ρ. Then it encodes the
string m||r via Enc′, obtaining (c′

0, c
′
1). Finally, it outputs the split-state encoding

((γ, c′
0), (γ, c′

1)), of length 2n = 2n′+2
. The decoding algorithm first checks that
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the commitment γ on the left and right shares is equal, in which case it decodes
(c′

0, c
′
1) obtaining a value m||r, and outputs m if and only if (m, r) is a valid

opening of the commitment.
For the security proof, we need the commitment scheme to be computa-

tionally hiding, and the underlying code Π ′ to be a split-state non-malleable
code with unconditional security (under a single tampering query), and that
additionally Π ′ satisfies leakage resilience, and two additional properties on the
distribution of the codewords. The first property, which we call codewords unifor-
mity, intuitively says that the two shares of an encoding under Π ′ are uniform
over the set of all possible shares when considered in isolation, whereas their
joint distribution is uniform over a smaller subset of the codewords space. The
second property, which we call conditional independence, intuitively says that
the mutual information between the left and right share is bounded. We show
how to instantiate our construction in Sect. 4.

2.2 Proof Intuition

We next give an overview of the proof of non-malleability. Note that we do
not make any assumption on the malleability of the commitment scheme. Let us
write T(b, q) for the random variable corresponding to the tampering experiment
defining continuous non-malleability of the above defined encoding scheme Π,
with hidden bit b, and where the adversary asks q tampering queries. In this
experiment, the adversary can adaptively choose up to q split-state tampering
queries that are applied to a target encoding c = ((γ, c′

0), (γ, c′
1)) of message

mb; after each tampering query, the adversary learns the outcome corresponding
to decoding the modified codeword. Importantly, both T(0, q) and T(1, q) are
additionally parameterized by messages m0,m1, and moreover the output of the
experiments is defined to be same∗ in case the tampered codeword decodes to
either of m0,m1; furthermore, in case the answer to a tampering query is equal
to ⊥ (i.e., the modified codeword is invalid), all future queries are answered with
⊥ (i.e., the experiment self-destructs).

Our goal is to show T(0, q) ≈c T(1, q), for all polynomials q(λ). The main
idea is to consider a hybrid experiment H(b, q) where we decouple the random-
ness used to define the commitment in the target codeword from the input
of the inner encoding scheme Π ′. Namely, in experiment H(b, q) the target
codeword has the form c := ((γ, c′

0), (γ, c′
1)) where γ is a commitment to mb

using randomness r (as before), and (c′
0, c

′
1) is an encoding of a random uncor-

related value s′ ←$ {0, 1}k+ρ (instead of the string mb||r). We then argue that
T(0, q) ≈s H(0, q) ≈c H(1, q) ≈s T(1, q), as outlined in the following subsec-
tions.

2.3 First Step

We start by showing that T(b, q) ≈s H(b, q), for all b ∈ {0, 1} and for all
q ∈ poly(λ), down to the non-malleability of the underlying encoding scheme
Π ′. This part of the proof is completely information-theoretic, and moreover it
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relies on the two additional properties of codewords uniformity and conditional
independence discussed above. Fix b = 0 (the proof for the other case is analo-
gous). We use induction on the number of tampering queries q(λ), as explained
below.

Induction Basis. The base case of the induction requires to show that
T(0, 1) ≈s H(0, 1). We consider a reduction having access to a target encoding
c′ = (c′

0, c
′
1) that is either an encoding of s′

0 := m0||r or an encoding of a random
string s′

1 := s′. Note that, since the reduction knows both m0 and r, it can
perfectly simulate the distribution of the target codeword c = ((γ, c′

0), (γ, c′
1))

for experiments T(0, 1) and H(0, 1) inside the tampering oracle; this is done by
computing offline γ = Commit(m0; r), and by hard-wiring this value into the
tampering function.

Thus, the reduction can perfectly simulate the input for a tampering query as
it would be done in T(0, 1) and H(0, 1). The difficulty, however, is that the reduc-
tion only gets to see the decoding of the value s̃ corresponding to the tampered
codeword c̃′ = (c̃′

0, c̃
′
1), which is not directly the same as the output of the exper-

iment in T(0, 1) and H(0, 1). For instance, in case s̃ �∈ {same∗,⊥,m0||r̃,m1||r̃},
for any r̃ ∈ {0, 1}ρ, the reduction knows that c̃′ is a valid encoding of some string
s̃ := m̃||r̃ ∈ {0, 1}k+ρ, but the output of experiment T(0, 1) and H(0, 1) is either
equal to m̃ or ⊥ depending on whether m̃ and r̃ are consistent with the modified
commitment γ̃.

In order to overcome this obstacle, we exploit the leakage resilience property
of Π ′; in particular, we let the reduction leak the value γ̃ (as defined above).
Our analysis shows that this is all one needs in order to complete the simulation
in a perfect manner (with all but a negligible probability).

Inductive Step. Next, we assume that T(0, i) ≈s H(0, i) for some i ∈ [q − 1],
and we show that this implies T(0, i + 1) ≈s H(0, i + 1). This is achieved once
again via a reduction to the underlying one-time non-malleable code. Notice
that, as before, the reduction can perfectly simulate the distribution of the target
codeword c = ((γ, c′

0), (γ, c′
1)) for experiments T(0, i + 1) and H(0, i + 1) inside

the tampering oracle. However two new problems arise. First, in the experiments
T(0, i + 1) and H(0, i + 1) the adversary can ask up to i + 1 tampering queries,
whereas the reduction can play only one query, and so it needs to simulate the
answer to all other i tampering queries on its own (and in a consistent manner).
Second, even if the reduction were able to answer all other queries, it is a priori
unclear how to choose which of the i + 1 tampering functions the reduction
should use in order to break one-time non-malleability of the code Π ′.

The solution to the second problem comes immediately from the induction
hypothesis. In fact, we know that, with overwhelming probability, the adversary
cannot be successful after just i queries, as this would contradict our assumption
that T(0, i) ≈s H(0, i). Using this observation, our strategy will be to simulate
the answer to the first i tampering queries in a consistent manner, and later rely
on the (i + 1)-th query in order to violate security of the code Π ′.
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The solution to the first problem, instead, is more complicated. Essentially
our reduction plays the following strategy:

1. At setup, compute all possible encodings ĉ := (ĉ0, ĉ1) of the challenge mes-
sages s′

0 = m0||r and s′
1 = s′, and store ĉ in an initially empty array

Ŝ(1) := Ŝ(1)
0 ×Ŝ(1)

1 , where Ŝ(1)
0 and Ŝ(1)

1 are the sub-arrays containing, respec-
tively, all the left shares ĉ0 and all the right shares ĉ1.

2. Upon input a tampering query (φ(j)
0 , φ

(j)
1 ) from the adversary, for any j ≤ i,

answer as follows:
– For all codewords ĉ = (ĉ0, ĉ1) ∈ Ŝ(j)

0 × Ŝ(j)
1 , decode the corresponding

tampered codeword (φ(j)
0 (γ, ĉ0)), φ

(j)
1 (γ, ĉ1)).

– Let m∗ be the most likely outcome, and answer the query with m̃(j) = m∗.
– Define Ŝ(j+1)

0 , Ŝ(j+1)
1 to be the sub-arrays of Ŝ(j)

0 , Ŝ(j)
1 containing all pos-

sible codewords which are compatible with the answer to the j-th query
being m∗.

3. Make sure all answers m̃(1), . . . , m̃(i) are correct whenever the corresponding
codewords produced by the tampering functions are valid. This is achieved
as follows:

– Define a leakage query that hardwires all answers (m̃(1), . . . , m̃(i)), as well
as the tampering queries (φ(1)

0 , . . . , φ
(i)
0 ) and the arrays Ŝ(1)

0 , . . . , Ŝ(i)
0 , and

returns the first index j (if any) such that the target left share (γ, c′
0)

is contained in the j-th array, but is not contained in the (j + 1)-th
array. (An analogous check is performed on the target right share (γ, c′

1),
using φ

(1)
1 , . . . , φ

(i)
1 and Ŝ(1)

1 , . . . , Ŝ(i)
1 .) In case such an index is found, the

leakage query additionally returns the correct answer m̂.10

– Rewind the adversary to step 2, at the iteration where it asked the j-
th query, and modify the answer using the leaked value. Additionally,
update the arrays Ŝ(j+1)

0 , Ŝ(j+1)
1 consistently11 with the answer of the j-

th tampering query being m̂, and go back to step 2 continuing from the
(j + 1)-th tampering query.

4. Upon input the final tampering query (φ(i)
0 , φ

(i)
1 ) from the adversary, use

this query to define the tampering query (φ′
0, φ

′
1) to be applied to the target

encoding; this is done in exactly the same way as discussed above for the base
case of the induction.

In order to conclude the proof, we need to show two things. First, we need to
argue that the total number of rewinds performed by the reduction is some-
what limited, so that the reduction does not exceed the total leakage bound
supported by the underlying non-malleable code. Second, we need to ensure
that the simulation performed by the reduction generates a distribution that is

10 This is achieved by leaking the commitment γ̃ corresponding to the tampering query
(φ

(j)
0 , φ

(j)
1 ), and by having the reduction find the corresponding (unique) message via

brute force.
11 The new Ŝ(j+1)

0 , Ŝ(j+1)
1 are obtained from Ŝ(j)

0 , Ŝ(j)
1 by removing the encodings that

are not compatible with the answer of the j-th tampering query being m̂.
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indistinguishable from what the adversary would expect in a real execution of
experiments T(0, i + 1) and H(0, i + 1). We deal with these issues as follows.

Challenge #1: Bounding the Leakage. Let (φ(j)
0 , φ

(j)
1 ) be a tampering query pro-

voking one of the rewinds. Denote by c̃0 := (γ̃, c̃′
0) = φ

(j)
0 (γ, c′

0) the corresponding
modified left share. By message uniqueness, which for our code easily follows by
the perfect binding property of the commitment, c̃0 is a valid left share of at
most one message m̃ ∈ {0, 1}k. A counting argument shows that the probability
associated to the output of the decoding being m̃ is p̃ ≤ 1/2. Hence, intuitively,
we would like to argue that since m̃ is not the most likely outcome, there is a
probability of at least 1/2 that the modified right share c̃1 := (γ̃, c̃′

1) = φ
(j)
1 (γ, c′

1)
will correspond to a message different from m̃, and thus every such query yields
a self-destruct with probability at least 1/2.

Unfortunately, it is unclear how to complete the above argument using any
one-time unconditionally secure non-malleable code. In fact, the left and right
shares of the inner encoding c′ = (c′

0, c
′
1) are correlated, and a tampering query

could exploit such correlation in order to generate an output which is not the
most likely outcome, and yet the probability of self-destruct is smaller than 1/2.
We solve this problem by relying on the two additional properties of codewords
uniformity and conditional independence. In particular, by a careful information-
theoretic argument, we can show that codewords uniformity implies that every
tampering query evading the above argument decreases the mutual information
between the left and right share of c′ by at least one bit. By conditional indepen-
dence, the maximum number of such queries is bounded, after which the mutual
information between c′

0 and c′
1 is zero, and any further tampering query causing

a rewind will incur a probability of self-destruct of at least 1/2.

Challenge #2: Arguing indistinguishability. As for indistinguishability, note that
the corrected answers m̃(1), . . . , m̃(i) might still be inconsistent, due to the fact
that the tampered inner codeword (c̃′

0, c̃
′
1) decodes to ⊥ for some of the queries.

Indeed, such an invalid codeword can not be detected using the above leakage
queries since they allow only to read the commitments computed by the tamper-
ing function in the two shares. The adversary might notice this inconsistency,
and could for instance instruct the distinguisher to flip its output in order to
make the reduction fail.

We circumvent this obstacle as follows. First off, let us assume w.l.o.g. that
the distinguisher satisfies the following invariant: it outputs 0 (resp. 1) whenever
it believes the target codeword is an encoding of m0 (resp. m1). Hence, we let the
reduction ask an additional leakage query, leaking a single bit, that hard-wires a
description of the distinguisher and of the final tampering query (φ(i+1)

0 , φ
(i+1)
1 ),

together with all the answers m̃(1), . . . , m̃(i) to the first i queries, the commit-
ment γ, and the final arrays Ŝ(i+1)

0 , Ŝ(i+1)
1 . The goal of the leakage query is to

allow the reduction to check that the output of the distinguisher on the sim-
ulated view satisfies the above invariant. This is achieved as follows. For each
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ĉ1 ∈ Ŝ(i+1)
1 ,12 let b̂ ∈ {0, 1} be such that (c′

0, ĉ
′
1) is an encoding of mb̂; the leakage

query computes the answer m̃∗ to the (i + 1)-th tampering query by applying
(φ(i+1)

0 , φ
(i+1)
1 ) to ((γ, c′

0), (γ, ĉ′
1)), and then it returns δ̂ = 1 iff the output of the

distinguisher upon (m̃(1), . . . , m̃(i), m̃∗) is more often equal to b̂.
Finally, in case δ̂ = 0, the reduction returns a random guess, whereas if

δ̂ = 1, it uses the output of the distinguisher on the simulated view, the intuition
being that the outcome of the distinguisher is used only if no inconsistency was
introduced during the simulation of each tampering query. The proof shows that
this allows us to keep the non-negligible advantage of the distinguisher, thus
contradicting one-time unconditional non-malleability of the code Π ′.

2.4 Second Step

In a second step we show that H(0, q) ≈c H(1, q), down to the hiding property
of the commitment scheme. This step is significantly easier, because in both
experiments H(0, q) and H(1, q) the input of the commitment and of the inner
encoding algorithm are completely independent. Hence, in the reduction we can
embed a target commitment γ (which is either a commitment to m0 or a com-
mitment to m1) and complete the codeword by sampling a fresh encoding (c′

0, c
′
1)

of a random value s′ ∈ {0, 1}k+ρ. This way, we can easily turn a distinguisher
between the two hybrids into an adversary breaking the hiding property of the
commitment scheme.

Note that in this case the reduction can perfectly simulate the view of the
distinguisher, as it has a perfectly distributed target codeword (either w.r.t.
H(0, q) or w.r.t. H(1, q)) “in its hands”.

3 Preliminaries

3.1 Notation

For a string x, we denote its length by |x|; if X is a set, |X | represents the
number of elements in X . When x is chosen randomly in X , we write x ←$ X .
When A is a randomized algorithm, we write y ←$ A(x) to denote a run of A on
input x and output y; in this case, the value y is a random variable and A(x; r)
denotes a run of A on input x and randomness r. An algorithm A is probabilistic
polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the
computation of A(x; r) terminates in at most poly(|x|) steps.

We denote with λ ∈ N the security parameter. A function ν : N → [0, 1] is
negligible in the security parameter (or simply negligible) if it vanishes faster
than the inverse of any polynomial in λ, i.e. ν(λ) = λ−ω(1). We sometimes
write negl(λ) (resp., poly(λ)) to denote all negligible functions (resp., polynomial
functions) in the security parameter. All algorithms are implicitly assumed to
take the security parameter as input.
12 Without loss of generality we describe the leakage function as a leakage query on

the left share.
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For a random variable X, we write P [X = x] for the probability that X takes
on a particular value x ∈ X (with X the set where X is defined). The statistical
distance between two random variables X and X′ defined over the same set X is
defined as Δ (X;X′) = 1

2

∑
x∈X |P [X = x]−P [X′ = x]|. The mutual information

between X and Y is a measure of their mutual dependence, and it is defined as
I(X;Y) = H(X) − H(X|Y), where H(·) denotes the Shannon’s entropy.

Given two ensembles of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N,
we write X ≡ Y to denote that the two ensembles are identically distributed,
X ≈s Y to denote that the two ensembles are statistically close (i.e., Δ (Xλ;Yλ)
∈ negl(λ)), and X ≈c Y to denote that the two ensembles are computationally
indistinguishable (i.e., |P [D(Xλ) = 1] − P [D(Yλ) = 1]| ∈ negl(λ) for all PPT
distinguishers D).

3.2 Non-Malleable Codes

Introduced by Dziembowski, Pietrzak, and Wichs [27], non-malleable codes allow
to encode a message in such a way that the decoding of a tampered codeword
(according to a restricted class of modifications) either yields the original message
or an unrelated value.

Definition 1 (Encoding scheme). A (k, n)-code Π = (Enc,Dec) consists of a
pair of algorithms specified as follows: (i) The (randomized) encoding algorithm
Enc takes as input a string s ∈ {0, 1}k and returns a codeword c ∈ {0, 1}n; (ii)
The (deterministic) decoding algorithm Dec takes as input a codeword c ∈ {0, 1}n

and outputs a value in {0, 1}k ∪ {⊥}, where ⊥ denotes an invalid codeword. A
codeword c ∈ {0, 1}n such that Dec(c) �= ⊥ is called a valid codeword.

The code Π satisfies correctness if, for all s ∈ {0, 1}k, we have that
Dec(Enc(s)) = s with overwhelming probability over the randomness of the encod-
ing algorithm.

Standard non-malleability, as defined in [27], allows an adversary to maul a
target encoding only once. Continuous non-malleability [30] extends the basic
non-malleability requirement by allowing the adversary to tamper multiple
times, where tampering might either be non-persistent (i.e., the adversary always
mauls the same target encoding) or persistent (i.e., the current tampering func-
tion is applied to the encoding resulting from the previous mauling attempt).
Throughout this paper, we always assume that tampering is non-persistent
(which is the more challenging scenario).

Split-state model. Below we recall the definition of continuous non-malleability in
the so-called split-state model. Here a codeword c ∈ {0, 1}2n consists of two shares
c0 ∈ {0, 1}n and c1 ∈ {0, 1}n.13 We call such codes split-state (k, 2n)-codes. In
the split-state model, the tampering functions φ : {0, 1}2n → {0, 1}2n can be
13 More generally, the encoding might not be symmetric in which case c0 ∈ {0, 1}n0

and c1 ∈ {0, 1}n1 , for arbitrary values n0, n1 ∈ N such that n0 + n1 = n; while this
generalization is immediate, it is not needed in this paper.
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described as pairs φ := (φ0, φ1) of functions with φ0, φ1 : {0, 1}n → {0, 1}n.
Tampering function φ, when applied to codeword c modifies it into c̃ := φ(c)
defined as

c̃ := (φ0(c0), φ1(c1)).

To define the notion of continuous non-malleability, we introduce experiment
TamperΠ,A

s0,s1
that is parameterized by a split-state code Π, by a PPT adversary

A, and by two messages s0 and s1, and takes as inputs the security parameter
λ, a bit b, and a value q ∈ N. In this experiment the adversary has access to two
leakage oracles O�, and one tampering oracle Ocnm.

Definition 2 (Leakage oracle). A leakage oracle O� is a stateful oracle that
maintains a counter ct that is initially set to 0. When O� is invoked for a string
c and a leakage function ψ, value ψ(c) is computed, its length is added to ct and
if ct ≤ 
 then ψ(c) is returned; otherwise, ⊥ is returned.

Definition 3 (Tampering oracle). A tampering oracle Os0,s1
cnm is a stateful

oracle (implicitly) parameterized by a split-state code Π = (Enc,Dec) and two
strings s0 and s1, with state st initialized to st = Active. The oracle takes as
input a codeword c = (c0, c1) and a split-state tampering function φ = (φ0, φ1)
and its output is defined as follows.

Oracle Os0,s1
cnm ((c0, c1), (φ0, φ1)):

If state = SelfDestruct, return ⊥
Let (c̃0, c̃1) := (φ0(c0), φ1(c1))
If s̃ = Dec(c̃0, c̃1) ∈ {s0, s1}, return same∗

If Dec(c̃0, c̃1) = ⊥, set state = SelfDestruct and return ⊥
Else, return s̃

Definition 4 (Continuous non-malleability). Let Π = (Enc,Dec) be a split-
state (k, 2n)-code. We say that Π is 
-leakage-resilient q-time non-malleable in
the split-state model if for all s0, s1 ∈ {0, 1}k and for all PPT adversaries A
asking at most q tampering queries, we have that

{
TamperΠ,A

s0,s1
(λ, 0, q)

}

λ∈N

≈c

{
TamperΠ,A

s0,s1
(λ, 1, q)

}

λ∈N

, (1)

where, for b ∈ {0, 1},

TamperΠ,A
s0,s1

(λ, b, q) :=
{

(c0, c1) ←$ Enc(sb);
outA ← AO�(c0,·),O�(c1,·),Os0,s1

cnm ((c0,c1),(·,·))(1λ)

}

.

Without loss of generality, we can assume that the value outA consists of the
adversary’s view. In case Eq. (1) only holds for q = 1, we write that the encod-
ing scheme is one-time non-malleable, whereas if Eq. (1) holds for an arbitrary
polynomial q(·), we say that encoding scheme is continuously non-malleable; it
is also worth noting that for q = 0 (i.e., no tampering allowed) the above notion
collapses to the definition of leakage-resilient codes [23], which have turned use-
ful in several constructions o non-malleable codes [30,32]. Also note that we
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can cast information-theoretic security by simply requiring that Eq. (1) holds
for the statistical distance, for all possibly unbounded distinguishers, where now
also the tampering functions φ specified by the adversary, as well as the leakage
functions ψ, need not be polynomial-time computable.

As explained in the introduction, our definition of continuous non-
malleability is strictly weaker than the one originally considered in [30] (and
afterwards also in [32,36]), in that the adversary at the end of each tampering
query only obtains the decoding of the tampered codeword (unless this happens
to be equal to one of s0, s1), and not the tampered codeword itself (as long as
c̃ �= c is valid). We further observe that (continuous) non-malleability can also
be stated through the existence of an efficient simulator, however the two for-
mulations are equivalent for messages of super-polynomial size [27]. (This fact
was proven for the case of one-time non-malleability, but it holds more generally
for the case of continuous non-malleability and when considering leakage.)

Message uniqueness. As shown in [30] continuous non-malleability in the split-
state model is impossible to achieve in the information-theoretic setting.14 In the
computational setting, in order to be continuously non-malleable, a split-state
code must15 satisfy a special property called message uniqueness. Informally,
message uniqueness says that it should be hard to fix one part of an encoding,
say c0 ∈ {0, 1}n, and compute two distinct other parts c1, c̄1 ∈ {0, 1}n such that
both (c0, c1) and (c0, c̄1) are valid encodings of two different messages.

Definition 5 (Message uniqueness). Let Π = (Enc,Dec) be a split-state
code. We say that Π satisfies perfect message uniqueness if, for all β ∈ {0, 1},
there do not exist values (cβ , c1−β , c̄1−β) such that c1−β �= c̄1−β and, at the same
time,

⊥ �= Dec(cβ , c1−β) �= Dec(cβ , c̄1−β) �= ⊥.

Remark 1 (On perfect uniqueness). One could define a computational or statis-
tical variant of the uniqueness property, where tuples of values violating message
uniqueness exist but are hard to find. We note, however, that in the plain model
assuming perfect message uniqueness is w.l.o.g. In fact, if a tuple (cβ , c1−β , c̄1−β)
violating message uniqueness exists (i.e., uniqueness is not perfect), we can
always consider the specific PPT adversary that has such a tuple hard-wired
in its code (and that thus contradicts computational and statistical message
uniqueness).

Remark 2 (On message versus codeword uniqueness). An even stronger flavor of
uniqueness, not needed in this paper and known as codeword uniqueness, requires
that, for all β ∈ {0, 1}, there do not exist values (cβ , c1−β , c̄1−β) such that
c1−β �= c̄1−β and, at the same time, Dec(cβ , c1−β) �= ⊥ and Dec(cβ , c̄1−β) �= ⊥,

14 Information-theoretic security is, instead, possible in other settings, such as bit-
wise independent tampering [19,20], constant-state tampering [5], and split-state
persistent tampering [7].

15 Otherwise a generic attack is possible; see Sect. 1 for an informal description.
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but eventually Dec(cβ , c1−β) = Dec(cβ , c̄1−β). Codeword uniqueness is a strictly
stronger property than message uniqueness, and is known to be necessary for
achieving the stronger flavor of continuous super non-malleability [30].

3.3 Non-Interactive Commitments

A non-interactive commitment scheme is a randomized efficient algorithm
Commit taking as input a message m ∈ M and random coins r ∈ R, and out-
putting a commitment γ ∈ Γ . A decommitment of γ consists simply of revealing
m and r. The sets M, R and Γ are called (respectively) the message space, the
randomness space, and the commitment space. A commitment scheme satisfies
two properties called hiding and binding. We recall such properties below.

The binding property says that it is hard to open a given commitment γ ∈ Γ
in two different ways. Exactly as for the case of uniqueness, the assumption of
perfect binding is w.l.o.g. in the plain model.

Definition 6 (Binding). We say that a non-interactive commitment Commit is
perfectly binding if there do not exist pairs (m0, r0), (m1, r1) such that m0 �= m1

and, at the same time, Commit(m0; r0) = Commit(m1; r1).

The hiding property says that for any pair of messages m0,m1 it is hard to
tell whether a given commitment γ is for m0 or for m1.

Definition 7 (Hiding). We say that a non-interactive commitment Commit is
computationally hiding if for all messages m0,m1 ∈ M the following holds:

{
γ : γ ←$ Commit(1λ,m0)

}
λ∈N

≈c

{
γ : γ ←$ Commit(1λ,m1)

}
λ∈N

.

4 Code Construction

In this section we present a construction of a split-state code that achieves
continuous non-malleability. The scheme is in the plain model, and can be based
on any (possibly malleable) non-interactive commitment scheme (cf. Sect. 3.3),
and on an information-theoretic one-time non-malleable and leakage-resilient
split-state code (cf. Sect. 3.2) satisfying a few additional properties (see below).

Note that the first assumption is necessary, meaning that a continuously non-
malleable code in the split-state model implies a non-interactive commitment
scheme. In fact, recall that any continuously non-malleable code must satisfy
message uniqueness. Given a non-malleable split-state code Π = (Enc,Dec) with
message uniqueness, consider the non-interactive commitment scheme where, in
order to commit to message m, the committer computes a split-state encoding
(c0, c1) of m using algorithm Enc. The left part c0 constitutes the commitment,
and the right part c1 is the decommitment. The receiver verifies that c1 is the
correct opening of c0 as m, by running Dec on input (c0, c1) and verifying that
the output is indeed m. Binding follows by the fact that Π satisfies message
uniqueness, and hiding follows by the non-malleability of Π.
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4.1 Additional Properties

For our construction, we will rely on a split-state code meeting two non-standard
requirements that we formally define below. The first property intuitively says
that, for any message, the encoder outputs codewords that are uniformly random
over some subset of all possible codewords.

Definition 8 (Codewords uniformity). Let Π = (Enc,Dec) be a split-state
(k, 2n)-code, and denote by C = (C0,C1) the random variable corresponding to
the output of the encoding algorithm upon input some value s ∈ {0, 1}k. We say
that Π satisfies codewords uniformity if, for all values s ∈ {0, 1}k, we have that
each of C0 and C1 in isolation is uniform, respectively, over subsets C0 ⊆ {0, 1}n

and C1 ⊆ {0, 1}n, whereas (C0,C1) is uniformly distributed over some subset
C := C0 × C1 ⊂ C0 × C1.

Let Commit be a non-interactive commitment scheme with message space M :=
{0, 1}k, randomness space R := {0, 1}ρ, and commitment space Γ ⊆ {0, 1}�. Let
Π ′ = (Enc′,Dec′) be a split-state (k + ρ, 2n′)-code. Define the following split-state
(k, 2n)-code, where n := n′ + �.

Encoding: Upon input a value m ∈ {0, 1}k, sample random coins r ←$ {0, 1}ρ and
compute γ := Commit(m; r) and (c′

0, c
′
1) ←$ Enc(m||r). Return the codeword c =

(c0, c1) := ((γ, c′
0), (γ, c′

1)).
Decoding: Upon input a codeword c ∈ {0, 1}2n, parse c := (c0, c1) :=

((γ0, c
′
0), (γ1, c

′
1)). Hence, proceed as follows:

(a) If γ0 �= γ1, return ⊥; else, let γ = γ0 = γ1.
(b) Run s = Dec′(c′

0, c
′
1); if s = ⊥ return ⊥.

(c) Parse s := m||r; if γ = Commit(m; r) return m, else return ⊥.

Fig. 1. Description of our code.

The second property captures the fact that, for any message, the distribution
of the left and right share of a codeword have limited dependence (in terms of
their mutual information).

Definition 9 (Conditional independence). Let Π = (Enc,Dec) be a split-
state (k, 2n)-code, and denote by C = (C0,C1) the random variable correspond-
ing to the output of the encoding algorithm upon input some value s ∈ {0, 1}k.
We say that Π satisfies α-conditional independence if, for all values s ∈ {0, 1}k,
we have that I(C0;C1) ≤ α.

4.2 Theorem Statement

Consider the split-state (k, 2n)-code Π = (Enc,Dec) depicted in Fig. 1, based on
a non-interactive commitment scheme Commit with message space M := {0, 1}k,
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randomness space R := {0, 1}ρ and commitment space Γ ⊆ {0, 1}�, and on an
auxiliary split-state (k+ρ, 2n′)-code Π ′ = (Enc′,Dec′). The properties we require
from each building block are directly stated in Theorem 3 below.

Intuitively, the encoding algorithm Enc constructs a commitment γ ∈ {0, 1}�

of the message m ∈ {0, 1}k using randomness r ∈ {0, 1}ρ. Then it encodes the
string m||r via Enc′, obtaining (c′

0, c
′
1). Finally, it outputs the split-state encoding

((γ, c′
0), (γ, c′

1)).

Theorem 3 (Theorem 1, restated). Assume that Commit is a non-interactive
perfectly binding and computationally hiding commitment scheme, with message
space M := {0, 1}k, randomness space R := {0, 1}ρ and commitment space
Γ ⊆ {0, 1}�. Let Π ′ be a split-state (k + ρ, 2n′)-code that is unconditionally 
′-
leakage-resilient one-time non-malleable, for 
′ = (2
+O(log λ)) · (α+O(log λ)),
and that additionally satisfies the properties of codewords uniformity and α-
conditional independence. Then, the encoding scheme Π described in Fig. 1 is a
split-state (k, 2(n′ + 
))-code satisfying continuous non-malleability.

Instantiating the scheme. For the commitment scheme we can rely on the stan-
dard construction based on one-to-one one-way functions [34]. If the message m
is k-bit long, the resulting commitment will have 
 ∈ O(k2) bits.

For the underlying non-malleable code we use a scheme constructed in [6],
which we briefly recall below. Let F be a finite field. The encoder first encodes
the underlying message m′ ∈ {0, 1}k using an auxiliary one-time split-state non-
malleable code with unconditional security, obtaining shares (c′′

0 , c′′
1) ∈ [N ]× [N ],

where [N ] is a sparse subset of F with size N � |F|. Hence, each share c′′
0 , c′′

1

is processed using a slight variant of the inner-product extractor, i.e. c′′
0 (resp.

c′′
1) is encoded via two additional shares (c′′

0,0, c
′′
0,1) ∈ F

2t (resp. (c′′
1,0, c

′′
1,1) ∈ F

2t)
such that ξ(〈c′′

0,0, c
′′
0,1〉) = c′′

0 (resp. ξ(〈c′′
1,0, c

′′
1,1〉) = c′′

1), where ξ : F → [N ] is
an arbitrary bijection. The final encoding is then defined to be c′ = (c′

0, c
′
1) =

((c′′
0,0, c

′′
1,0), (c

′′
0,1, c

′′
1,1)) ∈ F

2t × F
2t.

By plugging in the above construction the split-state non-malleable code
of [1,4], which has log N ∈ O(k7), and choosing statistical error ε := 2−k2

, we
obtain a leakage-resilient one-time split-state non-malleable code with uncondi-
tional security and with leakage parameter 
′ ≈ k14/12 (cf. [6, Corollary 4.2]).
It is important to note that the definition of leakage-resilient non-malleability
considered in [6] is simulation based, and not indistinguishability based as our
Definition 4. However, the former implies the latter: This was originally proven
in [27] without considering leakage, but the same statement holds true, with
basically the same proof, for the case of leakage, as long as the indistinguishabil-
ity between the real and simulated experiment holds for the joint distribution of
the leakage and the decoding of the tampered codeword. The latter requirement
is fulfilled by the construction in [6], as the outer layer of their encoding is a
split-state leakage-resilient code [23].

The above code is also easily seen to satisfy codewords uniformity (as c′
0

and c′
1 are uniform over the entire space of valid codewords when taken in iso-

lation, whereas (c′
0, c

′
1) is jointly uniform over a subset of the space of all valid
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codewords), and α-conditional independence, for α ∈ O(k7) (as both (c′′
0,0, c

′′
0,1)

and (c′′
1,0, c

′′
1,1) are uniform subject to their inner product being, respectively,

c′′
0 and c′′

1 , and moreover |c′′
0 |, |c′′

1 | ∈ O(k7)). Hence, the leakage bound in Theo-
rem 3 is satisfied too, as the required leakage is roughly 4k9+2k7+2k2 � k14/12
(neglecting constant and logarithmic terms).

4.3 Security Analysis

For simplicity, let us define Tm0,m1(λ, b, q) ≡ TamperΠ,A
m0,m1

(λ, b, q). We need to
show that for all messages m0,m1 ∈ {0, 1}k and for all PPT adversaries A asking
q(λ) ∈ poly(λ) tampering queries, there exists a negligible function ν : N → [0, 1]
such that for all PPT distinguishers D:

|P [D(Tm0,m1(λ, 0, q)) = 1] − P [D(Tm0,m1(λ, 1, q)) = 1]| ≤ ν(λ).

Message Uniqueness. We start by showing that our code meets perfect mes-
sage uniqueness.

Lemma 1. The code of Fig. 1 satisfies perfect message uniqueness.

Proof. Since our code is symmetric, it suffices to prove message uniqueness for
the case β = 0. Assume there exist values (c0, c1, c̄1) such that both (c0, c1) and
(c0, c̄1) are valid codewords satisfying

Dec(c0, c1) = m0 �= m1 = Dec(c0, c̄1).

Write c0 = (γ, c′
0), c1 = (γ, c′

1), and c̄1 = (γ̄, c̄′
1). By the fact that (c0, c̄1) is

valid, it follows that γ̄ = γ. Let s0 := m0||r0 = Dec′(c′
0, c

′
1) and s1 := m1||r1 =

Dec′(c′
0, c̄

′
1) be obtained, respectively, by decoding (c′

0, c
′
1) and (c′

0, c̄
′
1). Note that

both s0 and s1 are different from ⊥, as (c0, c1) and (c0, c̄1) are valid codewords.
We conclude that

Commit(m0; r0) = γ = Commit(m1; r1)

with m0 �= m1, which contradicts the fact that Commit is perfectly binding.

First Hybrid Step. Consider the hybrid experiment Hm0,m1(λ, b, q) that is
identical to Tm0,m1(λ, b, q), except that we let the auxiliary code (Enc′,Dec′)
encode a random string s′ ∈ {0, 1}k+ρ (instead of the string m||r). The experi-
ment is described formally in Fig. 2.

We will now prove that, as long as the number of tampering queries is polyno-
mial, the above hybrid experiment is statistically close to the original experiment.
The proof is by induction on the number of tampering queries q(λ) ∈ poly(λ).
The lemma below constitutes the induction basis.



Continuously Non-Malleable Codes in the Split-State Model 631

Hybrid Hm0,m1(λ, b, q):

The experiment is parameterized by messages m0, m1 ∈ {0, 1}k, security parameter
λ ∈ N, a secret bit b ∈ {0, 1}, and the number of tampering queries q(λ) ∈ poly(λ). It
proceeds as follows:

– It first computes γ := Commit(mb; r), for random coins r ←$ {0, 1}ρ, and then it
sets (c′

0, c
′
1) ←$ Enc′(s′) for random s′ ←$ {0, 1}k+ρ.

– The target encoding is defined to be (c0, c1) := ((γ, c′
0), (γ, c′

1).
– Upon input the i-th tampering query (φ(i)

0 , φ
(i)
1 ), let (c̃0, c̃1) = (φ(i)

0 (c0), φ
(i)
1 (c1))

be such that c̃0 := (γ̃0, c̃
′
0) and c̃1 := (γ̃1, c̃

′
1). Thus:

(a) If γ̃0 �= γ̃1, return ⊥; else let γ̃ = γ̃0 = γ̃1 and run s̃ = Dec′(c̃′
0, c̃

′
1).

(b) If s̃ = ⊥, return ⊥.
(c) If s̃ = s′ return same∗ in case γ̃ = γ, and ⊥ otherwise.
(d) Else, parse s̃ := m̃||r̃. If γ̃ �= Commit(m̃; r̃), return ⊥; otherwise, return same∗

if m̃ ∈ {m0, m1}, and else return m̃.

Fig. 2. Hybrid experiment in the proof of Theorem 3.

Lemma 2. For all messages m0,m1 ∈ {0, 1}k, for all values b ∈ {0, 1}, and for
all unbounded adversaries A, we have that

{Tm0,m1(λ, b, 1)}λ∈N ≈s {Hm0,m1(λ, b, 1)}λ∈N.

Proof. We show the proof for the case b = 0, the proof for the other case being
analogous. Assume that there exist a pair of messages m0,m1 ∈ {0, 1}k, an
unbounded adversary A, an unbounded distinguisher D, and a polynomial p(·)
such that, for infinitely many values of λ ∈ N, we have

|P [D(Tm0,m1(λ, 0, 1)) = 1] − P [D(Hm0,m1(λ, 0, 1)) = 1]| ≥ 1/p(λ).

Note that the probabilities in the above equation are taken over the random
coin tosses of (A,D), over the choice of r ←$ {0, 1}ρ and s′ ←$ {0, 1}k+ρ, and
over the randomness of algorithm Enc′. By an averaging argument, this means
that there must exist at least two values r ∈ {0, 1}ρ and s′ ∈ {0, 1}k+ρ such that
the above equation holds when we fix these particular values of r and s′. We
build an unbounded adversary A′ and an unbounded distinguisher D′ such that

∣
∣
∣P

[
D′(T′

s′
0,s′

1
(λ, 0, 1)) = 1

]
− P

[
D′(T′

s′
0,s′

1
(λ, 1, 1)) = 1

]∣
∣
∣ ≥ 1/p(λ) − ν(λ),

where s′
0 := m0||r and s′

1 := s′, ν(λ) ∈ negl(λ) is a negligible function, and
where we wrote T′

s′
0,s′

1
(λ, b, 1) as a shorthand for TamperΠ′,A′

s′
0,s′

1
(λ, b, 1). This will

contradict the one-time unconditional non-malleability of (Enc′,Dec′), and thus
will conclude the proof of the lemma.

Let c′ := (c′
0, c

′
1) be the target encoding in the tampering experiment relative

to (Enc′,Dec′). Here, c′ is either an encoding of s′
0 or an encoding of s′

1. Adversary
A′, on input (1λ,m0, s

′
0, s

′
1), proceeds as follows:
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– Parse s′
0 := m0||r and compute γ := Commit(m0; r).

– Run A(1λ), obtaining a pair of polynomial-time computable functions
(φ0, φ1), where φ0, φ1 : {0, 1}n′+� → {0, 1}n′+�.

– Define the polynomial-time computable leakage function ψ′
0 (resp. ψ′

1) that
hardwires γ and φ0 (resp. φ1), and, upon input c′

0 (resp. c′
1) returns the value

γ̃0 (resp. γ̃1) defined by φ0(γ, c′
0) := (γ̃0, c̃′

0) (resp. φ1(γ, c′
1) := (γ̃1, c̃′

1)).
– Forward ψ′

0 to O�(c′
0) and ψ′

1 to O�(c′
1), obtaining values γ̃0, γ̃1.

– Define the polynomial-time computable tampering function φ′
0 (resp. φ′

1) that
hardwires γ and φ0 (resp. φ1), and, upon input c′

0 (resp. c′
1), returns the value

c̃′
0 (resp. c̃′

1) defined by φ′
0(γ, c′

0) := (γ̃0, c̃′
0) (resp. φ′

1(γ, c′
1) := (γ̃1, c̃′

1)).
– Forward (φ0, φ1) to Os′

0,s′
1

cnm , obtaining a value s̃ ∈ {0, 1}k ∪ {⊥, same∗}.

Notice that attacker A′ asks a single (split-state) leakage query yielding exactly
2
 bits, and a single (split-state) tampering query, as required. Distinguisher D′,
upon input (1λ,m0,m1, r, s

′), and upon receiving a pair (γ̃0, γ̃1) in response of
A’s leakage query, and a value s̃ ∈ {0, 1}k+ρ ∪ {same∗,⊥} in response of A’s
tampering query, proceeds as follows.

– If s̃ = ⊥, return D(⊥).
– If s̃ = same∗:

• In case γ̃0 = γ̃1 = Commit(m0; r), return D(same∗);
• Else return D(⊥).

– If s̃ �∈ {same∗,⊥}:
• Parse s̃ := m̃||r̃;
• In case γ̃0 �= Commit(m̃; r̃) or γ̃1 �= Commit(m̃; r̃), return D(⊥);
• In case m̃ ∈ {m0,m1} return D(same∗);
• Else return D(m̃).

For the analysis, we next prove that the simulation performed by (A′,D′) is
perfect with overwhelming probability. First, depending on the target encoding
(c′

0, c
′
1) being either an encoding of s′

0 or an encoding of s′
1, the view of A’s

tampering functions is identical to the distribution of the target codeword in
either experiment Tm0,m1(λ, 0, 1) or Hm0,m1(λ, 0, 1), with our fixed choice of r
and s′. Second, the view of D is simulated correctly, with all but a negligible
probability. Indeed:

– If (c̃′
0, c̃

′
1) yields ⊥, both Tm0,m1(λ, 0, 1) and Hm0,m1(λ, 0, 1) would return ⊥,

which is perfectly emulated by the reduction.
– If (c̃′

0, c̃
′
1) yields same∗, it means that the inner codeword decodes to either

s′
0 = m0||r or to s′

1 = s′ := m′||r′. Without loss of generality, assume further
that the commitments in the tampered share satisfy γ̃0 = γ̃1 := γ̃. (In fact, if
this is not the case, both experiments return ⊥, which is once again perfectly
emulated by the reduction.) There are 4 possible cases: either both experi-
ments output s′

0, or both experiments output s′
1, or one experiment outputs

s′
0 while the other outputs s′

1. However, since the view in the real experiment
is independent of the value m′, we can condition on the event that the real
experiment does not output s′. Thus, there are only two cases to consider:
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(i) Experiment Tm0,m1(λ, 0, 1) and Hm0,m1(λ, 0, 1) both return s′
0 = m0||r.

(ii) Experiment Tm0,m1(λ, 0, 1) returns s′
0 = m0||r, but Hm0,m1(λ, 0, 1)

returns s′
1 = m′||r′.

In both cases, the output of experiments Tm0,m1(λ, 0, 1) and Hm0,m1(λ, 0, 1)
is equal to same∗ if γ̃ = γ, and else both experiments return ⊥. This is exactly
what the reduction does. So, depending on the target codeword being either
an encoding of s′

0 or an encoding of s′
1, the reduction simulates, except with

negligible probability 2−k, the outcome of either experiment Tm0,m1(λ, 0, 1)
or Hm0,m1(λ, 0, 1).

– If (c̃′
0, c̃

′
1) yields some value s̃ = m̃||r̃ �∈ {same∗,⊥}, it means in particu-

lar that s̃ �∈ {s′
0, s

′
1}. In such a case both experiments Tm0,m1(λ, 0, 1) and

Hm0,m1(λ, 0, 1) would return ⊥ in case the modified commitments γ̃0, γ̃1 do
not match the opening m̃, r̃. Otherwise, it means that the modified codeword
produced by A leads to a valid encoding of some message m̃ ∈ {0, 1}k. Hence,
the output of both experiments would either be same∗ or m̃ (depending on
m̃ being equal to one of the two messages m0,m1 or not).

To summarize, depending on the target encoding (c′
0, c

′
1) being either an

encoding of s′
0 := m0||r or an encoding of s′

1 := s′, the view of (A,D) is
identical, except with negligible probability, to the view in either experiment
Tm0,m1(λ, 0, 1) or Hm0,m1(λ, 0, 1), for our fixed choice of r and s′. Thus, the
advantage of (A′,D′) is negligibly close to that of (A,D). This concludes the
proof of the lemma.

The next lemma constitutes the inductive step. The proof appears in the full
version.

Lemma 3. Assume that for all messages m0,m1 ∈ {0, 1}k, for all b ∈ {0, 1},
and for all unbounded adversaries A, it holds that

{Tm0,m1(λ, b, i)}λ∈N ≈s {Hm0,m1(λ, b, i)}λ∈N,

where i ∈ [q − 1] and q ∈ poly(λ). Then, for all messages m0,m1 ∈ {0, 1}k, for
all b ∈ {0, 1}, and for all unbounded adversaries A, we have that

{Tm0,m1(λ, b, i + 1)}λ∈N ≈s {Hm0,m1(λ, b, i + 1)}λ∈N,

By combining Lemma 2 and Lemma 3, we have shown that the hybrid experi-
ment of Fig. 2 is statistically indistinguishable from the original tampering exper-
iment:

Lemma 4. For all messages m0,m1 ∈ {0, 1}k, for all values b ∈ {0, 1}, for all
q(λ) ∈ poly(λ), and for all unbounded adversaries A, we have that

{Tm0,m1(λ, b, q)}λ∈N ≈s {Hm0,m1(λ, b, q)}λ∈N.

Second Hybrid Step. Finally, we show that the view in experiment Hm0,m1(λ,
b, q) is (computationally) independent of the hidden bit b ∈ {0, 1}. The proof
appears in the full version.
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Lemma 5. For all messages m0,m1 ∈ {0, 1}k, for all q(λ) ∈ poly(λ), and for
all PPT adversaries A, we have that

{Hm0,m1(λ, 0, q)}λ∈N ≈c {Hm0,m1(λ, 1, q)}λ∈N.

Putting it Together. By combining Lemma 4 and Lemma 5, we obtain that
for all m0,m1 ∈ {0, 1}k, for all q(λ) ∈ poly(λ), and for all PPT adversaries A:

{Tm0,m1(λ, 0, q)}λ∈N
≈s {Hm0,m1(λ, 0, q)}λ∈N

≈c {Hm0,m1(λ, 1, q)}λ∈N
≈s {Tm0,m1(λ, 1, q)}λ∈N

,

which concludes the proof of the theorem.

5 Uniqueness �⇒ Continuous Non-Malleability

As mentioned earlier, the property of message uniqueness is necessary for con-
structing continuously non-malleable codes in the split-state model. It is a natu-
ral question whether message uniqueness is also sufficient, namely any split-state
code that satisfies message uniqueness and one-time non-malleability is also con-
tinuously non-malleable.

Here, we give a negative answer to the above question, by exhibiting a
contrived split-state code that satisfies both message uniqueness and one-time
non-malleability, but can be broken with a simple continuous attack. The con-
structed code makes black-box use of any split-state code satisfying both (per-
fect) message uniqueness and computational one-time non-malleability (as, e.g.,
our encoding scheme from Sect. 4). Our counter-example is “tight”, in the sense
that the attack breaking continuous non-malleability requires only two tamper-
ing queries.

The code. Consider the following split-state (k, 4n+2k)-code Π∗ = (Enc∗,Dec∗),
based on an auxiliary split-state (k, n)-code Π = (Enc,Dec). The properties we
require from each building block are directly stated in Theorem 4 below.

Encoding: Upon input a value m ∈ {0, 1}k, sample a random string
κ ←$ {0, 1}k, compute δ := m ⊕ κ, and return the codeword

c∗ = (c∗
0, c

∗
1) := ((c10, c

2
0, δ), (c

1
1, c

2
1, δ)), (2)

where (c10, c
1
1) ←$ Enc(m) and (c20, c

2
1) ←$ Enc(κ).

Decoding: Upon input a codeword c∗ ∈ {0, 1}4n+2k, parse c∗ := (c∗
0, c

∗
1) as

defined in Eq. (2) and return the same as Dec(c10, c
1
1).

Note that the decoding process simply decodes the first encoding (c10, c
1
1)

contained in c∗, completely ignoring the rest of the codeword.
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Theorem 4 (Theorem 2, restated). Assume that Π = (Enc,Dec) is a
split-state (k, n)-code satisfying (perfect) message uniqueness and (computa-
tional) one-time non-malleability. Then the encoding scheme Π∗ = (Enc∗,Dec∗)
described above is a split-state (k, 4n+2k)-code meeting the following conditions:

(i) Π∗ satisfies (perfect) message uniqueness;
(ii) Π∗ satisfies (computational) one-time non-malleability;
(iii) Π∗ is not 2-non-malleable.

Proof overview. Before coming to the proof, let us discuss some intuition. The
proof of Theorem 4 can be found in the full version. Here, we give the main
intuition. The proof of property (i) follows almost directly by message uniqueness
of Π. As for the proof of property (iii), it is sufficient to consider the tampering
function that simply swaps c10 with c20 and c11 with c21. Note that the decoded
message corresponding to such a query is equal to the value κ; hence, we can
hard-wire κ in the second tampering query which allows to unmask the message
computing m = δ ⊕ κ and thus encode a related value.

To prove property (ii) we consider two hybrid experiments H∗
1 and H∗

2, and
show that T∗

0 ≈c H∗
1 ≈c H∗

2 ≈c T∗
1 where T∗

b denotes the random variable
corresponding to the non-malleability experiment with Π∗ using hidden bit b ∈
{0, 1}. Here, the difference between T∗

0 and H∗
1 is that in the latter we replace

the codeword (c10, c
1
1) with an encoding of m1 (instead of m0); in H∗

2, instead, we
change the distribution of δ to δ := m1 ⊕ κ and additionally we now let (c20, c

2
1)

be an encoding of κ′ := κ ⊕ m0 ⊕ m1. To argue the indistinguishability of the
hybrids, we then proceed as follows:

– In a first step we show that T∗
0 ≈c H∗

1, down to the non-malleability of the
underlying encoding scheme Π. The reduction has access to a target codeword
c1 = (c10, c

1
1) that is either an encoding of m0 or an encoding of m1, and, given

m0, it can perfectly simulate the distribution of a target codeword for either
experiment T∗

0 or H∗
1 inside the tampering oracle Om0,m1

cnm (c1, ·). To do so,
the reduction can sample offline a random κ, define δ = m0 ⊕ κ, and set
c2 := (c20, c

2
1) to be an encoding of κ.

Notice that the reduction gets to see the output of the decoding corresponding
to the modified pair (c̃10, c̃

1
1), which is a perfect simulation for the output of

either experiment T∗
0 or H∗

1.
– In a second step we show that H∗

1 ≡ H∗
2; this is because if κ is random so is

κ′, and moreover κ′ ⊕ m0 = m1 ⊕ κ; thus the two distributions are identical.
– In a third step we show that H∗

2 ≈c T∗
1, down to the non-malleability of

the underlying encoding scheme Π. The reduction has access to a target
codeword c2 = (c20, c

2
1) that is either an encoding of κ′ := κ ⊕ m0 ⊕ m1 or

an encoding of κ, and, as before, it can perfectly simulate the distribution
of the target codeword in either experiment H∗

2 or T∗
1 inside the tampering

oracle Oκ,κ′
cnm(c2, ·). After computing the codeword ((c̃10, c̃

2
0, δ̃0), (c̃

1
1, c̃

2
1, δ̃1)), the

tampering function defined by the reduction swaps c̃10 with c̃20 and c̃11 with c̃21;
this way it obtains the decoding of (c̃10, c̃

1
1), which is what one needs in order

to simulate the output of the two experiments.
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An additional difficulty is that the experiment in which the reduction runs
is parameterized by messages (κ, κ′), whereas the emulated experiments H∗

2

or T∗
1 are parameterized by (m0,m1). This means, for instance, that if the

reduction obtains same∗ it cannot directly conclude that the simulated output
should also be same∗, but it needs to carefully adjust the received output in
order to make the simulation go through.

6 Conclusion and Open Problems

We have shown a construction of a split-state continuously non-malleable code in
the plain model. Our construction can be instantiated under the assumption that
one-to-one one-way functions exist. Additionally, we have clarified that message
uniqueness, albeit being necessary for obtaining continuous non-malleability in
the split-state model, is not sufficient for constructing such codes.

Interesting open questions related to our work are, for instance, whether con-
tinuous non-malleability can be achieved, under minimal assumptions, together
with additional properties, such as strong non-malleability [27], super-non-
malleability [32], augmented non-malleability [2], and locality [13,21,22], or
whether the rate of our code construction can be improved.
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