
Fast Homomorphic Evaluation of Deep
Discretized Neural Networks

Florian Bourse1, Michele Minelli2,3(B),
Matthias Minihold4, and Pascal Paillier5

1 Orange Labs, Applied Crypto Group, Cesson-Sévigné, France
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Abstract. The rise of machine learning as a service multiplies scenar-
ios where one faces a privacy dilemma: either sensitive user data must
be revealed to the entity that evaluates the cognitive model (e.g., in
the Cloud), or the model itself must be revealed to the user so that
the evaluation can take place locally. Fully Homomorphic Encryption
(FHE) offers an elegant way to reconcile these conflicting interests in the
Cloud-based scenario and also preserve non-interactivity. However, due
to the inefficiency of existing FHE schemes, most applications prefer to
use Somewhat Homomorphic Encryption (SHE), where the complexity
of the computation to be performed has to be known in advance, and
the efficiency of the scheme depends on this global complexity.

In this paper, we present a new framework for homomorphic evalu-
ation of neural networks, that we call FHE–DiNN, whose complexity is
strictly linear in the depth of the network and whose parameters can be
set beforehand. To obtain this scale-invariance property, we rely heavily
on the bootstrapping procedure. We refine the recent FHE construction
by Chillotti et al. (ASIACRYPT 2016) in order to increase the message
space and apply the sign function (that we use to activate the neurons in
the network) during the bootstrapping. We derive some empirical results,
using TFHE library as a starting point, and classify encrypted images
from the MNIST dataset with more than 96% accuracy in less than 1.7 s.

Finally, as a side contribution, we analyze and introduce some vari-
ations to the bootstrapping technique of Chillotti et al. that offer an
improvement in efficiency at the cost of increasing the storage require-
ments.
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1 Introduction

Fully Homomorphic Encryption (FHE). An FHE scheme provides a way
to encrypt data while supporting computations through the encryption envelope.
Given an encryption of a plaintext x, one can compute an encryption of f(x)
for any computable function f . This operation does not require intermediate
decryption or knowledge of the decryption key and therefore can be performed
based on public information only. Applications of FHE are numerous but one
particular use of interest is the privacy-preserving delegation of computations to
a remote service. The first construction of FHE dates back to 2009 and is due
to Gentry [Gen09]. A number of improvements have followed [vDGHV10,SS10,
SV10,BV11a,BV11b,BGV12,GHS12,GSW13,BV14], leading to a biodiversity
of techniques, features and complexity assumptions.

All known FHE schemes are obtained by first building a leveled Somewhat
Homomorphic Encryption (SHE) scheme, which can evaluate circuits of a-priori
bounded depth (usually, only the multiplicative depth is considered, because the
noise growth introduced by additions is negligible compared to that introduced
by multiplications). In order to obtain unbounded computation capabilities on
encrypted values, an FHE scheme can be built from an SHE scheme with a
technique called bootstrapping, which intuitively means using the homomorphic
properties of the scheme to decrypt and then re-encrypt, refreshing the ciphertext
to enable further computation. However, this process is very costly. Hence, there
have been numerous works on trying to obtain more efficient bootstrappings
[AP13,AP14,DM15,CGGI16b,CGGI17], and on trying to minimize the num-
ber of bootstrappings required for evaluating a circuit [LP13,PV16,BLMZ17].
Another approach is to simply avoid bootstrapping altogether and use an SHE
scheme, adjusting the parameters to be able to carry out the desired computa-
tion.

In practice, there are now two main freely available libraries for fully homo-
morphic encryption. The first one, HElib [HS14,HS15], which implements the
BGV scheme [BGV12], is the most widely used in applications. It allows for
packing of ciphertexts and SIMD computations, amortizing the cost for certain
tasks. It is able to perform additions and multiplications in an efficient way, but
the bootstrapping operation is significantly slow. In practice, it is often used as a
somewhat homomorphic scheme. The second one, TFHE [CGGI16a], features a
very efficient bootstrapping operation but, as a downside, this has to be applied
after every gate computation. This library is more efficient than HElib when used
for realizing an FHE. However, for simple tasks requiring small computational
depth, HElib used as an SHE will perform better. Moreover, TFHE is currently
not capable of amortizing large SIMD computations as well as HElib does.

The quest for privacy-preserving machine learning. Machine Learning
As a Service (MLAS) is becoming popular because of its versatility. These appli-
cations typically have high computation and data-storage requirements, which
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make them less suitable as client-side technologies. Moreover, since the process
of training a cognitive model is time and resource-consuming, the trained pre-
diction algorithm is often considered critical intellectual property by its owner,
who is typically not willing to share its technology or proprietary tools, resulting
in that machine learning algorithms are most conveniently cloud-based.

However, this setting raises new issues concerning the privacy of the uploaded
input data. Users want to send their encrypted data to a cloud service that
offers privacy-preserving predictions, and fulfills this task using its powerful yet
undisclosed, state-of-the-art predictive models. In this paper, we put forward a
new and versatile FHE framework that makes it efficient for the cloud to operate
a neural network dedicated to some specific machine learning task. The network,
previously trained on plaintext dataset, does not have access to the input data in
the clear, but is only given user-provided encrypted inputs and returns encrypted
predictions.

Obviously, encrypting the user’s data ensures its confidentiality, since the pri-
vate key under which the data is encrypted is assumed never to leave the owner’s
controlled domain. In this setting, only the legitimate owner of the secret key can
decrypt the result returned by the delegated computation that has been homo-
morphically performed in the cloud. The cloud service only learns superficial
information, but can still charge the user for using the service.

Neural networks (NNs) are often built from medical, financial or otherwise
sensitive data. They are usually trained to solve a classification problem: all
possible observations are categorized into classes and, given a training dataset
of observation/class pairs, the network should be able to assign the correct class
to new observations. Such framework can be easily applied to problems like
establishing a diagnosis from medical observations.

In this work we do not consider the problem of privacy-preserving data-
mining, intended as training a neural network over encrypted data, which can
be addressed, e.g., with the approach of [AS00]. Instead, we assume that the
neural network is trained with data in the clear and we focus on the evaluation
part.

Another potential concern for the service provider is that users might be
sending malicious requests in order to either learn what is considered a company
secret (the neural network itself), or specific sensitive information encoded in
the weights (which could be a breach into the privacy of the training dataset).
In this latter case, a statistical database can be used in the training phase, as is
discussed in the differential privacy literature [Dwo06].

Prior works. Cryptonets [DGBL+16] was the first initiative to address the
challenge of achieving blind, non-interactive classification. The main idea con-
sists in applying a leveled SHE scheme such as BGV [BGV12] to the network
inputs and propagating the signals across the network homomorphically, thereby
consuming levels of homomorphic evaluation whenever non-linearities are met.
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In NNs, non-linearities come from activation functions which are usually picked
from a small set of non-linear functions of reference (logistic sigmoid, hyperbolic
tangent, . . . ) chosen for their mathematical convenience. To optimally accommo-
date the underlying SHE scheme, Cryptonets replace their standard activation
by the (depth 1) square function, which only consumes one level but does not
resemble the typical sigmoidal shape. A number of subsequent works have fol-
lowed the same approach and improved it, typically by adopting higher degree
polynomials as activation functions for more training stability [ZYC16], or by
renormalizing weighted sums prior to applying the approximate function, so that
its degree can be kept as low as possible [CdWM+17]. Practical experiments have
shown that training can accommodate approximated activations and generate
NNs with very good accuracy.

However, this approach suffers from an inherent limitation: the homomor-
phic computation, local to a single neuron, depends on the total number of
levels required to implement the network, which is itself roughly proportional
to the number of its activated layers. Therefore, the overall performance of the
homomorphic classification heavily depends on the total multiplicative depth of
the circuit and rapidly becomes prohibitive as the number of layers increases.
This approach does not scale well and is not adapted to deep learning, where
neural networks can contain tens, hundreds or sometimes thousands of layers
[HZRS15,ZK16].

Finally, we note that other approaches based on multiparty computation
(MPC) have been proposed, e.g., [BPTG15,MZ17,MRSV17], but they require
interactivity between the party that holds the data and the party that performs
the blind classification. Even though practical performances of MPC-based solu-
tions have been impressive compared to FHE-based solutions, they incur other
issues like network latency and high bandwidth usage. Because of these down-
sides, FHE-based solutions seem more scalable for real-life applications. In this
work, we focus on a non-interactive, blind evaluation, and we rely on FHE.

Our contributions. We adopt a scale-invariant approach to the problem. In
our framework, called FHE–DiNN, each neuron’s output is refreshed through
bootstrapping, resulting in that arbitrarily deep networks can be homomorphi-
cally evaluated. Of course, the entire homomorphic evaluation of the network will
take time proportional to the number of its neurons or, if parallelism is involved,
to the number of its layers. Evaluating one neuron is now essentially independent
of the dimensions of the network: it just relies on system-wide parameters.

In FHE–DiNN, unlike in standard neural networks, the weights and biases,
as well as the domain and range of the activation function cannot be real-valued
and must be discretized. We call such networks Discretized Neural Networks or
DiNNs. This particular form of neural networks is somehow inspired by a more
restrictive one, referred to in the literature as Binarized Neural Networks (BNNs)
[CB16] where signals and weights are restricted to the set {−1, 1} instead of Z
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as in the case of DiNNs (so BNNs are a special case of DiNNs). Interestingly,
it has been empirically observed by [CB16] that BNNs can achieve accuracies
close to the ones obtained with state-of-the-art classical NNs, at the price of an
overhead in the total network size, which is largely compensated by the obtained
performance gains. For the sake of scale-invariance, we decided to choose as
activation function the sign, so the signal which is propagated has values in
{−1, 1}, and cannot grow out of control. So the evaluation of DiNNs boils down
to repeatedly computing the sign of a weighted sum of ±1 inputs.

In order to perform this classification on encrypted data, we adapt the recent
construction by Chillotti et al., known as TFHE [CGGI16b] to support sign and
weighted sum as the two basic operations of the scheme, the sign being computed
during a bootstrapping procedure in order to refresh the ciphertext.

As a side contribution, we also present a few techniques to optimize the
usage of TFHE in applications: how to reduce the required bandwidth, how to
reduce the overall noises in the ciphertexts, and a slightly faster alternative to
the bootstrapping procedure that also produces ciphertexts with less noise, at
the expense of a bigger bootstrapping key.

Finally, we conducted experiments on the MNIST dataset [LBBH98]. We
used the library keras [C+15] to train two simple neural networks with one
hidden layer containing 30 (respectively, 100) neurons and we converted them
into DiNNs by simply discretizing the weights and using the sign as activation
function. Of course, this introduced a loss in accuracy, and although much bet-
ter accuracies could certainly be obtained through various optimizations or by
directly training a DiNN (rather than converting a canonical neural network),
this was not the goal of this work. Our aim was conducting experiments to mea-
sure the accuracy of the homomorphic classification and comparing it to that
in the clear. We found that, for a security level of 80 bits, our implementa-
tion takes about 0.49 s (respectively, 1.65 s) seconds per classification (with no
underlying parallelism whatsoever) and achieves 93.71% (respectively, 96.35%)
accuracy when evaluated homomorphically.

Comparison with cryptonets [DGBL+16]. In Cryptonets, propagated sig-
nals are reals properly encoded into compatible plaintexts and a single encrypted
input (i.e., an image pixel) takes 2 · 382 · 8192 bits (=766 kB). Therefore, an entire
image takes 28 · 28 · 766 kB ≈ 586MB. However, with the same storage require-
ments, Cryptonets can batch 8192 images together, so that the amortized size
of an encrypted image is reduced to 73.3 kB. In the case of FHE–DiNN, we are
able to exploit the batching technique on a single image, resulting in that each
encrypted image takes ≈8.2 kB. In the case of Cryptonets, the complete homo-
morphic evaluation of the network takes 570 s, whereas in our case it takes 0.49 s
(or 1.6 s in the case of a slightly larger network). However, it should be noted
that (a) the networks that we use for our experiments are considerably smaller
than that used in Cryptonets, so we also compare the time-per-neuron and, in
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this case, our solution is faster by roughly a factor 36; moreover (b) once again
Cryptonets support image batching, so 8192 images can be classified in 570 s,
resulting in only 0.07 s per image. Cryptonets’ ability to batch images together
can be useful in some applications where the same user wants to classify a large
number of samples together. In the simplest case where the user only wants a
single image to be classified, this feature does not help.

Regarding classification accuracy, the NN used by Cryptonets achieves
98.95% of correctly classified samples, when evaluated on the MNIST dataset.
In our case, a loss of accuracy occurs due to the preliminary simplification of
the MNIST images, and especially because of the discretization of the network.
We stress however that our prime goal was not accuracy but to achieve a quali-
tatively better homomorphic evaluation at the neuron level.

Finally, we also achieve scale-invariance, meaning that we can keep on com-
puting over the encrypted outputs of our network, whereas Cryptonets are
bounded by the initial choice of parameters. In Table 1 we present a detailed
comparison with Cryptonets.

Table 1. Comparison with Cryptonets and its amortized version (denoted by
Cryptonets�). FHE–DiNN30 and FHE–DiNN100 refer to neural networks with one hid-
den layer composed of 30 and 100 neurons, respectively.

Neurons Size of ct. Accuracy Time enc Time eval Time dec
Cryptonets 945 586 MB 98.95% 122 s 570 s 5 s
Cryptonets� 945 73.3 kB 98.95% 0.015 s 0.07 s 0.0006 s
FHE–DiNN30 30 ≈8.2 kB 93.71% 0.000168 s 0.49 s 0.0000106 s
FHE–DiNN100 100 ≈8.2 kB 96.35% 0.000168 s 1.65 s 0.0000106 s

Outline of the paper. The paper is organized as follows: in Sect. 2 we define
our notation and we introduce notions about fully homomorphic encryption and
artificial neural networks; in Sect. 3 we present our Discretized Neural Networks
and show a simple technique to build these models; in Sect. 4 we explain how
to homomorphically evaluate a DiNN and present our main result; in Sect. 5 we
present some technical refinements that allow us to improve the efficiency of the
evaluation and that can be useful also for other FHE-based solutions; finally,
in Sect. 6 we give experimental results on data in the clear and on encrypted
inputs, draw some conclusions and identify several open problems.

2 Preliminaries

In this section we clarify our notation and recall some definitions and construc-
tions that are going to be useful in the rest of the paper.
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2.1 Notation

We denote the real numbers by R, the integers by Z and use T to indicate R/Z,
i.e., the torus of real numbers modulo 1. We use B to denote the set {0, 1},
and we use R [X] for polynomials in the variable X with coefficients in R, for
any ring R. We use RN [X] to denote R [X] /

(
XN + 1

)
and ZN [X] to denote

Z [X] /
(
XN + 1

)
and we write their quotient as TN [X] = RN [X] /ZN [X], i.e.,

the ring of polynomials in X quotiented by
(
XN + 1

)
, with real coefficients

modulo 1. Vectors are denoted by lower-case bold letters, and we use ‖·‖1 and
‖·‖2 to denote the L1 and the L2 norm of a vector, respectively. Given a vector
a, we denote its i-th entry by ai. We use 〈a,b〉 to denote the inner product
between vectors a and b.

Given a set A, we write a
$← A to indicate that a is sampled uniformly at

random from A. If D is a probability distribution, we will write d ← D to denote
that d is sampled according to D.

2.2 Fully Homomorphic Encryption over the Torus

Learning with errors. The Learning with Errors (LWE) problem was intro-
duced by Regev in [Reg05]. Let n be a positive integer and χ be a probability
distribution over R for the noise. For any vector s ∈ {0, 1}n, we define the LWE
distribution lwen,s,χ as (a, b), where a $← T

n and b = 〈s,a〉 + e ∈ T, with e ← χ.
Then the LWE assumption states that, for s $← {0, 1}n, it is hard to distin-

guish between (a, b) and (u, v), for (a, b) ← lwen,s,χ and (u, v) $← T
n+1.

Sub-Gaussians. Let σ > 0 be a real Gaussian parameter. We define the Gaus-
sian function with parameter σ as ρσ (x) = exp

(
−π |x|2 /σ2

)
for any x ∈ R.

Then we say that a distribution D is sub-Gaussian with parameter σ if there
exists M > 0 such that for all x ∈ R,

D (x) ≤ M · ρσ (x) .

Lemma 2.1 (Pythagorean additivity of sub-Gaussians). Let D1 and D2

be sub-Gaussian distributions with parameters σ1 and σ2, respectively. Then D+,
obtained by sampling D1 and D2 and summing the results, is a sub-Gaussian with
parameter

√
σ2
1 + σ2

2.

LWE-based private-key encryption scheme. We recall the Regev encryp-
tion scheme from [Reg05]. Let μ ∈ {0, 1} be a message and λ the security param-
eter; we encrypt and decrypt as follows:

Setup (λ): for a security parameter λ, fix n = n (λ) and return s $← {0, 1}n

Enc (s, μ): return (a, b), with a $← T
n and b = 〈s,a〉 + e + μ

2 , where e ← χ
Dec (s, (a, b)): return 	2 (b − 〈s,a〉)
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We usually refer to e as the noise of the ciphertext, and say that a ciphertext is
a valid encryption of μ if it decrypts to μ with overwhelming probability.

We now give some notions on the formulation of FHE over the torus and the
bootstrapping procedure. The following part is based on [CGGI16b].

TLWE. TLWE is a generalization of LWE and Ring-LWE [LPR10]. Let k ≥ 1
be an integer, N be a power of 2 and χ be an error distribution over RN [X].
A TLWE secret key s̄ ∈ BN [X]k is a vector of k polynomials over ZN [X] with
binary coefficients. Given a message encoded as a polynomial μ ∈ TN [X], a fresh
TLWE encryption of μ under the key s̄ is a sample (a, b) ∈ TN [X]k × TN [X],
with a $← TN [X]k and b = s̄ · a + μ + e, where e ← χ.

From a TLWE encryption c̄ of a polynomial μ ∈ TN [X] under a TLWE key
s̄ we can extract a LWE encryption c′ = Extract (c̄) of the constant term of μ
under an extracted key s′ = ExtractKey (s̄). For the details of the algorithms
Extract and ExtractKey, we refer the reader to [CGGI16b, Definition 4.1].

TGSW. TGSW is a generalized version of the GSW FHE scheme [GSW13]. The
key concept here is that TGSW can be seen as the matrix equivalent of TLWE,
just like GSW can be seen as the matrix equivalent of LWE. More details can
be found in [CGGI16b].

As in previous works, our average-case noise analysis relies on the following
heuristic. This assumption matches empirical results [DM15,CGGI16b]. Note
that the worst-case bounds do not require this heuristic.

Assumption 1. We assume that all the error coefficients of TLWE or TGSW
samples of the linear combinations we consider are independent and concen-
trated. In particular, we assume that they are sub-Gaussian where σ is the square-
root of their variance.

Overview of the bootstrapping procedure. The core idea for the efficiency
of the new bootstrapping procedure is the so-called external product �, that
performs the following mapping

� : TGSW × TLWE → TLWE.

Roughly speaking, the external product of a TGSW encryption of a polynomial
μ1 ∈ TN [X] and a TLWE encryption of a polynomial μ2 ∈ TN [X] is a TLWE
encryption of (μ1 · μ2) ∈ TN [X].

Now the bootstrapping procedure of an n-LWE sample (here, n denotes the
dimension) consists of the 3 following functions:
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BlindRotate: TGSWn × TLWE × n-LWE → TLWE
On input TGSW encryptions of (si)i∈[n], a (possibly noiseless) TLWE encryp-
tion of testVector and an n-LWE sample (a, b), computes a TLWE encryption
of Xφ· testVector, where φ = b − 〈s,a〉;

Extract: TLWE → N -LWE
On input a TLWE encryption of polynomial μ ∈ TN [X], computes an N -
LWE encryption of the constant term μ(0);

KeySwitch: n-LWEN × N -LWE → n-LWE
On input n-LWE encryptions of (s′

i)i∈[N ], and an N -LWE sample (a, b) com-
putes an n-LWE encryption of b − 〈s′,a〉.
Then we can define a function Bootstrap (·, ·, ·) that takes as input a boot-

strapping key bk, a keyswitching key ksk, and a ciphertext and outputs a new
ciphertext. Roughly speaking,

Bootstrap = KeySwitch ◦ Extract ◦ BlindRotate.

We note that BlindRotate works on LWE samples with values in [2N ] instead
of T, thus the first step is to map T to [2N ] by multiplying and rounding.

When studying the noise distribution during this operation, and to measure
the impact of our changes on this procedure, we note that there are actually
two different relevant noises: the overhead noise which is added to the input
ciphertext before its virtual decryption and the output noise, which is the one
in the final output ciphertext.

2.3 Artificial Neural Networks

An artificial neural network is a computing system inspired by biological brains.
Here, we consider a neural network (NN) that is composed of a population of
artificial neurons arranged in layers. Each neuron of a dense layer accepts nI real-
valued inputs x = (x1, . . . , xnI

) and performs the following two computations:

1. It computes a real value y =
∑nI

i=1 wixi + β, which is a weighted sum of the
inputs with real values called weights: wi is the weight associated to the input
xi, and β, also real-valued, is referred to as the bias of the neuron.

2. It applies a non-linear function f , the activation function, and returns f(y).

The neuron’s output can be written as f (〈w,x〉) = f (
∑nI

i=0 wixi) if
one extends the inputs and the neuron’s weights vector by setting w =
(β,w1, . . . , wnI

) and x = (1, x1, . . . , xnI
). The neurons of a neural network are

organized in successive layers, which are categorized according to their activa-
tion function. Neurons of one layer are connected to the neurons of the next
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layer by paths that are associated to weights. An input layer composed of the
network’s inputs as well as an output layer made of the network’s output values
are also added to the network. Internal layers are called hidden, since they are
not directly accessible from the external world.

NNs are usually composed of layers of various types: fully connected (every
neuron of the layer takes all incoming signals as inputs), convolutional (it applies
a convolution to its input), pooling, and so forth. Neural networks could in
principle be recurrent systems, as opposed to the purely feed-forward ones, where
each neuron is only evaluated once. The universal approximation theorem (see,
e.g., [Hor91,Cyb89]) states that a neural network with a single hidden layer that
contains a finite amount of neurons, can approximate any continuous function.
Despite this, the number of neurons in that layer can grow exponentially. Instead,
a deep neural network has several layers of non-linearities, which allow to extract
increasingly complex features of the input and can lead to a better ability to
generalize, especially in the case of more complex tasks.

The FHE–DiNN framework presented in this work is able to evaluate NNs of
arbitrary depth, comprising possibly many hidden layers.

2.4 The MNIST Dataset

The MNIST database (Modified National Institute of Standards and Technology
database) is a dataset of images representing digits handwritten by more than
500 different writers, and is commonly used as a benchmark for machine learning
systems [LBBH98]. The MNIST database contains 60 000 training images and
10 000 testing images. The format of the images is 28 × 28 and the value of each
pixel represents a level of gray. Moreover, each image is labeled with the digit it
depicts.

A typical neural network for the MNIST dataset has 28·28 = 784 input nodes
(one per pixel), an arbitrary number of hidden layers with an arbitrary number
of neurons per layer, and finally 10 output nodes (one per possible digit). The
output values can be interpreted as “scores” given by the NN: the classification
is then given by the digit that achieves the highest score.

Over the years, the MNIST dataset has been a typical benchmark for classi-
fiers, and many approaches have been applied: linear classifiers, principal com-
ponent analysis, support vector machines, neural networks, convolutional neural
networks, etc. For a more complete review on these approaches, we refer the
reader to, e.g., [LBBH98]. Neural networks are known to perform well on this
dataset. For example, [LBBH98] proposes different architectures for neural net-
works and obtains more than 97% of correct classifications. More recent works
even surpassed 99% of accuracy [CMS12]. For a nice overview on the results
obtained on this dataset and on the techniques that were used, we refer the
reader to [LCB98].
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3 Discretized Neural Networks (DiNN)

In this section we formally define DiNNs and we explain how they differ from a
traditional neural network and how to simply convert a NN into a DiNN.

3.1 Definition of a Discretized Neural Network

First of all, we recall that state-of-the-art fully homomorphic encryption schemes
cannot support operations over real messages. Traditional neural networks have
real-valued weights, and this incompatibility motivates investigating alternative
architectures.

Definition 3.1. A Discretized Neural Network (DiNN) is a feed-forward arti-
ficial neural network whose inputs are integer values in {−I, . . . , I} and whose
weights are integer values in {−W, . . . ,W}, for some I,W ∈ N. For every neuron
of the network, the activation function maps the inner product between the incom-
ing inputs vector and the corresponding weights to integer values in {−I, . . . , I}.

In particular, for this paper we chose {−1, 1} as the input space and sign (·)
as the activation function for the hidden layers:

sign (x) =

{
−1, x < 0,

+1, x ≥ 0.
(3.1)

These choices are inspired by the fact that we designed the model with the idea
of performing homomorphic evaluations over encrypted input. As a consequence,
we wanted the message space to be as small as possible, which, in turn, would
allow us to increase the efficiency of the overall evaluation.

We also note that using an activation function whose output is in the same
range as the network’s input allows us to maintain the same semantics across
different layers. In our case, what enters a neuron is always a weighted sum of
values in {−1, 1}. In order to make the evaluation of the network compatible
with FHE schemes, discretizing the input space is not sufficient: we also need to
have discrete values for the weights of the network1.

3.2 Simple Conversion from a Traditional Neural Network
to a DiNN

In this subsection we show a very simple method to convert an already-trained
canonical neural network (i.e., with real weights) into a DiNN. This method is
not guaranteed to be the best way to obtain such a conversion; it indeed intro-

1 As all the computations are done over the torus (i.e., modulo 1), scaling a cipher-
text by any integer factor preserves the relations that make the decryption correct.
However, this does not hold for non-integer factors.
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duces a visible loss in the classification accuracy and would probably be best
used as a first step in the conversion procedure. However, we remind the reader
that this work is aimed at the homomorphic evaluation of a network, thus we
decided not to put too much effort in the construction of a sophisticated cleart-
ext model. This procedure allows us to obtain a network which respects our con-
straints and that can be evaluated over encrypted inputs, so it is sufficient for our
purposes.

It turns out that the only thing that we need to do is discretizing the weights
and biases of the network. To this purpose, we define the function

processWeight (w, τ) = τ ·
⌊w

τ

⌉
(3.2)

where τ ∈ N is a parameter that controls the precision of the discretization.
In the following, we implicitly take all the weights as discretized after being
processed through the formula in Eq. 3.2. After fixing a value τ , the network
obtained by applying processWeight (·, τ) to all the weights and biases is a DiNN.
The parameter τ has to be chosen carefully, since it defines the message space
that our encryption scheme must support. Thus, we want the bound on 〈w,x〉
to be small for all neurons, where w and x are the discretized weights and the
inputs associated to the neuron, respectively. In Fig. 1, we show the evaluation
of a single neuron: we first compute 〈w,x〉, which we refer to as a multisum, and
then apply the sign function to the result.

x1

x2

...
...

w1

w2

y

Σ

Fig. 1. Evaluation of a single neuron. The output value is y = sign (〈w,x〉), where wi

are the discretized weights associated to the incoming wires and xi are the correspond-
ing input values.

4 Homomorphic Evaluation of a DiNN

We now give a high level description of our procedure to homomorphically eval-
uate a DiNN, called FHE–DiNN. We basically need two ingredients: we need to
be able to compute the multisum between the encrypted inputs and the weights
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and we need to homomorphically extract the sign of the result. In order to main-
tain the scalability of our scheme across the layers of a given DiNN, we perform
a bootstrapping operation for every neuron in hidden layers. This ensures that
the ciphertext encrypting the sign of the result after applying one layer of the
DiNN can be used for further computations without an initially fixed limit on
the number of layers that the network can contain. Hence we can choose param-
eters that are independent of the number of layers and evaluate arbitrarily deep
neural networks.

4.1 Evaluating the Multisum

In our framework, the weights of the network are available in clear, so we can
evaluate the multisum just by using homomorphic additions. The only things
that need our attention are the message space of our encryption scheme, which
has to be large enough to accommodate for all possible values of the multisums,
and the noise level that might grow too much and lead to incorrect results.

Extending the message space. In order for our FHE scheme to be able to
correctly evaluate the multisum, we need all the possible values of the multisum
to be inside our message space. To this end, we extend our LWE encryption
scheme as follows. This idea was already used in previous works such as [PW08,
KTX08,ABDP15,ALS16].

Construction 1 (Extended LWE-based private-key encryption sch-
eme). Let B be a positive integer and let m ∈ [−B,B] be a message. Then
we split the torus into 2B + 1 slices, one for each possible message, and we
encrypt and decrypt as follows:

Setup (λ): for a security parameter λ, fix n = n (λ) , σ = σ (λ); return s $← T
n

Enc (s,m): return (a, b), with a $← T
n and b = 〈s,a〉+e+ m

2B+1 , where e ← χσ

Dec (s, (a, b)): return 	(b − 〈s,a〉) · (2B + 1)

An input message is mapped to the center of its corresponding torus slice by

scaling it by 1/ (2B + 1) during encryption, and decoded by scaling it by 2B +1
during decryption.

Correctness of homomorphically evaluating the multisum. Note that
ciphertexts can be homomorphically added and scaled by a known integer
constant: for any two messages m1,m2 ∈ [−B,B], any secret key s, any
c1 = (a1, b1) ← Enc (s,m1), c2 = (a2, b2) ← Enc (s,m2), and constant w ∈ Z, we
have that

Dec (s, c1 + w · c2) = Dec (s, (a1 + w · a2, b1 + w · b2)) = m1 + w · m2

as long as (1) m1 + w · m2 ∈ [−B,B], and (2) the noise did not grow too much.
The first condition is easily met by choosing B ≥ ‖w‖1 for all weight vectors

w in the network (e.g., we can take the max).
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Fixing the noise. Increasing the message space has an impact on the choice of
parameters. Evaluating the multisum with a given weight vector w means that,
if the standard deviation of the initial noise is σ, then the standard deviation of
the output noise can be as high as ‖w‖2 ·σ (see Lemma 2.1), which in turn means
that our initial standard deviation must be smaller than the one in [CGGI16b]
by a factor maxw ‖w‖2. Moreover, for correctness to hold, we need the noise to
remain smaller than half a slice of the torus. As we are splitting the torus into
2B + 1 slices rather than 2, we need to further decrease the noise by a factor
B. Special attention must be paid to security: taking a smaller noise might in
fact compromise the security of the scheme. In order to mitigate this problem,
we can increase the dimension of the LWE problem n, but this in turn induces
more noise overhead in the bootstrapping procedure due to rounding errors.

4.2 Homomorphic Computation of the Sign Function

We take advantage of the flexibility of the bootstrapping technique introduced
by Chillotti et al. [CGGI16b] in order to perform the sign extraction and the
bootstrapping at the same time. Concretely, in the call to BlindRotate, we change
the value of testVector to

−1
2B + 1

N−1∑

i=0

Xi.

Then, if the value of the phase b−〈s,a〉 is between 1 and N (positive), the output
will be an encryption of 1, otherwise if it is between N + 1 and 2N (negative),
the output will be an encryption of −1.

In order to give more intuition, we present an illustration of the bootstrap-
ping technique in Fig. 2. The first step of the bootstrapping basically consists
in mapping the torus T to an object that we will refer to as the wheel. This
wheel is split into 2N “ticks” that are associated to the possible values that are
encrypted in the bootstrapped ciphertext. The bootstrapping procedure then
consists in choosing a value for each tick, rotating the wheel by b − 〈s,a〉 ticks
counter-clockwise, and picking the value of the rightmost tick. We note that the
values on the wheel are encoded in the testVector variable, which contains values
for the ticks on the top part of the wheel. The bottom values are then fixed by
the anticyclic property of TN [X] (the value at tick N + i is minus the value at
tick i).

From now on, we say that a bootstrapping is correct if, given a valid encryp-
tion of a message μ, its output is a valid encryption of sign (μ) with overwhelming
probability.

4.3 Scale-Invariance

If the parameters are set correctly then, by using the two operations described
above, we can homomorphically evaluate neural networks of any depth. In partic-
ular, the choice of parameters is independent of the depth of the neural network.
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Fig. 2. On the left, we show the first step of the bootstrapping, which consists in
mapping the torus (the continuous circle) to the wheel (the 2N ticks on it) by rounding
to the closest tick. Each slice corresponds to one of the possible results of the multisum
operation. On the right we show the final result of the bootstrapping: each tick of the
top part of the wheel is mapped to its sign which is +1 and each tick of the bottom
part to −1. This can roughly be seen as embedding the wheel back to the torus.

This result cannot be achieved with previous techniques relying on somewhat
homomorphic evaluations of the network. In fact, they have to choose param-
eters that accommodate for the whole computation, whereas our method only
requires the parameters to accommodate for the evaluation of a single neuron.
The rest of the computation follows by induction. More precisely, our choice of
parameters only depends on bounds on the norms (‖·‖1 and ‖·‖2) of the input
weights of a neuron. In the following, we denote these bounds by M1 and M2,
respectively.

We say that the homomorphic evaluation of the neural network is correct if
the decryptions of its output scores are equal to the scores given by its evaluation
in the clear with overwhelming probability. Then, the scale-invariance is formally
defined by the following theorem:

Theorem 4.1 (Scale-invariance of our homomorphic evaluation). For
any DiNN of any depth, any correctly generated bootstrapping key bk and
keyswitching key ksk, and any ciphertext c, let σ be a Gaussian parameter such
that the noise of Bootstrap (bk, ksk, c) is sub-Gaussian with parameter σ. Then,
if the bootstrapping is correct on input ciphertexts with sub-Gaussian noise of
parameter σ

M2
and message space larger than 2M1 + 1, the result of the homo-

morphic evaluation of the DiNN is correct.

Proof. The proof is a simple induction on the structure of the neural network.
First, the correctness of the evaluation of the first layer is implied by the choice
of parameters for the encryption2.

2 If it is not, we can bootstrap all input ciphertexts in order to ensure this holds.
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If the evaluation is correct for all neurons of the 
-th layer, then the correct-
ness for all neurons of the (
+1)-th layer follows from the two observations made
in the previous subsections:

– The result of the homomorphic evaluation of the multisum is a valid encryp-
tion of the multisum;

– The result of the bootstrapping is a valid encryption of the sign of the mul-
tisum.

The first fact is implied by the choice of the message space, since the multi-
sum value is contained in [−M1,M1]. The second one comes directly from the
correctness of the bootstrapping, because the homomorphic computation of the
multisum on ciphertexts with sub-Gaussian noise of parameter σ yields a cipher-
text with sub-Gaussian noise of parameter at most σM2 (cf. Lemma 2.1).

Then, the correctness of the encryption scheme ensures that the final cipher-
texts are valid encryptions of the scores. ��

5 Refinements of TFHE

In this section, we present several improvements that helped us achieving better
efficiency for the actual FHE–DiNN implementation. These various techniques
can without any doubt be applied in other FHE-based applications.

5.1 Reducing Bandwidth Usage

One of the drawbacks of our evaluation process is that encrypting individual
values for each input neuron yields a very large ciphertext, which is inconve-
nient from a user perspective, as a high bandwidth requirement is the direct
consequence. In order to mitigate this issue, we “pack” multiple values into one
ciphertext. We use the standard technique of encrypting a polynomial (using the
TLWE scheme instead of LWE) whose coefficients correspond to the different
values we want to encrypt:

ct = TLWE.Encrypt

(
∑

i

xiX
i

)

,

where the xi’s represent the values of the input neurons to be encrypted3. This
packing technique is what made Ring-LWE an attractive variant to the standard
LWE problem, as was already presented in [LPR10], and is widely used in FHE
applications to amortize the cost of operations [HS14,HS15].

3 If the number of input neurons is bigger than the maximal degree of the polynomials
N , we can pack the ciphertext by groups of N , compute partial multisums with our
technique, and aggregate them afterwards.
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Then, we observe that for each neuron in the first hidden layer, we can
compute the multisum with coefficients wi by scaling the input TLWE ciphertext
by a factor ∑

i

wiX
−i.

Indeed, it is easy to verify that the constant term of
(∑

i xiX
i
) ·(∑i wiX

−i
)

is
∑

i wixi, and we can obtain an LWE encryption of this value by invoking
Extract.

Remark 1. We note that this computation is actually equivalent to doing the
multisum directly on LWE ciphertexts, so the resulting noise growth of this
approach is exactly the same as before. We end up saving bandwidth usage (by
a factor up to N , the degree of the polynomials) basically for free. Furthermore,
as the weights of the neural network never change, we can precompute and store
the FFT representation of the polynomials

∑
wiX

−i, thus saving time during
the online classification.

In a nutshell, we reduce the size of the ciphertexts for N elements from N
LWE ciphertexts to 1 TLWE ciphertext. In terms of numbers of elements in T,
the cost dropped from N(n + 1) to N(k + 1).

We remark that the resulting ciphertext is an LWE ciphertext in dimension
N , and not the original n, thus requiring key-switching to become a legitimate
ciphertext. However, this is not a problem thanks to the trick presented in the
following subsection.

5.2 Moving KeySwitch Around

The main goal of key-switching here is to reduce the LWE dimension. The ben-
efits in memory usage and efficiency of this reduction are extremely important,
since the size of the bootstrapping key, the final noise level, and the number of
external products (the most costly operation) all depend linearly on this param-
eter. However, we noticed that reducing this dimension in the beginning of the
bootstrapping procedure instead of the end gave much better results, hence the
new bootstrapping function:

Bootstrap = Extract ◦ BlindRotate ◦ KeySwitch.

The intuition is that, with this technique, the noise produced by KeySwitch
will not be multiplied by ‖w‖2 when performing the computation of the mul-
tisum, but will only be added at the end. Basically, we moved the noise of the
output ciphertext produced by KeySwitch to an overhead noise.

Doing this, we reverse the usage of the two underlying LWE schemes: every-
thing is now done on high dimensional N -LWE, whereas the low dimensional
n-LWE scheme is only used during the bootstrapping operation. Since the noise
in the key-switching key is not used for any computation anymore, we can allow
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it to be bigger, thus reducing the dimension we need for the same security to
hold and, in turn, gaining in time per bootstrapping.

The only downside is that working with higher dimensional N -LWE samples
means slightly more memory usage for the server, bigger output ciphertext4,
and slightly slower addition of ciphertexts. However, as this operation is instan-
taneous when compared to other operations such as bootstrapping, this is not
an issue.

5.3 Dynamically Changing the Message Space

In Sect. 4, we showed how to evaluate the whole neural network by induction,
using a message space of 2B + 1 slices, where B is a bound on the values of the
multisums across the whole evaluation. However, in order to be able to reduce
the probability of errors along the way, we are able to use different message
spaces for each layer of the DiNN, and adapt the number of slots to the values
given by the local computations, depending on the values of the weights w. In
order to do so, we change the value of testVector to

−1
2B� + 1

N−1∑

i=0

Xi,

where B� is now indexed by the current layer 
, and is a bound on the values
of the multisums for the next layer 
 + 1. The point of this manoeuvre is that
if the number of slots is smaller, the slices are bigger, and the noise would have
to be bigger in order to change the plaintext message. This trick might seem
superfluous, because it decreases a probability that is already negligible. However
sometimes, in practical scenarios, the correctness of the scheme is relaxed, and
this trick allows us to obtain results closer to the expected values without costing
any extra computation or storage.

5.4 Alternative BlindRotate Implementations

Following the technique of [ZYL+17], we try to gain efficiency in the bootstrap-
ping by reducing the number of external products that we have to compute. In
order to do so, they slightly unfold the loop computing X〈s,a〉 in the BlindRotate
algorithm. They group the terms of the sum two by two, using the following
formula for each of the new terms:

Xas+a′s′
= ss′Xa+a′

+ s(1 − s′)Xa + (1 − s)s′Xa′
+ (1 − s)(1 − s′).

In order to compute this new function, they change the bootstrapping key to
contain encryptions of the values ss′, s(1 − s′), (1 − s)s′, and (1 − s)(1 − s′),

4 This can be circumvented by applying one last round of KeySwitch at the end of the
protocol, if needed.
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Algorithm 1. Alternative BlindRotate algorithm.
Input: an n-LWE ciphertext (a, b) with coefficients in Z2N , a (possibly noise-
less) TLWE encryption C of testVector, the bootstrapping key bk such that for
all i in [n/2], bk3i, bk3i+1, and bk3i+2 are respectively TGSW encryptions of
s2is2i+1, s2i(1 − s2i+1), and s2i+1(1 − s2i)
Output: a TLWE encryption of Xb−〈s,a〉 · testVector

1: ACC ← Xb · C
2: for i = 1 . . . n/2 do
3: ACC ← ((Xa2i+a2i+1 −1)bk3i +(Xa2i −1)bk3i+1 +(Xa2i+1 −1)bk3i+2)�ACC
4: end for
5: return ACC

thus expanding the size of the bootstrapping key by a factor 2. Using this idea,
they cut the number of iterations of the loop by half, thus computing only
half the amount of external products, which is the most costly operation of
the bootstrapping. However, by doing so, they introduce the computation of 4
scalings of TGSW ciphertexts (which are matrices) by constant polynomials, and
3 TGSW additions, when TFHE’s BlindRotate only needed 1 scaling of a TLWE
ciphertext, and 1 TLWE addition. Another benefit is that the homomorphic
computation of 〈s,a〉 induces rounding errors on only n/2 terms instead of n.
The noise of the output ciphertext is also different. On the bright side, the
technique of [ZYL+17] reduces the noise induced by the precision errors during
the gadget decomposition by a factor 2. On the other hand, it increases the noise
coming from the bootstrapping key by a factor 2.

In this work, we suggest to use another formula in order to compute each
term of the slightly unfolded sum. Observing that ss′ + s(1 − s′) + (1 − s)s′ +
(1 − s)(1 − s′) = 1, we can save 1 element in the bootstrapping key:

Xas+a′s′
= ss′(Xa+a′ − 1) + s(1 − s′)(Xa − 1) + (1 − s)s′(Xa′ − 1) + 1.

The resulting BlindRotate algorithm is described in Algorithm 1. Having a 1 in
the decomposition is a valuable advantage, because it means that we can move
it out of the external product and instead add the previous value of the accu-
mulator to the result. Thus, efficiency-wise, we halved the number of external
products at the cost of only 3 scalings of TGSW ciphertexts by constant polyno-
mials, 2 TGSW additions, and 1 TLWE addition. We note that while multiplying
naively by a monomial might be faster than multiplying by a degree 2 polyno-
mial, the implementation pre-computes and stores the FFT representation of
the bootstrapping keys in order to speed up polynomial multiplication. Thus,
multiplying by a polynomial of any degree has the same cost. The size of the
bootstrapping key is now 3/2 times larger than the size of the one in TFHE,
which is a compromise between the two previous methods. As in [ZYL+17], the
noise induced by precision errors and roundings is halved compared to TFHE.
On the other hand, now we increase the noise coming from the bootstrapping
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Table 2. Comparison of the three alternative BlindRotate algorithms. n denotes the
LWE dimension after keyswitching; δ refers to the noise introduced by rounding the
LWE samples into [2N ] before we can BlindRotate; N is the degree of the polynomials
in the TLWE scheme; k is the dimension of the TLWE ciphertexts; ε is the precision
(1/2β)�/2 of the gadget matrix (tensor product between the identity Idk+1 and the
powers of 1/2β arranged as �-dimensional vector (1/2β, . . . , (1/2β)�) ); σbk is the stan-
dard deviation of the noise of the TGSW encryptions in the bootstrapping key, and
Abk is a bound on this noise. These values were derived using the theorems for noise
analysis in [CGGI17]

TFHE ZYLZD17 FHE–DiNN

Efficiency

External products n n/2 n/2

Scaled TGSW add. 0 4 3
Scaled TLWE add. 1 0 1

Noise overhead δ δ/2 δ/2

Out noise
(average)

roundings n(1 + kN)ε2 n
2
(1 + kN)ε2 n

2
(1 + kN)ε2

from BK n(k + 1)�Nβ2σ2
bk 2n(k + 1)�Nβ2σ2

bk 3n(k + 1)�Nβ2σ2
bk

Out noise
(worst)

roundings n(1 + kN)ε n
2
(1 + kN)ε n

2
(1 + kN)ε

from BK n(k + 1)�NβAbk 2n(k + 1)�NβAbk 3n(k + 1)�NβAbk

Storage TGSW in the BK n 2n 3n/2

key by a factor 3 instead. However, we note that it is possible to reduce this
noise without impacting efficiency by reducing the noise in the bootstrapping
key, trading off security (depending on what the bottleneck for security of the
scheme is, this could come for free), whereas in order to reduce the noise induced
by the precision errors, efficiency will be impacted. We recapitulate these num-
bers on Table 2.

We note that this idea could be generalized to unfoldings consisting of more
than two terms, yielding more possible trade-offs, but we did not explore further
because of the dissuasive exponential growth in the number of operands in the
general formula.

6 Experimental Results and Conclusions

We implemented the proposed approach to test its accuracy and efficiency. This
section is divided into two main parts: the first one describes the training of
the neural network over data in the clear and the second one details the results
obtained when evaluating the network over encrypted inputs.

6.1 Pre-processing the MNIST Database

In order to respect the constraint of having inputs in {−1, 1}, we binarized all
the images with a threshold value equal to 128: any pixel whose value is smaller
than the threshold is mapped to −1; the others are mapped to +1. This actually
reduces the amount of information available, as each 8-bit grayscale value is
clamped to a single bit, and one could wonder if this could impact the accuracy
of the classification. Although this is possible, a quick visual inspection of the
result shows that the digits depicted in the images are still clearly recognizable.
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6.2 Building a DiNN from Data in the Clear

In order to train the neural network, we first chose its topology, i.e., the number
of hidden layers and neurons per hidden layer. We experimented with several
values, always keeping in mind that a smaller number of neurons per layer is
preferable: having more neurons means that the value of the multisum will be
potentially higher, thus requiring a larger message space in the homomorphic
evaluation, which in turn forces to choose bigger parameters for the scheme.
After some tries, we decided to show the feasibility of our approach through the
homomorphic evaluation of two neural networks. Both have 784 neurons in the
input layer (one per pixel), a single hidden layer, and an output layer composed
of 10 neurons (one per class). The difference between the two models is the size
of the hidden layer: the first network has 30 neurons, while the second has 100.

In order to build a DiNN, we use the simple approach described in Sub-
sect. 3.2: we (1) train a traditional neural network (i.e., with real weights and
biases), and then we (2) discretize all the values by applying the function in
Eq. 3.2. For step (1) we take advantage of the library keras [C+15] with Ten-
sorflow [AAB+15], which offers a simple and highly customizable framework
for defining, training and evaluating even complex models of neural networks.
Through a farly simple Python script and in little time, we are able to define
and train our models as desired. Given its similarity with (a scaled and shifted
version of) the sign function, as an activation function we used the version of
hard sigmoid defined in Tensorflow. The reason behind this choice is that we know
we will substitute this activation function with the true sign (x). Thus, using a
function which is already similar to it helps reducing the errors introduced by
this switch.

Once we obtain the trained model, we proceed to choose a value τ ∈ N

and discretize the weights and the biases of the network, as per Eq. 3.2, thus
finally obtaining a DiNN that we can later evaluate over encrypted inputs. The
choice of τ is an important part of the process: on one hand, picking a very
small value will give little resolution to the network5, potentially degrading the
accuracy largely; on the other hand, picking a very large value will minimize the
loss in accuracy but increase the message space that we will need to support
for homomorphic evaluation, thus forcing us to choose larger parameters and
making the overall evaluation less efficient. Also, note that it is possible to choose
different values of the parameter τ for different layers of the network. Although
there might be better choices, we did not invest too much efforts in optimizing the
cleartext model and simply chose the value τ = 10 for both layers of each model.
Finally, we switched all the activation functions from hard sigmoid (·) to sign (·).
In order to assess the results of the training and how the accuracy varies because
of these changes, in Table 3 we report the accuracies obtained on the MNIST
test set. Note that these values are referred to the evaluation over cleartext
inputs.

5 This means that the number of values that the weights will be able to take will be
fairly limited.
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Table 3. Accuracy obtained when evaluating the models in the clear on the MNIST
test set. The first value refers to the evaluation of the model as output by the training;
the second refers to the model where all the values for weights and biases have been
discretized; the third refers to the same model, but with sign (·) as the activation
function for all the neurons in the hidden layer.

Original NN DiNN + hard sigmoid DiNN + sign
30 neurons 94.76% 93.76% (−1%) 93.55% (−1.21%)
100 neurons 96.75% 96.62% (−0.13%) 96.43% (−0.32%)

6.3 Classifying Encrypted Inputs

Implementing the homomorphic evaluation of the neural network over encrypted
input was more than a mere coding exercise, but allowed us to discover several
interesting properties of our DiNNs.

The starting point was the TFHE library by Chillotti et al., which is freely
available on GitHub [CGGI16a] and which was used to efficiently perform the
bootstrapping operation. The library takes advantage of FFT processors for
fast polynomial multiplication and, although not parallelized, achieves excellent
timing results. We extended the code to apply this fast bootstrapping procedure
to our use case.

Parameters. We now present our setting of the parameters, following the nota-
tion of [CGGI16b], to which we refer the reader for extra details. In Table 4 we
highlight the main security parameters regarding our ciphertexts, together with
an estimate of the security level that this setting achieves. Other additional
parameters, related to the various operations we need to perform, are the fol-
lowing:

Table 4. The security parameters we use for the different kinds of ciphertexts. The
estimated security has been extracted from the plot in [CGGI16b] and later verified
with the estimator from Albrecht et al. [APS15].

Ciphertext Dimension α Estimated security

input 1024 2−30 >150 bits
keyswitching key 450 2−17 >80 bits
bootstrapping key 1024 2−36 >100 bits

– Degree of the polynomials in the ring: N = 1024;
– Dimension of the TLWE problem: k = 1;
– Basis for the decomposition of TGSW ciphertexts: Bg = 1024;
– Length of the decomposition of TGSW ciphertexts: 
 = 3;
– Basis for the decomposition during key switching: 8;
– Length of the decomposition during key switching: t = 5;
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With this choice of parameters, we achieve a minimum security level of 80 bits
and a single bootstrapping operation takes roughly 15 ms on a single core of an
Intel Core i7-4720HQ CPU @ 2.60 GHz. Also, we note that by exploiting the
packing technique presented in Subsect. 5.1, we save a factor 172 in the size of the
input ciphertext: instead of having 784 · (450 + 1) torus elements (corresponding
to a 450-LWE ciphertext for each of the 784 pixels in an image), we now have
only 2 · 1024 torus elements (corresponding to the two polynomials that form a
TLWE sample).

Finally, we calculated the maximum value of the norms of the weight vectors
associated to each neuron, both for the first and the second layer. These values,
which can be computed at setup time (since the weights are available in the
clear), define the theoretical bounds on the message space that our scheme should
be able to support. In practice, we evaluated the actual values of the multisums
on the training set, and took a message space slightly larger6 than what we
computed. We note that with this method, it is possible that some input could
make the multisum go out of bounds, but this was not observed when evaluating
the network on the test set. Moreover, this allows us to take a considerably
smaller message space in some cases, and thus reduce the probability of errors.
In Table 5 we report the theoretical message space we would need to support
and the message space we actually used for our implementation.

In order to pinpoint our noise parameters, we also calculated the maximum
L2-norms of the weight vectors in each layer: for the network with 30 hidden
neurons, we have maxw ‖w‖2 ≈ 119 for the first layer and ≈85 for the second
layer; for the network with 100 hidden neurons, we have maxw ‖w‖2 ≈ 69 for
the first layer and ≈60 for the second layer.

Table 5. Message space: theoretically required values and how we set them in our
experiments with FHE–DiNN.

FHE–DiNN30 FHE–DiNN100
maxw ‖w‖1 theor. exp. maxw ‖w‖1 theor. exp.

1st layer 2338 4676 2500 1372 2744 1800

2nd layer 399 798 800 488 976 1000

Evaluation. Our homomorphic evaluation follows the outline presented in Fig. 3
in order to classify an encrypted image,

1. Encrypt the image as a TLWE ciphertext;
2. Multiply the TLWE ciphertext by the polynomial which encodes the weights

associated to the hidden layer. This operation takes advantage of FFT for
speeding up the calculations;

3. From each of the so-computed ciphertexts, extract a 1024-LWE ciphertext,
which encrypts the constant term of the result;

6 As we do not achieve perfect correctness with our parameters, the message can be
shifted. This fact has to be taken into account when choosing the number of slots.
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4. Perform a key switching in order to move from a 1024-LWE ciphertext to a
450-LWE one;

5. Bootstrap to decrease the noise level. By setting the testVector, this operation
also applies the sign function and changes the message space of our encryption
scheme for free.

6. Perform the multisum of the resulting ciphertext and the weights leading to
the output layer, through the technique showed in Subsect. 4.1.7

7. Return the 10 ciphertexts corresponding to the 10 scores assigned by the
neural network. These ciphertext can be decrypted and the argmax can be
computed to obtain the classification given by the network.

1 TLWE 30 TLWE

30 N -LWE

30 n-LWE

30 N -LWE

10 N -LWE10 scores7

Enc(
∑

i piX
i) ·∑i wiX

−i

Extract

Key Switching

Sign Bootstrapping

weighted sums
Decargmax

User Server

Fig. 3. Refined homomorphic evaluation of a 784:30:10 neural network with activation
function sign. The whole image (784 pixels) is packed into 1 TLWE ciphertext to mini-
mize bandwidth usage. After evaluation, the user recovers 10 ciphertexts corresponding
to the scores assigned by the network to each digit.

In Table 6 we present the complete results of our experiments, both when
using the original BlindRotate algorithm from [CGGI16b] (denoted by or) and
when using the modified algorithm presented in Subsect. 5.4 (denoted by un,
unfolded).

The homomorphic evaluation of the network on the entire test set was com-
pared to its classification in the clear and we observed the following facts:

Observation 1. The accuracy achieved when classifying encrypted images is
close to that obtained when classifying images in the clear.

In the case of the network with 30 hidden neurons, we obtain a classification
accuracy of 93.55% in the clear (cf. Table 3) and of 93.71% homomorphically.
In the case of the network with 100 hidden neurons, we have 96.43% accuracy
7 Note that we do not apply any activation function to the output neurons: we are

only interested in being able to retrieve the scores and sorting them to recover the
classification given by the network.
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in the clear and 96.35% on encrypted inputs. These gaps are explained by the
following observations.

Observation 2. During the evaluation, some signs are flipped during the boot-
strapping but this does not significantly harm the accuracy of the network.

We use aggressive internal parameters (e.g., N and, in general, all the parameters
that control the precision) for the homomorphic evaluation, knowing that this
could sometimes lead the bootstrapping procedure to return an incorrect result
when extracting the sign of a message. In fact, we conjectured that the neural
network would be resilient to perturbations and experimental results proved
that this is indeed the case: when running our experiment over the full test
set, we noticed that the number of wrong bootstrappings is 3383 (respectively,
9088) but this did not change the outcome of the classification in more than 196
(respectively, 105) cases (cf. Table 6).

Table 6. Results of homomorphic evaluation of two DiNNs on the full test set. The
second column gives the number of disagreements (images classified differently) between
the evaluation in the clear and the homomorphic one; the numbers in parentheses
give the disagreements in favor of the cleartext evaluation and those in favor of the
homomorphic evaluation, respectively. The third column gives the number of wrong
bootstrapping, i.e., when the sign is flipped. The fourth value gives the number of
disagreements in which at least one bootstrapping was wrong. Finally, the last column
gives the time required to classify a single image.

Accur. Disag. Wrong BS Disag. (wrong BS) Time
30 or 93.71% 273 (105–121) 3383/300000 196/273 0.515 s
30 un 93.46% 270 (119–110) 2912/300000 164/270 0.491 s
100 or 96.26% 127 (61–44) 9088/1000000 105/127 1.679 s
100 un 96.35% 150 (66–58) 7452/1000000 99/150 1.64 s

Observation 3. The classification of an encrypted image might disagree with
the classification of the same image in the clear but this does not significantly
worsen the overall accuracy.

This is a property that we expected during the implementation phase and our
intuition to explain this fact is the following: the network is assigning 10 scores
to each image, one per digit, and when two scores are close (i.e., the network is
hesitating between two classes), it can happen that the classification in the clear
is correct and the one over the encrypted image is wrong. But the opposite can
also be true, thus leading to classifying correctly an encrypted sample that was
misclassified in the clear. We experimentally verified that disagreements between
the evaluations do not automatically imply that the homomorphic classification
is worse than the one in the clear: out of 273 (respectively, 127) disagreements,
the classification in the clear was correct 105 (respectively, 61) times, against
121 (respectively, 44) times in favor of the homomorphic one8 (cf. Table 6).
8 In the remaining cases, the classifications were different but they were both wrong.
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Observation 4. Using the modified version of the BlindRotate algorithm pre-
sented in Subsect. 5.4 decreases the number of wrong bootstrappings.

Before stating some open problems, we conclude with the following note:
using a bigger neural network generally leads to a better classification accuracy,
at the cost of performing more calculations and, above all, more bootstrap-
ping operations. However, the evaluation time will always grow linearly with
the number of neurons. Although it is true that evaluating a bigger network is
computationally more expensive, we stress that the bootstrapping operations
are independent of each other and can thus be performed in parallel. Ideally,
parallelizing the execution across a number of cores equal to the number of neu-
rons in a layer (30 or 100 in our work) would result in that the evaluation of the
layer would take roughly the time of a bootstrapping (i.e., around 15 ms).

Future directions and open problems. This work opens a number of possi-
bilities and, thus, raises several interesting open problems. The first one is about
the construction of our DiNNs. In this work, we did not pay too much atten-
tion to this step and, as a consequence, we considerably worsened the accuracy
when moving from a canonical neural network to a DiNN. In order to improve
the classification given by these discretized networks, it would be interesting to
train a DiNN, rather than simply discretizing an already-trained model. Using
discrete values and the sign function for the activation makes some calculations
(e.g., some derivatives) impossible. Techniques to overcome these limitations
have already been proposed in the literature (e.g., [CB16]) and they can be
applied to our DiNNs as well. Also, another potentially interesting approach
would be mixing these two ways of constructing a DiNN, for example by first
discretizing a given model and then training the resulting network to refine
it. Another natural question is whether we can batch several bootstrappings
together, in order to improve the overall efficiency of the evaluation. Moreover,
the speed of the evaluation would benefit from taking advantage of multi-core
processing units, like GPUs.

Most interestingly, our FHE–DiNN framework is flexible and can be adapted
to more generic cognitive architectures: we leave this as an interesting open prob-
lem. In particular, excellent results have been obtained by using Convolutional
Neural Networks (see e.g., [LBBH98]), and we believe that trying to apply FHE–
DiNN to these models would be an interesting line of research. Achieving this
goal would require extending the current capabilities of FHE. For example, we
would need to be able to homomorphically evaluate the max function, which is
required to construct the widely-used max pooling layers. To the best of our
knowledge, a technique for an efficient homomorphic evaluation of the max func-
tion is currently not known. Finally, the methodology presented in this work is
by no means limited to image recognition, but can be applied to other machine
learning problems as well.
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