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Abstract. Secure computations on big data call for protocols that have
sublinear communication complexity in the input length. While fully
homomorphic encryption (FHE) provides a general solution to the prob-
lem, employing it on a large scale is currently quite far from being prac-
tical. This is also the case for secure computation tasks that reduce to
weaker forms of FHE such as “somewhat homomorphic encryption” or
single-server private information retrieval (PIR).

Quite unexpectedly, Aggarwal, Mishra, and Pinkas (Eurocrypt 2004),
Brickell and Shmatikov (Asiacrypt 2005), and Shelat and Venkitasubra-
maniam (Asiacrypt 2015) have shown that in several natural instances
of secure computation on big data, there are practical sublinear com-
munication protocols that only require sublinear local computation and
minimize the use of expensive public-key operations. This raises the ques-
tion of whether similar protocols exist for other natural problems.

In this paper we put forward a framework for separating “practical”
sublinear protocols from “impractical” ones, and establish a methodol-
ogy for identifying “provably hard” big-data problems that do not admit
practical protocols. This is akin to the use of NP-completeness to sepa-
rate hard algorithmic problems from easy ones. We show that while the
previous protocols of Aggarwal et al., Brickell and Shmatikov, and She-
lat and Venkitasubramaniam are indeed classified as being “practical”
in this framework, slight variations of the problems they solve and other
natural computational problems on big data are hard.

Our negative results are established by showing that the problem at
hand is “PIR-hard” in the sense that any secure protocol for the prob-
lem implies PIR on a large database. This imposes a barrier on the local
computational cost of secure protocols for the problem. We also identify
a new natural relaxation of PIR that we call semi-PIR, which is use-
ful for establishing “intermediate hardness” of several practically moti-
vated secure computation tasks. We show that semi-PIR implies slightly
sublinear PIR via an adaptive black-box reduction and that ruling out
a stronger black-box reduction would imply a major breakthrough in
complexity theory. We also establish information-theoretic separations
between semi-PIR and PIR, showing that some problems that we prove
to be semi-PIR-hard are not PIR-hard.
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1 Introduction

Protocols for secure multi-party computation (MPC) enable mutually distrust-
ing parties to jointly evaluate a function on their private inputs, without reveal-
ing any information beyond the prescribed function outputs [Yao82,GMW87,
BGW88,CCD88].

An important efficiency metric of MPC protocols is the required communi-
cation between parties. A great deal of research focus has gone towards mini-
mizing the asymptotic communication complexity of MPC, as well as improving
the practical efficiency of MPC. Our work proposes a theoretical framework
for capturing the intersection. This framework can be used to provide a crude
distinction between tasks that admit “practical” sublinear-communication pro-
tocols and ones that do not, akin to the use of NP-completeness to separate hard
algorithmic problems from easy ones.

Secure computation on big data calls for MPC protocols that have sublinear
communication complexity in the input size. The line of work on sublinear-
communication MPC started with works on private information retrieval (PIR)
[CKGS98,KO97] and related primitives, and culminated in the constructions
of fully homomorphic encryption (FHE) [Gen09] schemes. FHE gives a general
solution to the problem in that it essentially closes the gap between secure and
insecure communication complexity.

The main concrete bottleneck of current FHE schemes, which makes them
slow in practice, is their computational complexity. Even in the case of PIR,
which can be viewed as the simplest instance of “somewhat-homomorphic
encryption,” local computation on the server side is by far the most significant
cost. Indeed, PIR protocols without preprocessing provably require linear com-
putational complexity, and all known PIR protocols on a database of length N
require at least N “public-key operations” (comparable to the amortized cost of
encrypting a bit in an underlying public-key encryption scheme). Consequently,
the computational cost of such protocols is significantly higher than that of
protocols that process a similar amount of information using only symmetric
encryption. Moreover, unlike the case of OT-based protocols, little can be done
for amortizing the cost of PIR or for pushing it to an input-independent prepro-
cessing phase. Despite recent advances on the concrete cost of PIR [MBFK16]
and the asymptotic cost of PIR with preprocessing [BIPW17,CHR17], perform-
ing a single instance of PIR on an N -bit database is more expensive in terms of
local computation than, say, securely evaluating a boolean circuit of size N by
relying on efficient OT extension techniques.

Notable exceptions to the above state of affairs are the work of Aggarwal
et al. [AMP10] on medians, the work of Brickell and Shmatikov [BS05] on cer-
tain graph problems, and the work of Shelat and Venkitasubramaniam [SV15]
that vastly generalizes them. These works show that for certain natural and
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practically motivated problems, including several central combinatorial opti-
mization problems, one can enjoy the best of both worlds: sublinear commu-
nication complexity with low computational overhead, both asymptotically and
concretely. These works leave several interesting open questions. In particular,
it is not clear how robust the positive results are to natural variations of the
functionality and whether they extend to other optimization problems.

1.1 Our Results

Towards addressing the above open questions in a systematic way, we pro-
pose a clean formal framework to capture the feature of the protocols of
[AMP10,BS05,SV15] that distinguishes them from more generic alternatives
based on FHE or PIR. Concretely, we consider a model of secure two-party
computation with input-independent preprocessing in the form of correlated
randomness. (The latter can be used to implement oblivious transfer uncondi-
tionally.) We distinguish between:

– “Easy” problems, namely ones admitting sublinear-communication secure
protocols that may rely on input-independent correlated randomness and
oblivious transfer, and

– “PIR-hard” problems, for which any sublinear-communication protocol
implies a nontrivial PIR protocol on a large database.

Given the current state of the art, PIR-hard problems are unlikely to be shown
“easy,” and any protocol for such problems is likely to have poor concrete effi-
ciency.

PIR-Hardness of Combinatorial Problems. We then revisit a class of combi-
natorial optimization problems for which “easy” protocols have been demon-
strated. (In particular, all of the protocols from [AMP10,BS05,SV15] are easy
in the above sense.) We show that, while the original formulation of the prob-
lem yields lightweight protocols, certain natural and useful variants of the same
problems are in fact PIR-hard. We first demonstrate this for the case of one-sided
variants—in which only one party learns the function output—for an assortment
of combinatorial problems with different structures:

– Median. The median functionality accepts a list of numerical inputs from
each party and outputs the median of the combined list.

– Convex Hull. The 2-dimensional convex hull functionality accepts a set of
points in 2-space from each party and outputs the subset of those points on
the convex hull of the combined set.

– Single-Source Shortest Distance. The SSSD functionality accepts a set
of weighted edges from each party (on n fixed vertices) with distinguished
vertex v∗ and outputs the lengths of n − 1 shortest paths from v∗ to each
v �= v∗ in the combined graph (taking parallel edges).
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– Approximate Set Cover. The approx set cover functionality refers to the
output of the polynomial-time greedy algorithm for polynomial time approx-
imation of set cover (which iteratively selects the set that contains the largest
number of uncovered elements).

We prove that the one-sided variant of each of the above problems is PIR-hard.
This further implies that any secret-shared variant of the problems, in which
the parties compute secret shares of the corresponding functionality output, is
additionally PIR-hard. (Indeed, existence of an “easy” protocol for the latter
directly yields an analogous protocol for the former, by having party 2 send his
secret share to party 1). This may indicate that lightweight protocols for these
problems cannot be effectively used “within” other larger MPC computations.

We remark that the previous “easy” protocol constructions for the above
combinatorial problems frequently provide security within a promise setting,
where certain restrictions are assumed to hold on parties’ inputs (e.g., that
parties’ inputs are disjoint). Our negative results are each within the respective
promise settings.

Our PIR-hardness results can be interpreted as imposing a barrier on the
local computational cost of secure protocols for the problem. This barrier applies
both asymptotically (linear computation is necessary without preprocessing) and
concretely (achieving sublinear communication comes at a high computational
cost given the current state of the art on PIR).

Semi-PIR-Hardness. We then identify a new natural relaxation of PIR that we
call semi-PIR, which is useful for establishing “intermediate hardness” of several
practically motivated secure computation tasks. Semi-PIR is defined analogously
to PIR, except that the privacy requirement is relaxed to guarantee privacy of
the client’s query index i ∈ [n] only if it holds that the corresponding database
value zi is equal to 1. This notion may be independently motivated by settings
where there is natural asymmetry in privacy concerns for 0 versus 1 values (e.g.,
database of patients with and without some disease).

We show that semi-PIR with polylogarithmic communication complexity
implies slightly sublinear PIR via an adaptive black-box reduction. Thus, semi-
PIR-hardness can have a similar interpretation as PIR-hardness from a crude
asymptotic perspective. Our reduction from PIR to semi-PIR makes use of query-
efficient locally decodable codes (LDC). Correspondingly, ruling out a stronger
black-box reduction would imply a major breakthrough in complexity theory,
concerning existence of LDCs with polynomial rate and low query complexity.

Theorem 1 (Informal). Suppose there is an efficient q-query LDC C :
{0, 1}n → {0, 1}N . Then, there exists a protocol that implements PIR on a
database z ∈ {0, 1}n by using an expected O(2q) (adaptive) calls to semi-PIR
on a database z′ ∈ {0, 1}N and no additional interaction.

The reduction effectively attempts to reconstruct the desired database value
zi, i ∈ [n] by accessing positions j1, . . . , jq in the encoded database j� ∈ [N ],
each time to either the direct bit value or a negated version (so that the read
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value will be 0 with probability 1/2). At any point in which the queried location
stores a 0, this query index is no longer hidden, and the reduction will restart
with a freshly sampled set of q-queries. The smoothness of the LDC guarantees
that revealing any single query index reveals nothing about the ultimate desired
index i. Note the inherent adaptivity of this approach.

We also establish information-theoretic separations between semi-PIR and
PIR. These imply that some problems that we prove to be semi-PIR-hard are
provably not PIR-hard in a strong sense, suggesting that semi-PIR captures the
true complexity of some natural secure computation tasks rather than being an
artifact of our proof techniques.

Our semi-PIR-hardness results apply to natural two-sided functions, whose
output is revealed to both parties. A broad class of such examples is “opti-
mal selection from a short-list”, where a Receiver has a small list of candidate
indices, and both parties learn the identity of the candidate with the maxi-
mum/minimum/most desired value. Situations of secure computation of such
problems can be motivated by real-life scenarios in which the identity of the
winning candidate (selected job applicant, purchased item, travel destination)
is public information that cannot be hidden, yet one is interested in hiding the
runner-ups or the choice criteria.

One such concrete problem is the Two-Sided Nearest Neighbor problem. Here
a server holds a large database of points (xi, yi) in the Euclidean plane, say a
list of restaurant locations, and a client holds a point (x, y), say representing its
own location. The output of both parties is the point (xi, yi) which is closest
to (x, y). As discussed above, the reason we consider here a two-sided output
is that the selected restaurant can be publicly observed. And while this output
may reveal a lot of partial information about the client’s input, it is easy to
imagine situations in which the client may wish to hide the exact location (x, y)
from which the search has been conducted.

Two-sided versus one-sided functionalities. Unlike secure protocols realizing two-
sided functionalities, secure protocols for one-sided functionalities must reveal
no information about the output to one of the parties. This rules out iterative
approaches in which partial information about the output is gradually revealed to
both parties, allowing them to minimize the local computation by accessing only
relevant portions of the input. However, as we show in this work, some natural
two-sided functionalities exhibit an intermediate form of hardness captured by
Semi-PIR. In such cases, both parties get the output, but one of the parties
receives additional information only if some condition on the output is met
(Table 1).

Local Compressibility. On the positive side, we identify a generic local compress-
ibility property of combinatorial problems that directly permits efficient secure
protocols for the problem, as well as any sufficiently “close” variant.

Loosely speaking, we say that a functionality F : {0, 1}N × {0, 1}N →
{0, 1}m × {0, 1}m is locally compressible if there exists a preprocessing func-
tion Pre : {0, 1}N → {0, 1}n for some n � N , for which it holds that
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Table 1. Sample of our hardness results for combinatorial problems

Hardness Combinatorial Problems

Easy Two-Sided Locally Compressible Minimum Spanning Tree

Two-Sided Locally Compressible High-Order Median Predicates

Protocols from [AMP10,BS05,SV15]

Semi-PIR Hard Two-Sided Single Source Single Destination Shortest Path

Two-Sided Nearest Neighbor

Two-Sided Closest Destination Problem

Two-Sided Short-List Selection

PIR Hard One-Sided Median

One-Sided Approximate Set Cover

One-Sided Convex Hull

One-Sided Single Source Shortest Distances

Two-sided Median Predicate

F (X,Y ) = F (Pre(X),Pre(Y )). In such a case, an “easy” sublinear protocol
for securely computing F can be achieved by first performing the local prepro-
cessing, and then executing an arbitrary MPC for the circuit/program on the
compressed inputs. This generality allows us to extend beyond the core function-
ality F itself, to provide an “easy” sublinear protocol for any composed function
G ◦ F for which the circuit size of G is not too complex. This includes, for
example, one-sided variants.

We demonstrate this local compressibility property in two example settings:

– Minimum Spanning Tree. The MST functionality accepts a set of weighted
edges from each party (on n fixed vertices) and outputs the minimum span-
ning tree of the combined graph.
A lightweight protocol for MST was given by [SV15] for the promise setting
where all edge weights are distinct, as the corresponding MST promise prob-
lem falls within their “greedy-compatible” protocol framework. We observe
that, within a similar promise setting, the MST of the combined graph is
preserved when parties compute the MST of their local graphs first and
then submit the resulting tree as their input to the MST functionality (i.e.,
Pre(X) = MST (X)). Our approach thus yields “easy” protocols with sublin-
ear communication for MST and related variants.

– “High-Order” Median Predicates. For any predicate function P that
depends only on the highest-order bits of its input, we show that the median
predicate functionality P ◦ Med is locally compressible. More specifically,
consider the median problem for n inputs, and suppose P depends only on
the � ∈ o(log n) most-significant bits of its input. Then a party’s list of n
input values can be compressed to a succinct 2� ∈ o(n)-size count vector
corresponding to the number of occurrences of each length-� prefix within
the list. Since the high-order prefix of the median is equal to the median of
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the corresponding high-order prefixes, this short count vector carries sufficient
information to evaluate the desired functionality.

1.2 Organization of the Paper

Section 2 contains useful preliminaries. In Sect. 3 we present our formal notion
of PIR-hardness, and PIR-hardness results for various combinatorial problem
variants. Section 4 contains the definition and results pertaining to the notion of
semi-PIR. Section 5 contains our positive local-compressibility results.

2 Preliminaries

Notation. We denote the security parameter by κ. We say that a function
μ : N → N is negligible if for every positive polynomial p(·) and all sufficiently
large κ’s it holds that μ(κ) < 1

p(κ) . We often use [n] to denote the set {1, . . . , n}.
Moreover, we use d ← D to denote the process of sampling d from the dis-
tribution D or, if D is a set, a uniform choice from it. If D1 and D2 are two
distributions, then we denote that they are statistically close by D1 ≈s D2; we
denote that they are computationally indistinguishable by D1 ≈c D2; and we
denote that they are identical by D1 ≡ D2.

Two-Party Computation. We assume familiarity with standard crypto-
graphic primitives. For notational purposes, we recall here the basic working
definitions. We refer to e.g. [Can01] for the formal definitions. A two-party pro-
tocol is cast by specifying a random process that maps pairs of inputs to pairs
of outputs (one for each party). We refer to such a process as a functionality
and denote it by F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ where F = (F1, F2).
That is, for every pair of inputs (x, y), the output-pair is a random variable
(F1(x, y), F2(x, y)) ranging over pairs of strings. The first party (with input x)
wishes to obtain F1(x, y) and the second party (with input y) wishes to obtain
F2(x, y). The aim of a secure two-party protocol is to protect an honest party
against dishonest behavior by the other party. In this paper, we consider semi-
honest static adversaries which strengthens our impossibility results.

The security of a protocol is analyzed by comparing what an adversary can do
in the protocol to what it can do in an ideal scenario that is secure by definition.
This is formalized by considering an ideal computation involving an incorruptible
trusted third party to whom the parties send their inputs. The trusted party
computes the functionality on the inputs and returns to each party its respective
output. Loosely speaking, a protocol is secure if any adversary interacting in the
real protocol (where no trusted third party exists) can do no more harm than if
it was involved in the above-described ideal computation.

Protocols in the Preprocessing or Correlated Randomness Model. We
will also consider protocols for the preprocessing model. In the preprocessing
model, the specification of a protocol also includes a joint distribution PR1···Rn
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over R1 × . . . × Rn, where the Ri’s are finite randomness domains. This dis-
tribution is used for sampling correlated random inputs (r1, . . . , rn) ← PR1···Rn

received by the parties before the execution of the protocol. Therefore, the pre-
processing is independent of the inputs. The actions of a party Pi in a given
round may in this case depend on the private random input ri received by Pi

from the distribution PR1···Rn
and on its input xi and the messages received in

previous rounds. In addition, the action might depend on the statistical security
paramenter κ which is given as input to all parties along with xi and ri. Using
the standard terminology of secure computation, the preprocessing model can be
thought of as a hybrid model where the parties have one-time access to an ideal
randomized functionality P (with no inputs) providing them with correlated,
private random inputs ri.

2.1 Private Information Retrieval

A (single-server) Private Information Retrieval (PIR) [CKGS98,KO97] protocol
allows a client to retrieve a data item from a database held by a server while
hiding which item it is after. More specifically, the database is modeled as an
n-bit string z out of which the client retrieves the i-th bit zi, while giving the
server no information about the index i. The communication complexity of such
a protocol is denoted by c(n). A trivial PIR protocol would have the server
sending the entire data string to the client (i.e. c(n) = n), thus satisfying the
PIR privacy requirement in an information-theoretic way. We assume by default
that any PIR protocol should be nontrivial in the sense that c(n) < n, and
only consider computational security against semi-honest (passive) servers. We
denote by ViewS(z, i)) the view of the PIR server in its interaction with the
client on local inputs z, i and public input n = |z|, and by OutC(z, i) the output
of the client. Our definition treats the database size n as a public parameter that
is also used as a security parameter.

Definition 1 (PIR). Let (S,C) be an interactive protocol between a server S
and a client C, where both S and C are PPT algorithms. We say that (S,C) is
a private information retrieval (PIR) protocol if there exists a negligible function
ν(n) such that:

– Correctness: For every n ∈ N, i ∈ [n], and z = (z1, . . . , zn) ∈ {0, 1}n,

Pr [OutC(z, i) = zi] ≥ 1 − ν(n).

– Security: For every non-uniform polynomial time distinguisher D, n ∈ N,
i, j ∈ [n], and z = (z1, . . . , zn) ∈ {0, 1}n, it holds that |pi − pj | ≤ ν(n), where

pi := Pr [D(1n,ViewS(z, i)) = 1] ,
pj := Pr [D(1n,ViewS(z, j)) = 1] .

– Efficiency: The communication complexity c(n) on a database z ∈ {0, 1}n

is always required to be at most n − 1. We say that PIR protocol is slightly
sublinear if c(n) = O(n/ logγ n) for every positive integer γ, and that it is
polylogarithmic if c(n) = O(logγ n) for some positive integer γ.
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We note that polylogarithmic single-server PIR protocols exist under (subex-
ponential versions of) standard cryptographic assumptions [CMS99,Lip05,
BV14]. On the other hand, PIR provably requires linear server computation
in the database size [BIM04], and all known protocols make an intensive use
of public key cryptography. Even in the fastest existing implementations of
PIR [MBFK16], maximizing the speed of server (which is still at least an order
of magnitude slower than a symmetric encryption of the entire database) has a
high cost in communication.

Additional evidence for the hardness of PIR comes from the impossibil-
ity of realizing PIR information-theoretically in the OT-hybrid model or even
using general correlated randomness [IKM+13]. This gives evidence against the
possibility of using input-independent preprocessing or fast OT extension tech-
niques [IKNP03] for amortizing the cost of PIR-based protocols, and should be
contrasted with the fact that without the sublinear communication requirement,
information-theoretic protocols exist in these models.

3 The PIR-Hardness Framework

We put forth a framework for separating “practical” sublinear computation pro-
tocols from “impractical” ones, by means of a notion of PIR hardness. PIR
serves as an appealing benchmark metric for measuring protocol computation
complexity in the sublinear communication regime: The functionality is natural
and convenient to reduce to. And, since all known constructions make use of
heavy public-key computations, this gives an indication that for any functional-
ity which reduces to it, an analogous level of computation may be required. The
high-level interpretation is thus that (given the current state of the art on PIR)
saying that f is PIR-hard implies that evaluating f with a low communication
complexity has a high computational cost. Even further, this computational cost
cannot be amortized or moved to an input-independent preprocessing phase.

Definition 2 (PIR Hardness). Let f : {0, 1}N × {0, 1}N → {0, 1}m(N) ×
{0, 1}m(N) be a two-party functionality.

– We say that f is (n(N), τ(N))-PIR-hard if there is a single-server PIR proto-
col that makes τ(N) (expected) oracle calls to f on inputs of length N , where
the PIR database size is n(N) and, in addition to the oracle calls there is no
additional communication.

– We say that f is non-interactively n(N)-PIR-hard if it is (n(N), 1)-PIR-
hard, and that f is PIR-hard if it is non-interactively n(N)-PIR-hard for
some n(N) = Ω̃(N) = N/polylog(N).

Most (but not all) of the PIR hardness results obtained in this paper are of
the simpler non-interactive type, namely the PIR protocol only applies a local
mapping to the input of each party and then makes a single invocation of f with
no additional interaction. The parameter n(N) and τ(N) should be interpreted
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as a lower bound on the amount of expensive computation (which cannot be
amortized or moved to a preprocessing phase) that is required for a sublinear-
communication secure computation of f .

More concretely, we have the following easy corollary of PIR-hardness.

Claim. Suppose f : {0, 1}N × {0, 1}N → {0, 1}m(N) × {0, 1}m(N) is PIR-hard
and has a protocol Π with O(Nβ) bits of communication for some β < 1. Then
there is a nontrivial PIR protocol which on a database of size n makes a single
invocation of Π on inputs of length N = O(n) and uses no further interaction
or assumptions.

The following remarks on our notion of PIR-hardness are in place:

Remark 1.

1. The above definition can be extended to allow extra sublinear communication
beyond the f -oracle calls; however, our PIR-hardness results do not use this
extension.

2. In the case of combinatorial problems involving graphs or other natural
objects, the parameter N denotes the bit-length of a binary representation of
the input for f . For example, in the case of a graph on � nodes with polyno-
mially bounded edge weights, we have N = O(�2 log �). The polylogarithmic
slackness in our default notion of PIR-hardness is meant to reduce the sensi-
tivity of this notion to the way inputs are represented.

In the remainder of this section, we explore a general condition on functional-
ities which imply PIR hardness. We first consider functionalities f with one-sided
output, i.e. where f : {0, 1}N ×{0, 1}N → {⊥}×{0, 1}m(N) delivers output only
to one of the two parties. We observe that in this setting, PIR hardness is tightly
related to a combinatorial VC-dimension-style measure of complexity. We then
extend this to demonstrate a sufficient condition for PIR-hardness of two-sided
predicate functionalities.

3.1 VC-Dimension and Non-Interactive PIR-Hardness

In the case of one-sided output functionalities, where only one of the two par-
ties receives output, the privacy property of PIR can be obtained immediately
(namely, the server will play the role of the party who receives no output).
PIR hardness of such a functionality then translates to a sufficient “combinato-
rial richness”, capturing that the input-output behavior of the functionality is
enough to encode the information of an entire database. We draw a connection
between this property and a form of “efficient VC-dimension”.

VC Dimension. We next define the Vapnik Chervonenkis (VC) dimension of
a class of functions F . The VC dimension gives a measure for the ‘richness’ of
F , which is useful in learning theory and computational complexity. We assume
in the following that all functions in F are defined over the same input domain.
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Definition 3 (VC-Dimension [VC71]). Let F be a class of functions from
some input domain D to {0, 1}. We say that F shatters a point set I ⊂ D, if for
every function g : I → {0, 1}, there is a function f ∈ F which agrees with g on
I. The VC-dimension of F , denoted by VC(F), is the size of the largest point
set I, that is shattered by F .

The VC-dimension can be extended to a class F of non-boolean functions
from D to E. In this case, the set I is shattered if there exists a universal boolean
(single-bit output) decoder γ : E → {0, 1} such that I is shattered in the above
sense by F ′ = {γ(f(·)) : f ∈ F}.

For the generalization of VC dimension to functions with multi-bit out-
puts, a number of notions have been considered in the literature (e.g., [NAT89,
BIKO12]). In this work, we handle multi-bit outputs applying a universal boolean
decoder on the output of non-boolean functions, as was previously suggested
in [BIKO12]. The work of [BIKO12] uses the relation between PIR and VC
dimension to construct PIR protocols. We further develop this relation and use
it to establish PIR-harndess.

Essentially, the VC-dimension of a multi-bit output function class is the
maximum VC-dimension of the boolean function class γ ◦ F over the choice of
the boolean “decoder” function γ.

We observe that for a one-sided functionality f : {0, 1}N × {0, 1}N →
{⊥} × {0, 1}m(N), non-interactive PIR hardness of f coincides directly with the
following notion of efficiently computable VC-dimension of the induced function
class F = {f(x, ·)}x∈{0,1}N . Explicitly, a non-interactive construction of PIR of
database size n from f corresponds directly to efficient procedures for: identify-
ing a shattering set I ⊆ {0, 1}N for F (dictating how the client maps his query
index i to an input y to f), finding the appropriate function f(x, ·) to yield the
desired output string on the n inputs in I (dictating how the server maps his
n-size database to an input x to f), and determining and evaluating the univer-
sal decoder γ (for converting the output of f to an output of the PIR query).
Privacy of the resulting PIR scheme follows immediately, since the functionality
does not output anything to the first party (server). Correctness of the PIR holds
because this gives a mapping from x ∈ {0, 1}N to a function f(x, ·) and i ∈ [N ]
to an input y for which f(x, y) = xi.

Below is a proof of equivalence for non-interactive reductions for the case of
boolean functionalities.

Theorem 2. Let f : {0, 1}N × {0, 1}N → {⊥} × {0, 1} be a one-sided func-
tionality with inputs x, y ∈ {0, 1}κ and a bit output. Let Fκ = {fκ(x, ·)} for
x ∈ {0, 1}κ. Then the set S = {Fκ}κ∈N has efficiently computable VC-dimension
h, where h(κ) = κ, if and only if fκ is (κ, 1)-PIR-hard.

Proof. If VC(Fκ) ≥ h(κ) then for every κ both parties in the PIR protocol
have access to shattered set I.1 Then, the server given the database, which is an

1 The shattered set must be exactly the same between the client and the server of the
PIR protocol.
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assignment of I, computes x for the function fκ that satisfies the assignment.
More specifically, if VC(Fκ) ≥ h(κ) then ∃y = (y1, . . . , yκ) such that for every
assignment (b1, . . . , bκ) of y, ∃ x such that for every i, fκ(x, yi) = bi. It is easy
to see that both parties can run the PIR protocol on input x and yi from the
server and the client, respectively, such that only the client receives the i-th bit
of the database bi.

For the other direction, we need to show that given a PIR-hard function
fκ then VC(Fκ) ≥ h(κ). Based on the fact that the deterministic reduction of
PIR on a κ-bit database is non-interactive and that the client has no information
about the database the claim follows. In particular, since the client has no access
to the database then for the i-th bit of the database the client will use the same
yi and the server will use the same x based on the database acting as the assign-
ment. Therefore, VC(Fκ) ≥ h(κ) since PIR holds for all databases/assignments.

Two-Sided Predicates. The above additionally gives an approach for showing
PIR-hardness of two-sided predicate functionalities, as we now describe.

Theorem 3. Suppose the one-sided functionality f : {0, 1}N ×{0, 1}N → {⊥}×
{0, 1} is (n(N), 1)-PIR-hard. Then the corresponding two-sided functionality f ′ :
{0, 1}N × {0, 1}N → {0, 1} × {0, 1} that delivers the same output predicate f to
both parties is (�n(N)/2�, 1)-PIR-hard.

Proof. By definition of (n(N), 1)-PIR-hardness, there exists an efficient non-
interactive construction of single-server PIR on a n(N)-size database using a
single execution of f . This corresponds to three efficient algorithms: (1) a map-
ping C : [n] → {0, 1}N taking the client’s index i ∈ [n] to some input x ∈ {0, 1}N

to submit to f , (2) a mapping S : {0, 1}n → {0, 1}N taking the server’s database
z ∈ {0, 1}n to some input y ∈ {0, 1}N to submit to f , and (3) a reconstruction
procedure R (which may depend on state from the execution of C) translating
the output bit of f to the queried value zi.

Note that by the correctness of the existing PIR scheme for any database z
(in particular, for a randomly chosen z), it must be that the output bit of f on
inputs (C(i), S(z)) provides a full bit of entropy of information about the value
of zi. That is, the output bit of f must be either the value zi or its negation, and
the choice of which cannot be dependent on x (as this is unknown to the client).

We provide a construction of PIR on a �n(N)/2�-size database using a single
execution of f ′, corresponding to (C ′, S′, R′). For notational simplicity, assume
�n/2� = n/2.

The transformation is as follows:

– C ′: The client encodes his input i ∈ [n/2] as follows. First, sample a random
bit b ← {0, 1}. Then execute C(i + b · n/2).

– S′: The server encodes his database z ∈ {0, 1}n/2 by executing S(z||z̄); i.e.,
on the n-bit value formed by concatenating z with the bitwise negation of z.

– R′: Given output w from the execution of f ′, output b ⊕ w.
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Correctness follows directly from the correctness of the underlying PIR
(C,S,R). Security holds because the output bit w is distributed uniformly given
the view of the server (i.e., given x).

A general version of Theorem 3 that applies to functionalities f with very
short (sub-logarithmic length) outputs appears in the full version.

3.2 PIR-Hardness of Natural Combinatorial Problems

We demonstrate that in many cases even close variants of problems which admit
practical sublinear protocols can be PIR-hard. In the following subsections, we
consider variants of the Median, Convex Hull, Single-Source Shortest Path, and
Approximate Set Cover problems.

Each of our reductions follows the approach and notation of the “efficient”
VC-dimension connection described above, including the identification of shat-
tered set I of the client’s input space, and a universal decoder γ for converting
the (possibly multi-bit) output of f to the output of the PIR. For each case, the
corresponding mappings will indeed be efficiently computable, as required.

Revisiting the Median Protocol. For a subset S ⊂ U of a totally ordered
universe set U , the ρth-ranked element is the value x ∈ S that is ranked ρ
when the set S is sorted in increasing order. The median is the element with
rank ρ = �|S|/2�. Given two parties A and B with input sets XA, YB ⊂ U ,
respectively, we consider the problem of privately computing the ρth-ranked
element of XA ∪ YB . Aggarwal et al. [AMP10] described protocols for the median
function with sublinear communication and computation overhead. Specifically,
in the two-party case, let the size of U be polynomial in N (so that elements are
described by polylog(N) bits), and let |XA|, |YB | = N be the total number of
the input elements. Then, the protocol of Aggarwal et al. [AMP10] for securely
evaluating the median entails a communication cost of Õ(log N). We remark
that the protocol of Aggarwal et al. [AMP10] finds the median on simplified
input instances XA and YB where XA ∩ YB = ∅ and |XA| = |YB |.

The median two-party and multi-party protocols of [AMP10] are in the two-
sided model, where both parties receive an output. Moreover, the security of
their protocols relies on the fact that partial information is only leaked via the
function output. We now show that secure protocols for the one-sided setting
cannot enjoy such efficient sublinear-communication properties: namely, the one-
sided median functionality is PIR-hard.

One-sided Median Functionality. In this one-sided model, given two parties A
and B, only the first party A receives the output of the function while party B
should not learn any information about the input of party A.

Definition 4 (One-sided Med functionality). Let N ∈ N. We define the
two-party functionality Med : {0, 1}Õ(N) × {0, 1}Õ(N) → {⊥} × {0, 1}Õ(log N) by
(X,Y ) �→ (⊥,median(X ∪ Y )) which on input two sets X,Y ⊂ Zpoly(N), from
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the sender and the receiver, respectively, outputs ⊥ to the sender and the median
of X ∪ Y to the receiver.

Theorem 4. The one-sided functionality Med : {0, 1}Õ(N) × {0, 1}Õ(N) →
{⊥} × {0, 1}Õ(log N) is PIR-hard.

Proof. We define a universal encoder γ that on input a bit-string outputs its
Least-Significant Bit (LSB). We are going to find the point set I of size N , that
is shattered by F ′

Med = {γ(Med(X, ·))}X∈Zpoly(N) .
Let (max,min) denote the maximum and the minimum element of Zpoly(N),

respectively. Moreover, for each i ∈ [N ] let MINi (respectively, MAXi) denote
the multiset of size |MINi| = i (resp, |MAXi| = i) where each entry is
equal to min (resp., max), respectively. Define I = {Y1, . . . , YN} such that
Yi = {MINN−i ∪ MAXi} for all i ∈ [N ]. We will show that F ′

Med shatters I.
In particular, for each g : I → {0, 1} we will show that ∃X such that for every
Yi ∈ I, γ(Med(X,Yi)) = g(Yi).

Let g : I → {0, 1}. Define X = {x1, . . . , xN} such that xi =
(i)2||10 · · · 0||g(Yi) ∈ Zpoly(N) where (i)2 denotes the bit representation of i.
More specifically, xi is defined by concatenating a unique log N -length prefix to
each bit of g(Yi) to ensure that the resulting elements are sorted, and appending
the binary representation of N + 1 (i.e., log N + 1 bits) to ensure the existence
of N distinct integers smaller than all the resulting values.2

It holds that ∀i ∈ [N ], γ(Med(X,Yi)) = g(Yi) since Med(X,Yi) = xi and
γ(Med(X,Yi)) = LSB(xi) = g(Yi). That said, it follows that V C(F ′

Med) ≥ N .
Since all mappings are efficiently computable, it follows that Med is PIR-hard.

Revisiting the Convex Hull Protocol. In the convex hull algorithm, two
parties securely compute the convex hull M of the union of their input sets of
points GA and GB in an euclidean plane. Each element consists of two integers
that represent the X and Y coordinates of the point. We are interested in cases
where the convex hull has description size that is sublinear in the input size
(as otherwise sublinear communication protocols are unachievable). We thus
consider a promise problem variant of the functionality CH, defined as follows:

Definition 5 (One-sided CH functionality). Let N ∈ N. Define the
two-party (promise problem) convex hull functionality CH : {0, 1}Õ(N) ×
{0, 1}Õ(N) → {⊥}×{0, 1}o(log N) by CH(GA, GB) = (⊥, convexhull(GA ∪GB)),
which on input two sets GA, GB of N points on the 2-dimensional euclidean
plane, from party A and party B, respectively, outputs ⊥ to party A and the
convex hull of GA ∪ GB to party B.

An efficient sublinear-communication protocol for the two-sided convex hull
promise problem was given by [SV15] (as it fits into their “greedy compati-
ble” framework), assuming slight additional promise restrictions on the inputs
2 For the case where the set Y has to be distinct then MINj = {min,min +

1, . . . ,minj−1}, MAXj = {max,max + 1, . . . ,maxj−1}. Furthermore, in such a
case ∀I ∈ [N ] compute xi = (i)2||min||10 · · · 0||g(Yi) ∈ Z2� .
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(namely, no two points have the same X or Y coordinate and no three-points are
collinear). We prove that the one-sided convex hull problem is PIR-hard.

Theorem 5. The one-sided functionality CH : {0, 1}Õ(N)×{0, 1}Õ(N) → {⊥}×
{0, 1}Õ(log N) is PIR-hard.

Proof. We define a universal encoder γ that on input a convex hull of four nodes
identifies the longest edge and rotates it such that: (1) the longest edge is parallel
to the X axes and (2) the shortest edge is above the longest edge. The encoder
outputs 0 if the node of the shortest edge, which is closer to the longest edge, is
the left one, otherwise output 1. We are going to find the point set I of size N ,
that is shattered by F ′

CH = {γ(CH(G, ·))}G⊂S .
Let Cr be a circle with center the origin of the axes (with arbitrary radius)

on the euclidean plane. Set ψ = 2π/2N = π/N . Let us define I = {Y1, . . . , YN}
for all i ∈ [N ]. Consider the two points on the circle with angle φi = (2i) · ψ
and angle φi = (2i + 1) · ψ. Then, define by τ1 and τ2 the tangents of these two
points, respectively. Tangents τ1 and τ2 intersect at point Pi. Consider the line ei

passing through the center of the circle and the point Pi. Denote the intersection
points of the line ei with the circle by Qi, Q

′
i such that point Qi is closer to point

Pi. Next, consider the tangent τ3 of the point Q′
i and define by Ri, Si the points

created by the intersection of τ1, τ3 and τ2, τ3, respectively. The set Yi includes
points Qi, Ri, Si.

We will show that F ′
CH shatters I. In particular, for each g : I → {0, 1}

we will show that ∃G such that for every Yi ∈ I, γ(CH(G,Yi)) = g(Yi). Let
g : I → {0, 1} then for all i ∈ {0, . . . , N − 1}, assign each g(Yi) to the point Ti

with angle φi = (2i+g(Yi)) ·ψ. Then, G consists for all points assigned to g(Yi).
It holds that ∀i ∈ [N ], γ(CH(G,Yi)) = g(Yi). In particular, the convex hull

in each case contains the points (Qi, Ri, Si, Ti). By construction, the longest edge
is drawn by nodes Ri, Si and the shortest edge by nodes Ti, Qi and point Qi is
closer to the longest edge. If g(Yi) is 0 then Qi is closer to Ri and γ outputs 0.
Thus, since each of the above mappings is efficiently computable, it follows that
CH is PIR-hard. ��

Revisiting the Single-Source Shortest Distance Protocol. In the Single
Source Shortest Distance (SSSD) protocol, two parties securely compute the
shortest path distances from a source vertex s to all other vertices in a joint
weighted graph. More specifically, let GA and GB be the two parties’ respective
weighted graphs. Assume that GA = (VA, EA, wA) and GB = (VB , EB , wB) are
complete graphs on the same set of vertices. Let wA(e) and wB(e) represent the
weight of edge e in GA and GB , respectively.3 The goal is to output the list M
which contains the shortest path distances from the source vertex s to all other
vertices. If the input graphs (which may have quadratically many edges) are

3 Note that we can also consider incomplete graphs and graphs that include disjoint
edges by setting appropriate special values of w(e) for the given edges e.
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describable in Õ(N) bits, the output (which must have at most linearly many
items) can be described by Õ(

√
N) bits.

Definition 6 (One-sided SSSP functionality). Define the two-party func-
tionality SSSP : {0, 1}Õ(N)×{0, 1}Õ(N) → {⊥}×{0, 1}Õ(

√
N) by SSSP(GA, GB)

= (⊥, shortestpaths(GA, GB)) which takes as input from A and B two complete,
weighted graphs GA, GB respectively, on the same set of vertices. Then, it out-
puts ⊥ to A and the list of shortest path distances from a source vertex s to all
other vertices in the joint weighted directed graph to B.

An efficient sublinear-communication protocol was given by [SV15] for the
two-sided version of a related problem, of single-source all-destinations (SSAD),
which outputs the list of shortest paths from s to each other node, as opposed
to just the distance of these paths. (This follows from their “greedy compatible”
framework, via Dijkstra’s algorithm.)

We prove the one-sided SSSP problem is PIR-hard. As the information of
one-sided SSSP can be directly inferred from the information of one-sided SSAD,
this further implies PIR-hardness of the one-sided SSAD problem.

Theorem 6. The one-sided functionality SSSP : {0, 1}Õ(N) × {0, 1}Õ(N) →
{⊥} × {0, 1}Õ(

√
N) is PIR-hard.

Proof. We define a universal encoder γ that on input N integers and an index i
outputs 0 if the ith integer is even, or 1 otherwise. We are going to define a set
I of size N(N − 1)/2, that is shattered by F ′

SSSP = {γ(SSSP(G, ·))}G.
Let us define I = {Y1, . . . , YN} for all i ∈ [N ]. For each edge i = (u, v) in the

graph Yi proceed as follows. The edge between the starting note s to u is set to
the minimum weight i.e. wYi

(
(s, u)

)
= 0 and there is no weight assignment for

(s, v). For every other edge w �= {u, v} connected to s, the weight on the edge
(s, w) is assigned to N2 i.e. wYi

(
(s, w)

)
= N2.

We will show that F ′
SSSP shatters I. In particular, for each g : I → {0, 1}

we will show that ∃G such that for every Yi ∈ I, γ(SSSP(G,Yi)) = g(Yi). Let
g : I → {0, 1} then enumerate all the nodes from 1 up to N and for every edge
j ∈ (

N
2

)
in the graph G assign each weight to 2N2 + 2j + g(Yi) (For the special

case where the edge includes the starting point s there is no weight assignment).
It holds that ∀i ∈ [N ], γ(SSSP(G,Yi)) = g(Yi). By construction the distance

from the starting point s to v for i = (u, v) is equal to wYi

(
u, v

)
which is equal

to 2N2 + 2j + g(Yi). If g(Yi) = 0 then wYi
is even. ��

Revisiting the Approximate Set Cover Protocol. Given a collection S of
sets over a universe U , a set cover C ⊆ S is a subcollection of the sets whose
union is U . The set cover problem allows two parties A and B to securely find a
minimum-cardinality set cover given SA and SB . While this problem is NP hard
to solve exactly, it yields a natural greedy approximation algorithm. Namely, in
each iteration, the algorithm takes the set of those remaining which contains the
largest number of uncovered elements.
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In what follows, the “Approximate Set Cover” functionality will refer to the
output generated by running this greedy algorithm. As with previous problems,
we will restrict our attention to a promise version of the problem, where the
description size of the output set cover is sublinear in the input description size
(as otherwise sublinear-communication protocols will not be possible).

Definition 7 (One-sided Approximate Set Cover SC functionality).
Let N ∈ N. Given a universe U , we define the two-party functionality SC :

{0, 1}Õ(N) × {0, 1}Õ(N) → {⊥} × {0, 1}o(N) by SC(SA, SB) = (⊥, C) which on
input finite sets SA ⊆ U and SB ⊆ U from party A and party B, respectively,
outputs the result C ⊆ SA ∪ SB of the greedy set cover algorithm to party B.

An efficient sublinear-communication protocol for the two-sided greedy
approximate set cover promise problem was given by [SV15], following their
“greedy compatible” framework. We prove the corresponding one-sided problem
is PIR-hard.

Theorem 7. The one-sided functionality SC : {0, 1}Õ(N)×{0, 1}Õ(N) → {⊥}×
{0, 1}o(N) is PIR-hard.

Proof. We define a universal encoder γ that on input two sets outputs the min-
imum element that resides in both sets. We are going to define a set I of size
Θ(N), that is shattered by F ′

SC = {γ(SC(S, ·))}S .
Let |U | = �+2 where

(
�

�/2

) ≥ N . In particular, let U = {0, 1, u1, . . . , u�}. Let
V = {{0, 1}�}N be a vector with all bit-strings of length � with hamming weight
1/2 in lexicographical order. Denote by Vi,j the bit of the j-th position of the i-th
element of V . Define I = {Y1, . . . , YN} such that Yi = {0, 1} ∪j∈� {uj |Vi,j = 0}
for all i ∈ [N ].

We will show that F ′
SC shatters I. In particular, for each g : I → {0, 1} we will

show that ∃S = {S1, . . . , SN} such that for every Yi ∈ I, γ(SC(S, Yi)) = g(Yi).
Let g : I → {0, 1} then for all i ∈ [N ], set Si = {g(Yi)} ∪j∈� {uj |Vi,j = 1}.

It holds that ∀i ∈ [N ], γ(SC(S, Yi)) = g(Yi). By construction the output
collection consists of two sets, i.e., Si and Yi. If g(Yi) = 0 then the common
minimum element in both sets is 0. ��

4 Intermediate Hardness via Semi-PIR

There are natural two-sided functionalities that are provably not PIR-hard, but
which instead imply the following notion of semi-PIR. Intuitively, semi-PIR is
a relaxed version of PIR where the server is allowed to learn the output zi and
can furthermore learn the client’s actual selection i only if zi = 0. Note that
a semi-PIR protocol with only two messages is necessarily a PIR protocol, but
it is easy to convert any 2-message PIR protocol into (an artificial) 3-message
semi-PIR protocol which is not a PIR protocol by having the client send i to the
server if and only if zi = 0.
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The semi-PIR primitive is formally defined by making the following small
change in the security requirement of PIR from Definition 1: instead of requiring
indistinguishability between any i, j ∈ [n], the requirement is only made for i, j
such that zi = zj = 1.

One can roughly think of a semi-PIR protocol as a low-communication (pas-
sively) secure protocol for the functionality 1

2PIR that maps (z, i) to (y, zi), where
y = i if zi = 0 and y = ⊥ otherwise. Indeed, any semi-PIR protocol as above
can be converted into a protocol for this functionality by having the client send
y to the server in the end of the protocol.

4.1 Does Semi-PIR Imply PIR?

In this section we study the relation between semi-PIR and PIR. We show that
a strong form of semi-PIR implies a weak form of PIR. Interestingly, this result
is shown via an inherently adaptive reduction, which also exhibits some unusual
tradeoffs between communication and computation. We then show that the semi-
PIR functionality does not satisfy the default notion of PIR-hardness from Def-
inition 2. In other words, one cannot construct a PIR protocol via a single non-
interactive call to 1

2PIR. While we leave open the possibility of constructing
polylogarithmic PIR from polylogarithmic semi-PIR, we show that ruling out
such a construction would imply a breakthrough in the achievable complexity of
locally decodable codes.

Obtaining weak PIR from semi-PIR. We start by showing how to use a
single invocation of semi-PIR to build a probabilistic PIR functionality that (on
every selection i) leaks i to the server with probability 1/2 (and lets the client
know that leakage occurred), but otherwise reveals nothing to the server. We
denote this probabilistic functionality by Rand 1

2PIR.

Lemma 1. There exists a protocol for Rand 1
2PIR that, on a database z ∈ {0, 1}n,

uses a single invocation of 1
2PIR on a database z′ ∈ {0, 1}2n and no additional

interaction.

Proof. The Rand 1
2PIR protocol proceeds as follows. The server maps z to z′ =

(z, z̄). The client picks a random mask r ∈ {0, 1} and maps i to i′ = i + rn. The
parties then invoke the 1

2PIR oracle on inputs (z′, i′). The client’s output in the
Rand 1

2PIR protocol is z′
i′ ⊕ r, where z′

i′ is the output of the 1
2PIR. It is easy to

check that the output is correct, and that the server learns nothing about i if
z′
i′ = 0, which happens with probability 1/2 and is detectable by the client. ��

Given Lemma 1, it suffices to reduce PIR to Rand 1
2PIR. Our reduction relies

on the following strong form of locally decodable codes (LDCs), which can be
viewed as 1-round multi-server PIR protocols with uniform queries of logarithmic
size and a single answer bit. Using a general transformation of LDC to multi-
server PIR from [KT00], such codes are implied by standard LDCs by allowing a
small decoding error probability. For simplicity, we define here only the perfect
notion which is satisfied by the best known LDC constructions.
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Definition 8 (Perfect LDC). We say that an encoding function C : {0, 1}n →
{0, 1}N is a q-query perfect LDC, if there exists a probabilistic decoder algorithm
D(i) which probes q bits of the encoding such that the following properties hold:

– Correctness: For every z ∈ {0, 1}n and i ∈ [n], we have Pr[DC(z)(i) = zi] =
1.

– Uniform queries: Letting (i1, . . . , iq) ∈ [N ]q be the sequence of indices read
by D(i), it holds that for every j ∈ [q] the index ij is uniformly distributed
over [N ].

Our construction of PIR from 1
2PIR encodes the PIR database using a perfect

LDC, and applies a “cautious” decoding strategy by repeatedly (and adaptively)
using Rand 1

2PIR to simulate the LDC decoder while ensuring that at most one
query from each decoding attempt is leaked. This strategy yields the following
theorem.

Theorem 8. Let n(N) and q(N) be functions such that there is a q(N)-query
perfect LDC C : {0, 1}n(N) → {0, 1}N in which both the encoder and the decoder
can be implemented in time poly(N). Then, there exists a protocol that, given
a parameter N , implements in time poly(N) PIR on a database z ∈ {0, 1}n(N)

by using an expected O(q(N) · 2q(N)) (adaptive) calls to 1
2PIR on a database

z′ ∈ {0, 1}N and no additional interaction.

Proof. Let q = q(N). The PIR protocol will make at most q · 2q expected calls
to Rand 1

2PIR, which using Lemma 1 can be implemented using q · 2q+1 expected
calls to 1

2PIR. The protocol starts with the server encoding the PIR database z ∈
{0, 1}n into a codeword Z ∈ {0, 1}N . The client and the server then repeatedly
apply the following procedure until zi is successfully recovered.

1. The client invokes the LDC decoder D(i) to generate query indices (i1, . . . , iq).
2. For j = 1, . . . , q (sequentially), the client and the server invoke Rand 1

2PIR
with client input ij and server input Z. The protocol restarts at Step 1 if ij
leaks (which occurs with probability 1/2), otherwise it continues to the next
j. If all indices Zij

have been successfully retrieved, the client invokes D to
recover zi.

Since the leakage events in different invocations of Rand 1
2PIR are independent,

the expected number of attempts until decoding is fully successful is 2q, and so
the expected number of Rand 1

2PIR invocations is q · 2q. The (perfect) security of
the protocol follows from the fact that in any invocation of D, at most a single
index ij is leaked. By the definition of perfect LDC, this index is uniformly
distributed independently of i. ��

Alternatively, one can implement a worst-case variant of the above reduction
that runs σ copies in parallel, each with a constant failure probability. This
results in a PIR to semi-PIR reduction that has 2−Ω(σ) error probability and
makes O(q(N) ·2q(N)) rounds of calls to 1

2PIR with a total number of O(σ ·q(N) ·
2q(N)) of 1

2PIR calls.
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One can instantiate Theorem 8 by using known LDC constructions in sev-
eral ways. In particular, using Reed-Muller LDCs with q(N) = Θ(log N), one
gets PIR with good communication complexity but super-polynomial computa-
tional complexity. To get slightly sublinear PIR with polynomial computational
complexity, we rely on best constant-query LDC constructions from [Efr09].

Corollary 1 (polylogarithmic semi-PIR ⇒ slightly sublinear PIR). The
existence of a polylogarithmic semi-PIR protocol implies the existence of a slightly
sublinear PIR protocol. Moreover, if the semi-PIR protocol has constant round
complexity then so does the PIR protocol.

Proof. The LDC construction from [Efr09] is in fact a perfect LDC according
to our definition, with the following parameters. For any positive integer α,
there is a constant q = q(α), such that there is a q-query perfect LDC with
N(n) = exp(exp(log1/α n)), or n(N) = exp((log log N)α)). Note that n(N)
is bigger than any polylogarithmic function in N . A slightly sublinear PIR is
obtained by chopping a database of size N into blocks of size n(N) and running
the protocol guaranteed by Theorem8 on each block. ��

We note that the existence of “dream LDC” with q = O(1) queries and poly-
nomial length N(n) would imply a stronger reduction that constructs polyloga-
rithmic PIR from polylogarithmic semi-PIR. Thus, ruling out such a reduction
would imply ruling out such dream LDC, which would be considered a break-
through in complexity theory.

Separating semi-PIR from PIR. On the other hand, we show that semi-PIR
is not PIR hard. More broadly, we demonstrate limitations in the possibility of
non-adaptive reductions from PIR to semi-PIR.

We begin by showing that with a single call to semi-PIR one cannot achieve
secure PIR even with small non-trivial correctness.

Theorem 9. There cannot exist any reduction from n-bit PIR to 1
2PIR with

correctness better than 0.6 which makes a single call to 1
2PIR.

Proof. Suppose towards a contradiction that there exists a reduction from PIR
to 1

2PIR via a single call with correctness 0.6. This corresponds to a (randomized)
encoding EDB from x ∈ {0, 1}n to x̂ ∈ {0, 1}n̂ and Eindex from i ∈ [n] to j ∈ [n̂],
where the client learns x̂j and the server learns j iff x̂j = 1 via 1

2PIR. Since
correctness is 0.6, there must exist i �= i′ ∈ [n] for which the distributions {J ←
Eindex(i)} and {J ′ ← Eindex(i′)} are statistically far. By the privacy requirement,
this means the resulting index j or j′ cannot be revealed except with negligible
probability. In turn, this implies x̂j = 0 except with negligible probability over
EDB, Eindex. However, this implies that on a random database x the client has a
negligible advantage in guessing xi, yielding a contradiction. ��

We next build atop this result to further rule out the possibility of a reduction
making two non-adaptive calls.
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Theorem 10. There cannot exist any reduction from PIR to 1
2PIR which makes

two parallel calls to 1
2PIR.

Proof. Consider any reduction achieving n-bit PIR, making 2 parallel calls to
1
2PIR. This corresponds to a (randomized) encoding EDB from x ∈ {0, 1}n to
x̂ ∈ {0, 1}n̂ and Eindex from i ∈ [n] to (i1, i2) ∈ [n̂]2. By correctness, for every
i ∈ [n] there exists i′ ∈ [n] for which the distributions {(i1, i2) ← Eindex(i)}
and {(i′1, i

′
2) ← Eindex(i′)} are statistically far. Because of this, for each index

i, it must be that the read values (x̂I1 , x̂i2) take value (1, 1) with negligible
probability over EDB, Eindex. Correctness of the final scheme implies that the
values of (x̂I1 , x̂i2) must have a full bit of entropy over a random database x; in
particular, the value (0, 0) can occur with probability at most 1/2. Then either
x̂i1 or x̂i2 must equal 1 with probability at least 1/4, without loss of generality
say x̂i1 .

Consider, then, the following reduction which makes a single call to 1
2PIR

and achieves correctness 1/2 + 1/8 − negl(n).

1. The server samples x̂ ← EDB(x) and submits x̂ to 1
2PIR.

2. The client samples (i1, i2) ← Eindex(i) and submits i1 to 1
2PIR.

3. The 1
2PIR execution outputs x̂i1 to the client and i1 or ⊥ to the server

(depending on x̂i1).
4. If x̂i1 = 1 then the client executes the decoding procedure for the original

reduction on input (1, 0). Otherwise, he outputs a random bit.

Privacy of this construction follows from privacy of the original reduction.
In the case that x̂i1 = 1, then with overwhelming probability we know that
x̂i2 = 0, and thus the client computes the correct output. This means correctness
of the overall scheme will hold with probability at least 1/4+3/4 ·1/2−negl(n),
contradicting Theorem 9. ��

Because of the degradation in parameters, extending this separation to addi-
tional parallel queries will seem to require new ideas (e.g., for three queries ruling
out (1, 1, 1) gives a smaller boost in correctness when reducing to the two query
case, which is insufficient to directly derive a contradiction). However, as a final
note, we return to the Rand 1

2PIR functionality (used as an intermediate step in
the earlier construction of PIR from 1

2PIR), in which the input index is revealed
with probability 1/2. This setting yields a direct analysis, and we observe that
even O(log n) parallel calls to Rand 1

2PIR cannot yield PIR.

Proposition 1. There cannot exist any reduction from PIR to Rand 1
2PIR mak-

ing c ∈ O(log n) parallel calls to Rand 1
2PIR with negligible correctness error.

Proof. Consider any reduction achieving n-bit PIR, making c ∈ O(log n) parallel
calls to Rand 1

2PIR. This corresponds to a (randomized) encoding EDB from x ∈
{0, 1}n to x̂ ∈ {0, 1}n̂ and Eindex from i ∈ [n] to (i1, . . . , ic) ∈ [n̂]c. By correctness,
there exists i �= i′ ∈ [n] for which the distributions {(i1, . . . , ic) ← Eindex(i)}
and {(i′1, . . . , i

′
c) ← Eindex(i′)} are statistically far. However, with noticeable

probability 2−c ∈ n−O(1), all executions of Rand 1
2PIR will reveal the queried

index, thus revealing the entire vector query (i1, . . . , ic), violating privacy of the
scheme. ��
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4.2 Examples of Semi-PIR-Hard Problems

In this section we provide several natural examples for (two-sided) semi-PIR
hard functionalities. The results of the previous section imply that any poly-
logarithmic protocol for these functionalities would imply a slightly sublinear
PIR.

Definition 9 (Two-sided Single Source Single Destination Shortest
Path). Let N ∈ N. Define the two-party functionality SSSDs,t : {0, 1} ˜O(N2) ×
{0, 1} ˜O(N2) → {0, 1}log N ×{0, 1}log N by SSSDs,t(GA, GB) = (shortestpath(GA,
GB)) that expects as input from A and B two directed, complete, weighted graphs
GA, GB respectively, on the same set of N vertices where each weight is in N. The
functionality outputs the shortest path from the source vertex s to the destination
vertex t in the joint weighted directed graph to both A and B.

Theorem 11. Let N ∈ N. The two-sided Single Source Single Destination sho-
rtest Path function SSSDs,t : {0, 1} ˜O(N2)×{0, 1} ˜O(N2) → {0, 1}log N ×{0, 1}log N

is semi-PIR hard.

Proof. We construct a semi-PIR protocol ΠSSSD, by calling functionality SSSD.
Let Z be the server’s input set of size Õ(N2) where each element is a bit, and let
i be the client’s index. Moreover, let (GA, GB) be the two weighted input graphs
provided to the SSSD functionality by the server and the client, respectively.
Protocol ΠSSSD(Z, i) proceeds as follows:

Input Phase:
1. We split the nodes of GA into two sets and the weight of each edge within

each set is equal to infinity. Essentially, we form a complete bipartite
graph with two extra vertices s, t. The source vertex s is connected to the
vertices on the left side and a target vertex t connected to the vertices on
the right side of the bipartite graph. We also consider an edge connecting s
and t. The Server encodes the database Z on O(N2) edges of the bipartite
graph in GA. In particular, the server assigns to edge j the weight 2Zj .
The weight of the edge connecting s and t is set to 1.

2. The client sets up his graph GB such that for the edge of interest i = (u, v)
the weight is set to wB

(
i) = 2 and wB

(
(s, u)) = 0 and wB

(
(v, t)) = 0.

The weights of all other edges are set to infinity.
Evaluation and Output Phase:

Invoke the two-sided SSSD functionality ΠSSSD(GA, GB) that outputs the
shortest path. If the shortest path contains the edge connecting s and t then
Zi = 1, otherwise Zi = 0.
If Zi = 1 then the i’th edge weight is 2, and shortest path will consist of
the single edge connecting s and t, hiding the identity of i. If Zi = 0, the
shortest path contains edge i revealing the index i to the Server.
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Definition 10 (Two-sided Closest Destination Problem). Let N ∈ N.
Define the two-party functionality CDP : {0, 1} ˜O(N)×{0, 1} ˜O(log N) → {0, 1}log N

×{0, 1}log N by CDP(G, (s, t1, t2)) = (ClosestDest(G, (s, t1, t2))) that expects as
input a (sparse) graph GA with size Õ(N) description from party A and a source
vertex s along with two target vertices t1, t2 with description size Õ(log N) from
party B. Then, it outputs the identity of the closest destination from s to the
one-out-of-two target vertices dist(s, tb) ≤ dist(s, t1−b) to both A and B while
t1−b remains hidden.

Theorem 12. The two-sided Closest Destination Problem function CDP :
{0, 1} ˜O(N) × {0, 1} ˜O(log N) → {0, 1}log N × {0, 1}log N is semi-PIR hard.

Proof. We construct a semi-PIR protocol ΠCDP, calling functionality
fGA,(s,t1,t2)B

. Let Z be the server’s input set of size Õ(N) where each element is
a bit, and let i be the client’s index. Moreover, let GA, (s, t1, t2)B be the inputs to
the CDP functionality by the server and the client, respectively. ΠCDP proceeds
as follows:

Input Phase:
1. Without loss of generality the Server encodes the database Z on O(N)

edges of a star graph GA with N+2 vertices where the node s is connected
to the other N +1 vertices. The server enumerates all these N +1 vertices
from 1 up to N + 1 and for j ∈ [N ] assigns the weight of the edge
connecting s and j to 2Zj and the edge connecting s to N + 1 to 1.

2. The client chooses vertices s, i and N + 1.
Evaluation and Output Phase:

Invoke the two-sided protocol ΠCDP that outputs a target destination. If the
target is vertex i then Zi = 0 and if the target is vertex N + 1 then Zi = 1.
If Zi = 1 then the output is independent of the index i and thus the identity
of i is hidden.

Definition 11 (Two-sided Nearest Neighbor Problem). Define the
two-party functionality NN : {0, 1} ˜O(N) × {0, 1} ˜O(log N) → {0, 1}O(log N) ×
{0, 1}O(log N) by NN(D, loc) that expects as input a list D (of size N) of locations
on the 2-dimensional euclidean plane from party A and a single location loc on
the same plane from party B. Then, it outputs to both parties the location (x, y)
in D that is nearest to location locA.

Theorem 13. The two-sided Nearest Neighbor function NN : {0, 1} ˜O(N) ×
{0, 1} ˜O(log N) → {0, 1}O(log N) × {0, 1}O(log N) is semi-PIR hard.

Proof. We construct a semi-PIR protocol ΠNN, calling functionality NN. Let
Z ∈ {0, 1}N be the server’s input database, and let i be the client’s index.
Moreover, let (D, loc) be the inputs to the NN functionality by the server and
the client, respectively. Protocol ΠNN proceeds as follows:
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Input Phase:
1. For j ∈ [N ], let (a, b)j be evenly spaced points on a circle with center c

and radius r in the Euclidean plane. The Server generates his input D
to NN with respect to these points in the following way. If Zj = 0 then
set the jth location (x, y)j = (a, b)j . If Zj = 1 set the location (x, y)j

arbitrary outside the circle. In addition, he includes the center point c.
2. The client outputs the location loc that intersects the line crossing from

the centre c and location (a, b)i and the circle with center c and radius
r/2.

Evaluation and Output Phase: Invoke the two-sided protocol ΠNN that
outputs the nearest location to loc. If Zi = 0 then the output is (a, b)i. If Zi = 1
then the output is the centre c which is independent of the index i. That said,
in this case the identity of i is not leaked.

Definition 12 (Two-sided Short-List Selection). Define the two-party
functionality SLS : {0, 1} ˜O(N) × {0, 1} ˜O(log N) → {0, 1}2 log N × {0, 1}2 log N by
SLS(L, (idx0, idx1)) that expects as input a list L of size N and input domain
[N ] from party A and two indices (idx0, idx1) from party B. The output is idx0
if Lidx0 < Lidx1 , idx1 if Lidx0 > Lidx1 or both idx0, idx1 if Lidx0 = Lidx1 .

Theorem 14. The two-sided Short-List Selection function SLS : {0, 1} ˜O(N) ×
{0, 1} ˜O(log N) → {0, 1}2 log N × {0, 1}2 log N is semi-PIR hard.

Proof. We construct a semi-PIR protocol ΠSLS, calling functionality SLS. Let
Z be the server’s input set of size N where each element is a bit, and let i be the
client’s index. Moreover, let (L, idx0, idx1) be the inputs to the SLS functionality.
Protocol ΠSLS proceeds as follows:

Input Phase:
1. The Server generates the list L of size N + 1 as follows. For j ∈ [N ],

Lj = Zj and LN+1 = 0.
2. The client chooses indices i and N + 1.

Evaluation and Output Phase:
Invoke ΠSLS that outputs the index of the smallest entry or both indices in
case of ties. If Zi = 0 then the indices i and N + 1 are revealed. If Zi = 1
only the N + 1 index is revealed which is independent of i.

Next, we observe that this problem is not PIR-hard by demonstrating it is
implied by 1

2PIR (which is separated from PIR in the above results).

Theorem 15. If there exists a Semi-PIR protocol for a database of size O(N)
that runs in k-rounds, then for every constant c > 0 there exists a protocol for the
two-sided Short-List Selection function SLS : {0, . . . , c} ˜O(N) × {0, 1} ˜O(log N) →
{0, 1}2 log N × {0, 1}2 log N that runs in O(c · k) rounds.
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Proof. Let Π be the Semi-PIR protocol. Let L be the input list of fSLS. Modify L
such that each element is in its unary representation with c+1 bits. In particular,
a number n < c in the database is represented in unary by n ones. The rest of the
c + 1 − n most significant bits are set to 0. Construct the semi-PIR database D
by storing all N(c+1) bits of L in such a way that the element with index (idx, �)
is the �-th bit of the element of L with index idx. Let (idx0, idx1) be the input
indices of party B to SLS. Then party A and party B run at most c sequential
rounds, each one consisting of two parallel calls to Π. In the �-th round, where
� ∈ [1, c], party B makes the following two parallel queries for every b ∈ {0, 1}.

Π
(
D, (idxb, �)

)
=

⎧
⎨

⎩

(
⊥,

(
(idxb, �),Didxb,�

))
, if Didxb,� = 1

((
idxb, �

)
,
(
(idxb, �),Didxb,�

))
, if Didxb,� = 0

⎫
⎬

⎭

If for some �, b, Didxb,� = 0 the protocol completes and there are no
more adaptive calls. For the case where Didxb,� �= Didx1−b,� and Didxb,� = 0
then Lidx1−b

> Lidxb
and both parties receive idxb. If Didxb,� = Didx1−b,� then

Lidx1−b
= Lidxb

and both parties receive (idxb, idx1−b).

Combining Theorem 14 with Theorem 15, we obtain the following corollary:

Corollary 2 (Short-List Selection is not PIR-hard). The two-sided Short-
List Selection function SLS : {0, 1} ˜O(N) × {0, 1} ˜O(log N) → {0, 1}2 log N ×
{0, 1}2 log N is not PIR-hard.

5 Low Communication Locally Compressible Problems

In this section, we show that it is actually possible to achieve semi-honest security
for one-sided problems and beyond if the problem satisfies the following notion
of input compressibility.

Definition 13 (Locally Compressible Inputs). We say that a functionality
F : {0, 1}N ×{0, 1}N → {0, 1}m×{0, 1}m has locally compressible inputs if there
exists a preprocessing function Pre : {0, 1}N → {0, 1}Nα

with α < 1 for which
F (X,Y ) = F (Pre(X),Pre(Y )).

Local compressibility of the inputs can yield semi-honest secure non PIR-hard
(“easy”) protocols with reduced communication complexity by first executing
the local preprocessing and then calling a generic two-party protocol on the
preprocessed input data.

In the following section we show that two optimization problems that satisfy
the above property admit low communication complexity and are not PIR-hard.
The first problem is the minimum spanning tree and the second one is the median
protocol for a certain predicate on the output specified in Sect. 5.2.
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5.1 Revisiting the Minimum Spanning Tree Protocol

A Minimum Spanning Tree (MST) of an edge-weighted graph is a spanning tree
whose weight is no larger than the weight of any other spanning tree. More
formally, given a connected, undirected graph G = (V,E), a spanning tree is an
acyclic subset of edges T ⊆ E that connects all the vertices together. Assuming
that each edge e=(u,v) of G has a numeric weight or cost, w(e), we define the
cost of a spanning tree T to be the sum of edges in the spanning tree

w(T ) =
∑

(u,v)∈T

w(u, v).

MST is a spanning tree of minimum weight. Note that the MST may not in
general be unique, but it is true that if all the edge weights are distinct, then
the MST will be unique.

Definition 14 (MST functionality). Let N ∈ N. We define the two-party
functionality fMSTN

(GA, GB) = (T, T ) which on input two connected, unidirected
graphs GA = (VA, EA, wA) and GB = (VB , EB , wB) of size N with distinct edges
where VA = VB and wA(e), wB(e) represent the weight of edge e in GA and GB,
outputs a subset of edges T ⊆ EA ∪EB that connect all the vertices together with
the minimum weight w(T ) =

∑
(e)∈T w(e).

An efficient sublinear-communication protocol for two-sided MST was given
in [SV15].

Two-Sided Locally Compressible MST. In the sequel, we show that the
MST protocol has locally compressible inputs and admits “easy” low communi-
cation secure protocols. Beyond the results of [SV15], this approach enables such
protocols for secure computation of functions of the MST (whereas the [SV15]
protocol only supports MST itself).

Theorem 16. Let n ∈ N, and let {0, 1}� be the input domain of edge weights.
Then for any function g : {0, 1}2�·n → {0, 1}n′

with circuit size o(N), there
exists a secure two-party computation protocol ΠMST for the functionality g ◦
fMSTn2 : {0, 1}�·n2 × {0, 1}�·n2 → {0, 1}n′

which achieves statistical security in
the preprocessing model, with communication complexity Õ(n) ∈ o(N) (where
N = � · n2).

Proof. We proceed by constructing an MST protocol ΠMST, as per Definition 14,
calling the preprocessing function Pre : {0, 1}n2 → {0, 1}n as per Definition 13.
Let (GA, GB) be the connected, unidirected graphs provided to the ΠMST pro-
tocol by party A and party B, respectively.



328 E. Boyle et al.

Protocol ΠMST(GA, GB):

Input Phase:
The preprocessing function Pre on input a graph G outputs its MST, denoted

by MST(G). In this phase each party locally computes Pre(GA) and Pre(GB)
to obtain MST(GA) and MST(GB), respectively.

Evaluation and Output Phase:
Given two graphs G1 = (V1, E1, w1) and G2 = (V2, E2, w2) we denote by
G1 & G2 the graph G = (V,E,w) with V = V1, E = E1 ∪ E2 and for each
edge e ∈ E, w(e) = min(w1(e), w2(e)).
Let Π denote a generic two-party protocol in the is run in order to compute
and output MST((MST(GA) & MST(GB)) to both parties.

In order to prove correctness of the above protocol ΠMST, we need to
prove that the local compressibility does not alter the final output. More
specifically, we need to show that ∀e ∈ MST(GA & GB) it is implied that
e ∈ MST((MST(GA) & MST(GB)).

Suppose for contradiction that there is an edge e in GB that is in the
MST(GA & GB) but not in MST(GB). Consider the cut C of vertices (cre-
ated by drawing a line that intersects the middle of the edge e), that contains
only the edge e of MST(GA & GB) (it exists since by definition there no cycles
in the MST). It must be the case that e is the lightest edge of GA & GB in
this cut C, otherwise we can swap it out with a lighter edge and contradict the
minimality of MST(GA & GB). A swap is defined by adding in e, forming a cycle
in the graph, therefore removing the other edge in this cut and cycle, which is
by assumption strictly heavier.

However, all edge weights in GA & GB are smaller or equal to the weights in
GB , since we take the minimum weight at every edge. This means that e must
also be the lightest edge of GB in this cut. But this contradicts minimality of
MST(GB) since we could always swap some edge of MST(GB) in this cut with
e to get a strictly cheaper MST. Finally, since without loss of generality we can
consider disjoint edges and connected graphs the edge e must also be included
in the final tree MST((MST(GA) & MST(GB)). This concludes the proof.

Security of the protocol ΠMST follows immediately from the security of the
Π protocol. Furthermore, it is clear that the communication complexity of the
ΠMST(GA, GB) in the RAM model is Õ(n) since after the local compressibility
the input size to the generic two-party protocol Π is reduced to O(n), making
use of a generic statistically secure ORAM-based protocol. ��

5.2 Revisiting the Two-Sided Median Predicates Protocol

In the sequel, we focus on the case of predicates on the output of the median
protocol and in particular on the high-order bits of their input.

Theorem 17. Let N ∈ N and let {0, 1}� be the input domain. For any predicate
P : {0, 1}� → {0, 1} which depends only on the o(log N) most significant bits
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of the input, there exists a secure two-party computation protocol Π
pMEDP�

N
for

the functionality pMedP
N which achieves statistical security in the preprocessing

model, with communication complexity o(N).

Proof. We proceed by constructing the Π
pMEDP�

N
protocol, calling the prepro-

cessing function Pre : {0, 1}N → {0, 1}o(N) as per Definition 13. Let X,Y ⊂
({0, 1}�)N be two input sets from party A and party B, respectively, sorted in
increasing order such that |X ∪ Y | = 2N . Protocol Π

pMEDP�
N

(X,Y ) proceeds as
follows:

Input Phase:
The preprocessing function Pre on input a set S outputs a compressed output

Pre(S) of 2� ∈ o(N)-size, denoted by �′-size, count vector corresponding
to the number of occurrences of each length-�′ prefix within the elements
of the set. More specifically, since there are 2�′

different representations
for the �′ most significant bits, party A computes a counter vector cA =
(cA

1 , . . . cA
2�′ ) counting the appearance of each possible representation in the

most significant bits of each element in the set X. Respectively, party B
computes his counter vector cB = (cB

1 , . . . cB
2�′ ).

Evaluation and Output Phase:
Let Π denote a generic two-party protocol Π(cA, cB) which on input the
sets cA, cB , outputs to both parties the predicate result. For our purposes,
protocol Π is computing the median of the prefixes as encoded by the counter
vectors cA, cB .

Correctness of the above protocol Π
pMEDP�

N
follows from the correctness of the

Π, which does output the correct output predicate guaranteed by the structure of
cA, cB . More specifically, since the high-order prefix of the median is equal to the
median of the corresponding high-order prefixes, this short count vector carries
sufficient information to evaluate the desired output predicate. Security follows
immediately from the security of the protocol Π. The communication complexity
of the Π

pMEDP�
N

(X,Y ) protocol is o(N) since after the local compressibility the
input size to the generic two-party protocol Π is set to o(N). ��

6 Concluding Remarks and Open Problems

Our work initiates an effort to design a rigorous complexity framework for iden-
tifying “hard” tasks, to which previous techniques for low-complexity sublinear
MPC cannot possibly apply, making the first broad strokes of classifying natural
problems as “hard” or “potentially easy.” The framework we propose is not per-
fect, and indeed, problems that are “potentially easy” are not necessarily easy.
This is also the case for the theory of NP-completeness, where some problems
that are conjectured not to be NP-hard (such as integer factorization) are also
conjectured to be not easy. However, again like NP-completeness, our framework
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does provide meaningful and useful separations between different flavors of nat-
ural problems that would otherwise look very similar. This can help understand
and guide MPC solutions over big data.

There are many questions left to be studied. Whereas for one-sided func-
tionalities, VC-dimension gives a good combinatorial characterization for PIR-
hardness (restricted to deterministic, non-interactive reductions), the situation
for two-sided functionalities is not as well understood unless the output is very
short. Is there a natural analogue of VC-dimension that captures PIR-hardness
and semi-PIR-hardness of two-sided functionalities? What about multi-party
functionalities, or two-party functionalities that deliver different outputs to the
two parties? What about extending our framework to the setting of security
against malicious parties?

The relation between semi-PIR to PIR is also only partially understood.
While we show that strong semi-PIR implies weak (but nontrivial) PIR, it is
not clear that our reduction is the best possible. In particular, our reduction
makes use of non-trivial machinery of locally decodable codes, it requires mul-
tiple rounds of calls to the semi-PIR oracle, and exhibits a tradeoff between
communication and local computation. Are these nonstandard features inher-
ent? For instance, can we rule out parallel reductions of this type, or prove that
any reduction that makes few (sequential) calls to the semi-PIR oracle implies
a locally decodable code with related parameters?

As discussed above, problems that escape our notions of hardness are not
necessarily easy. It would be interesting to identify natural candidate problems
of this kind and try to refine our hardness notions to capture them.

Finally, is there a useful hierarchy of hardness classes beyond PIR-hardness
and Semi-PIR-hardness? For instance, one could try to capture different levels
of “somewhat homomorphic encryption” that are more expensive to implement
than PIR, say, corresponding to the circuit depth or algebraic degree.
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