
Space-Time Interpolants

Goran Frehse1, Mirco Giacobbe2(B), and Thomas A. Henzinger2

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, Grenoble, France
2 IST Austria, Klosterneuburg, Austria

mgiacobbe@ist.ac.at

Abstract. Reachability analysis is difficult for hybrid automata with
affine differential equations, because the reach set needs to be approxi-
mated. Promising abstraction techniques usually employ interval meth-
ods or template polyhedra. Interval methods account for dense time and
guarantee soundness, and there are interval-based tools that overapprox-
imate affine flowpipes. But interval methods impose bounded and rigid
shapes, which make refinement expensive and fixpoint detection difficult.
Template polyhedra, on the other hand, can be adapted flexibly and can
be unbounded, but sound template refinement for unbounded reacha-
bility analysis has been implemented only for systems with piecewise
constant dynamics. We capitalize on the advantages of both techniques,
combining interval arithmetic and template polyhedra, using the former
to abstract time and the latter to abstract space. During a CEGAR
loop, whenever a spurious error trajectory is found, we compute addi-
tional space constraints and split time intervals, and use these space-time
interpolants to eliminate the counterexample. Space-time interpolation
offers a lazy, flexible framework for increasing precision while guarantee-
ing soundness, both for error avoidance and fixpoint detection. To the
best of out knowledge, this is the first abstraction refinement scheme for
the reachability analysis over unbounded and dense time of affine hybrid
systems, which is both sound and automatic. We demonstrate the effec-
tiveness of our algorithm with several benchmark examples, which cannot
be handled by other tools.

1 Introduction

Formal verification techniques can be used to either provide rigorous guarantees
about the behaviors of a critical system, or detect instances of violating behavior
if such behaviors are possible. Formal verification has become widely used in the
design of software and digital hardware, but has yet to show a similar success for
physical and cyber-physical systems. One of the reasons for this is a scarcity of
suitable algorithmic verification tools, such as model checkers, which are formally
sound, precise, and scale reasonably well. In this paper, we propose a novel
verification algorithm that meets these criteria for systems with piecewise affine
dynamics. The performance of the approach is illustrated experimentally on a
number of benchmarks. Since systems with affine dynamics have been studied
before, we first describe why the available methods and tools do not handle this
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class of systems sufficiently well, and then describe our approach and its core
contributions.

Previous Approaches. The algorithmic verification of systems with continuous
or discrete-continuous (hybrid) dynamics is a hard problem both in theory
and practice. For piecewise constant dynamics (PCD), the continuous succes-
sor states (a.k.a. flow pipe) can be computed exactly, and the complexity is
exponential in the number of variables [17,19]. While in principle, any dynam-
ics can be approximated arbitrarily well by PCD systems using an approach
called hybridization [20], this requires partitioning of the state space, which
often leads to prohibitive computational costs. For piecewise affine dynamics
(PWA), one-step successors can be computed approximately using complex set
representations. However, all published approaches suffer either from a possi-
bly exponential increase in the complexity of the set representation, or from a
possibly exponential increase in the approximation error as the considered time
interval increases; this will be argued in detail in Sect. 4.

In addition to these theoretical obstacles, we note the following practical
obstacles for the available tools and their performance in experiments. The only
available model checkers that are (i) sound (i.e., they compute provable dense-
time overapproximations), (ii) unbounded (i.e., they overapproximate the flow-
pipe for an infinite time horizon), and (iii) arbitrarily precise (i.e., they support
precision refinement) are, with one exception, limited to PCD systems, namely,
HyTech [18], PHAVer [13], and Lyse [7]. The tool Ariadne [6] can deal with affine
dynamics and is sound, unbounded, and precise. However, Ariadne discretizes
the reachable state space with a rectangular grid. This invariably leads to an
exponential complexity in terms of the number of variables. Other tools that are
applicable to PWA systems do not meet our criteria in that they are either not
formally sound (e.g., CORA [2], SpaceEx [15]), not arbitrarily precise because
of templates or particular data structures (e.g., SpaceEx, Flow∗ [8], CORA),
or limited to bounded model checking (e.g., dReach [24], Flow∗). All the above
tools exhibit fatal limitations in scalability or precision on standard PWA bench-
marks; they typically work only on well-chosen examples. Note that while these
tools do not meet the criteria we advance in this paper, they of course have
strengths in other areas handling nonlinear and nondeterministic dynamics.

Our Approach. We view iterative abstraction refinement as critical for sound-
ness and precision management, and fixpoint detection as critical for eval-
uating unbounded properties. We implement, for the first time, a CEGAR
(counterexample-guided abstraction refinement) scheme in combination with a
fixpoint detection criterion for PWA systems. Our abstraction refinement scheme
manages complexity and precision trade-offs in a flexible way by decoupling time
from space: the dense timeline is partitioned into a sequence of intervals that
are refined individually and lazily, by splitting intervals, to achieve the necessary
precision and detect fixpoints; state sets are overapproximated using template
polyhedra that are also refined individually and lazily, by adding normal direc-
tions to templates; and both refinement processes are interleaved for optimal
results, while maintaining soundness with each step. A similar approach was
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recently proposed for the limited class of PCA systems [7]; this paper can be
seen as an extension of the approach to the class of piecewise affine dynamics.

With each iteration of the CEGAR loop, a spurious counterexample is
removed by computing a proof of infeasibility in terms of a sequence of linear
constraints in space and interval constraints in time, which we call a sequence
of space-time interpolants. We use linear programming to construct a suitable
sequence of space-time intervals and check for fixpoints. If a fixpoint check fails,
we increase the time horizon by adding new intervals. The separation of time
from space gives us the flexibility to explore different refinement strategies. Fine-
tuning the iteration of space refinement (adding template directions), time refine-
ment (splitting intervals), and fixpoint checking (adding intervals), we find that
it is generally best to prefer fewer time intervals over fewer space constraints.
Based on performance evaluation, we even expand individual intervals time when
this is possible without sacrificing the necessary precision for removing a coun-
terexample.

2 Motivating Example

The ordinary differential equation over the variables x and y

ẋ = 0.1x − y + 1.8
ẏ = x + 0.1y − 2.2 (1)

moves counterclockwise around the point (2, 2) in an outward spiral. We center
a box B (of side 0.92) on the same point and place a diagonal segment S close to
the bottom right corner of B, without touching it (between (2, 1) and (3.5, 2); see
Fig. 1). Then, we consider the problem of proving that every trajectory starting
from any point in S never hits B. This is a time-unbounded reachability problem
for a hybrid automaton with piecewise affine dynamics and two control modes.
The first mode has the dynamics above (Eq. 1) and S as initial region. It has a
transition to a second mode, which in its turn has B as invariant. The second
mode is a bad mode, which all trajectories indeed avoid.

We tackle the reachability problem by abstraction refinement. In particular,
we aim at automatically constructing an enclosure for the flowpipe—i.e., for the
set of trajectories from S—which (i) avoids the bad state B and (ii) covers the
continuous timeline up to infinity. Figure 1 shows three abstractions that result
from different strategies for refining an initial space partition (i.e., template) and
time partition (i.e., sequence of time intervals). All three refinement schemes
start by enclosing S with an initial template polyhedron P , and then transform-
ing P into a sequence of abstract flowpipe sections intflow[t,t](P ), one for each
interval [t, t] of an initial partitioning of the unbounded timeline. The computa-
tion of new flowpipe sections stops when a fixpoint is reached,—i.e., we reach a
time threshold t∗ whose flowpipe section closes a cycle with intflowt∗

(P ) ⊆ P ,
sufficient condition for any further flowpipe section to be contained within the
union of previously computed sections.
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Fig. 1. Comparison of abstraction refinement methods for the ODE in Eq. 1, the seg-
ment S as initial region, and the box B as bad region. The polyhedron P is the template
polyhedron of S, and the gray polyhedra are the flowpipe sections intflow[t,t](P ).

Refinement scheme (a) sticks to a fixed octagonal template P—i.e., to the
normals of a regular octagon—and iteratively halves all time intervals until every
flowpipe section avoids the bad set B. This is achieved at interval width 1/64, but
the computation does not terminate because no fixpoint is reached. Refinement
scheme (b) splits time similarly but also computes a different, more accurate
template for every iteration: first, an interval [t, t] is halved until it admits a
halfspace interpolant —i.e., a halfspace H that S ⊆ H and intflow[t,t](H) ∩ B =
∅; then, a maximal set of linearly independent directions is chosen as template
from the normals of the obtained halfspaces. Refinement scheme (b) succeeds
at interval width 1/16 to avoid B and reach a fixpoint; the latter at time 6.25,
with intflow6.25(P ) ⊆ P . Refinement scheme (c) modifies (b) by optimizing the
refinement of the time partition: instead of halving time intervals, the maximal
intervals which admit halfspace interpolants are chosen. This scheme produces
a nonuniform time partitioning with an average interval width of about 1/8,
discovers five template directions, and finds a fixpoint in fewer steps.

Each iteration of the abstraction refinement loop consists of first abstracting
the initial region into a template polyhedron, second solving the differential equa-
tion into a sequence of interval matrices, and finally transforming the template
polyhedron using each of the interval matrices. We represent each transformation
symbolically, by means of its support function. Then, we verify (i) the separation
between every support function and the bad region, and (ii) the containment of
any support function in the initial template polyhedron. The separation prob-
lem amounts to solving one LP, and the inclusion problem amounts to solving
an LP in each template direction. If the separation fails, then we independently
bisect each time that does not admit halfspace interpolants and expand each
that does, until all are proven separated. Together, these halfspace interpolants
form an infeasibility proof for the counterexample: a space-time interpolant.
We forward the resulting new time intervals and halfspaces to the abstraction
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generator, and repeat, using the refined partitioning and the augmented tem-
plate. If the inclusion fails, then we increase the time horizon by some amount
Δ, and repeat. Once we succeed with both separation and inclusion, the system
is proved safe.

This example shows the advantage of lazily refining both the space parti-
tioning (i.e., the template) by adding directions, and the time partitioning, by
splitting intervals.

3 Hybrid Automata with Piecewise Affine Dynamics

A hybrid automaton with piecewise affine dynamics consists of an n-dimensional
vector x of real-valued variables and a finite directed multigraph (V,E), the
control graph. We call it the control graph, the vertices v ∈ V the control
modes, and the edges e ∈ E the control switches. We decorate each mode v ∈ V
with an initial condition Zv ⊆ IRn, a nonnegative invariant condition Iv ⊆ IRn

≥0,
and a flow condition given by the system of ordinary differential equations

ẋ = Avx + bv. (2)

We decorate each switch e ∈ E with a guard condition Ge ⊆ IRn and an update
condition given the difference equations x := Rex+se . All constraints I, G, and
Z are conjuctions of rational linear inequalities, A and R are constant matrices,
and b and s constant vectors of rational coefficients. In this paper, whenever an
indexing of modes and switches is clear from the context, we index the respective
constraints and transformations similarly, e.g., we abbreviate Avi

with Ai.
A trajectory is a possibly infinite sequence of states (v, x) ∈ V × IRn repeat-

edly interleaved first by a switching time t ∈ IR≥0 and then by a switch e ∈ E

(v0, x0)t0(v0, y0)e0(v1, x1)t1(v1, y1)e1 . . . (3)

for which there exists a sequence of solutions ψ0, ψ1, . . . : IR → IRn such that
ψi(0) = xi, ψi(ti) = yi and they satisfy (i) the invariant conditions ψi(t) ∈ Ii

and (ii) the flow conditions ψ̇i(t) = Aiψi(t) + bi, for all t ∈ [0, ti]. Moreover,
x0 ∈ Z0, every switch ei has source vi, destination vi+1, and the respective states
satisfy (i) the guard condition yi ∈ Gi and (ii) the update xi+1 = Riyi + si. The
maximal set of its trajectories is the semantics of the hybrid automaton, which
is safe if none of them contains a special bad mode.

Every hybrid automaton with affine dynamics can be transformed into an
equivalent hybrid automaton with linear dynamics, i.e., the special case where
b = 0 on every mode. We obtain such transformation by adding one extra variable
y, rewriting the flow of every mode into ẋ = Ax+ by, and forcing y to be always
equal to 1, i.e., invariant y = 1 and flow ẏ = 0 on every mode and update y′ = y
on every switch. For this reason, in the following sections we discuss w.l.o.g. the
reachability analysis of hybrid automata with linear dynamics.
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4 Time Abstraction Using Interval Arithmetic

We abstract the reach set of the hybrid automaton with a union of convex
polyhedra. In particular, we abstract the states that are reachable in a mode
using a finite sequence of images of the initial region over a time partitioning,
until a completeness threshold is reached. Thereafter, we compute the template
polyhedron of each of the images that can take a switch. Then, we repeat in the
destination mode and we continue until a fixpoint is found.

Precisely, a time partitioning T is a (possibly infinite) set of disjoint closed
time intervals whose union is a single (possibly open) interval. For a finite set of
directions D ⊆ IRn, the D-polyhedron of a closed convex set X is the tightest
polyhedral enclosure whose facets normals are in D. In the following, we associate
every mode v to a template Dv and a time partitioning Tv of the time axis IR≥0,
we employ interval arithmetic for abstracting the continuous dynamics (Sect.
4.1), and on top of it we develop a procedure for hybrid dynamics (Sect. 4.2).

4.1 Continuous Dynamics

We consider w.l.o.g. a mode with ODE reduced to the linear form ẋ = Avx,
invariant Iv, and a given time interval [t, t]. Every linear ODE ẋ = Ax has the
unique solution

ψ(t) = exp(At)ψ(0). (4)

It follows (see also [16]) that the set of states reachable in v after exactly t time
units from an initial region X is

flowt
v(X) def= exp(Avt)X ∩

⋂

0≤τ≤t

exp(Av(t − τ))Iv, (5)

Then, the flowpipe section over the time interval [t, t] is

flow[t,t]
v (X) def= ∪{flowt

v(X) | t ∈ [t, t]}. (6)

We note three straightforward but consequential properties of the reach set:
(i) The accuracy of any convex abstraction depends on the size of the time
interval: While flowt

v(X) is convex for convex X, this is generally not the case
for flow[t,t]

v (X). (ii) We can prune the time interval whenever we detect that the
reach set no longer overlaps with the invariant: If for any t∗ ≥ 0, flowt∗

v (X) = ∅,
then for all t ≥ t∗, flowt

v(X) = ∅ and flow[t,t]
v (X) = flow[t,t∗]

v (X). (iii) We can
prune the time interval whenever we detect containment in the initial states: If
flowt∗

v (X) ⊆ X, then flow[t,∞]
v (X) = flow[t,t∗]

v (X).
For given A and t, the matrix exp(At) can be computed with arbitrary, but

only finite, accuracy. We resolve this problem by computing a rational interval
matrix [M,M ], which we denote intexp(A, t, t), such that for all t ∈ [t, t] we have
element-wise that

exp(At) ∈ intexp(A, t, t). (7)
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This interval matrix can be derived efficiently with a variety of methods [25],
e.g., using a guaranteed ODE solver or using interval arithmetic. The width
of the interval matrix can be made arbitrarily small at the price of increasing
the number of computations and the size of the representation of the rational
numbers. In our approach, we do not rely in a fixed accuracy of the interval
matrix. Instead, we require that the accuracy increases as the width of the time
interval goes to zero. That way, we don’t need to introduce an extra parameter.
To ensure progress in our refinement loop, we require that the interval matrix
decreases monotonically when we split the time interval. Formally, if [t, t] ⊆ [u, u]
we require the element-wise inclusion intexp(A, t, t) ⊆ intexp(A, u, u). This can
be ensured by intersecting the interval matrices with the original interval matrix
after time splitting.

While the mapping with interval matrices is in general not convex [29], we can
simplify the problem by assuming that all points of X are in the positive orthant.
As long as X is bounded from below, this condition can be satisfied by inducing
an appropriate coordinate change. Under the assumption that X ⊆ IRn

≥0,

[M,M ](X) =
{
y ∈ IRn

∣∣ Mx ≤ y ≤ Mx and x ∈ X
}
. (8)

Combining the above results, we obtain a convex abstraction of the flowpipe
over a time interval as

intflow[t,t]
v (X) def= intexp(A, t, t)X ∩ Iv. (9)

The abstraction is conservative in the sense that flow[t,t]
v (X) ⊆ intflow[t,t]

v (X).
On the other hand, the longer is the time interval, the coarser is the abstraction.
For this reason, we construct an abstraction of the flowpipe in terms of a union
of convex approximations over a time partitioning. The abstract flowpipe over
the time partitioning T is

intflowT
v (X) def= ∪{intflow[t,t]

v (X) | [t, t] ∈ T}. (10)

Again, this is conservative w.r.t. the concrete flowpipe, i.e., for all time parti-
tionings T it holds that flow∪T

v (X) ⊆ intflowT
v (X). Moreover, it is conservative

w.r.t. any refinement of T , i.e., the time partitioning U refines T if ∪U = ∪T
and ∀[u, u] ∈ U : ∃[t, t] ∈ T : [u, u] ⊆ [t, t], then intflowU

v (X) ⊆ intflowT
v (X).

4.2 Hybrid Dynamics

We embed the flowpipe abstraction routine into a reachability algorithm that
accounts for the switching induced by the hybrid automaton. The discrete post
operator is the image of a set Y ⊆ IRn through a switch e ∈ E

jumpe(Y ) def= Re(Y ∩ Ge) ⊕ {se}. (11)

We explore the hybrid automaton constructing a set of abstract trajectories,
namely sequences abstract states interleaved by time intervals and switches

(v0,X0)[t0, t0](v0, Y0)e0(v1,X1)[t1, t1](v1, Y1)e1 . . . (12)
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input : Template {Dv} and partitioning {Tv} indexed by V
output: Optionally an abstract trajectory (counterexample)

1 foreach v ∈ V with nonempty Zv do
2 push (v, Zv)[0, Δ] into the stack W ;
3 add the Dv-polyhedron of Zv to Pv ;

4 while W is not empty do
5 pop . . . (v, X)[t, t] from W ;
6 P ← Dv-polyhedron of X;
7 if v is bad and P ∩ Iv is nonempty then // check counterexample
8 return . . . (v, X);

9 foreach t∗ ∈ {t + δ, t + 2δ, . . . , t} do // find completeness threshold

10 if intflowt∗
v (P ) ⊆ Pv then break;

11 if t∗ = t and intflowt
v(P ) ⊆ Pv then // otherwise extend time horizon

12 push . . . (v, X)[t, t + Δ] into W ;

13 foreach [u, u] ∈ Tv and [u, u] ∩ [t, t∗] = ∅ do // construct flowpipe

14 Y ← intflow[u,u]
v (P );

15 foreach e ∈ E with source v and destination v′ do
16 X′ ← jumpe(Y );

17 if X′ ⊆ Pv′ then continue;

18 push . . . (v, X)[u, u](v, Y )e(v′, X′)[0, Δ] into W ;

19 add the Dv′ -polyhedron of X′ to Pv′ ;

Algorithm 1. Reachability procedure.

where X0, Y0, · · · ⊆ IRn are nonempty sets of states that comply with tem-
plate {Dv} and partitioning {Tv} in the following sense. First, X0 = Z0 and
Xi+1 = jumpi(Yi) for all i ≥ 0. Second, Yi = intflow[ti,ti]

i (Pi) for all i ≥ 0, where
Pi is the Di-polyhedron of Xi and [ti, ti] ∈ Ti. The maximal set of abstract tra-
jectories, the abstract semantics induced by {Dv} and {Tv}, overapproximates
the concrete semantics in the sense that every concrete trajectory (see Eq. 3)
has an abstract trajectory that subsumes it, i.e., modes and switches match,
xi ∈ Xi, ti ∈ [ti, ti], and yi ∈ Yi, for all i ≥ 0.

Computing the abstraction involves several difficulties. First, the trajectories
might be not finitary. Indeed, this is unsolvable in theory, because the reachabil-
ity problem is undecidable [21]. Second, the post operators are hard to compute.
In particular, obtaining the sets X and Y in terms of conjunctions of linear
inequalities in IRn requires eliminating quantifiers. In Algorithm 1, we present a
procedure (which does not necessarily terminate) for tackling the first problem.
In the next section, we show how to tackle the second using support functions.

We employ Algorithm 1 to explore the tree of abstract trajectories. We store
in the stack W the leaves to process . . . (v,X), followed by a candidate interval
[t, t]. For each leaf, we retrieve P , the template polyhedron of X. If it leads
to a bad mode, we return, otherwise we search for a completeness threshold t∗

between t excluded and t, checking for inclusion in the union of visited polyhe-
dra Pv. In case of failure, we extend the time horizon of Δ and push the next
candidate to the stack. Then, we partition the time between t and t∗, construct
the flowpipe, and process switching. Upon each successful switch, we augment
Pv′ with the Dv′-polyhedron of the switching region X ′, avoiding to store redun-
dant polyhedra. Notably, the latter operation is efficient because all polyhedra
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comply with the same template. For the same reason, we obtain efficient inclu-
sion checks, which we implement by first computing the template polyhedron
of the left hand side, and then comparing the constant terms of the respective
linear inequalities.

In conclusion, this reachability procedure that takes a template {Dv} and a
partitioning {Tv} and constructs a tree of reachable sets of states X and Y . It
manipulates them through the post operators and overapproximate them into
template polyhedra. In the next section, we discuss how to efficiently represent
X and Y , so to efficiently compute their template polyhedra. In Sect. 6 we
discuss how to discover appropriate {Dv} and {Tv}, so to eliminate spurious
counterexamples.

5 Space Abstraction Using Support Functions

Abstracting away time left us with the task of representing the state space of the
hybrid automaton, namely the space of its variable valuations. Such sets consists
of polyhedra emerging from operations such as intersections, Minkowski sums,
and linear maps with simple or interval matrices. In this section, we discuss
how to represent precisely all sets emerging from any of these operations by
means of their support functions (Sect. 5.1) and then how to abstract them into
template polyhedra (Sect. 5.2). In the next section, we discuss how to refine the
abstraction.

5.1 Support Functions

The support function of a closed convex set X ⊆ IRn in direction d ∈ IRn consists
of the maximizer scalar product of d over X

ρX(d) = sup{dTx | x ∈ X}, (13)

and, indeed, uniquely represents any closed convex set [28]. Classic work on the
verification of hybrid automata with affine dynamic have posed a framework for
the construction of support functions from basic set operations, but under the
assumption of unboundedness and nonemptiness of the represented set, and with
approximated intersection [16]. Indeed, if the set is empty then its support func-
tion is −∞, while if it is unbounded an d points toward a direction of recession is
+∞, making the framework end up into undefined values. Such conditions turn
out to be limiting in our context, first because we find desirable to represent
unbounded sets so to accelerate the convergence to a fixpoint of the abstraction
procedure, but most importantly because when encoding support functions for
long abstract trajectories we might be not aware whether its concretization is
infeasible. Checking this is a crucial element of a counterexample-guided abstrac-
tion refinement routine.

Recent work on the verification of hybrid automata with constant dynamics,
i.e., with flows defined by constraints on the derivative only, provides us with
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a generalization of the classic support function framework which relaxes away
the assumptions of boundedness and nonemptiness and yields precise intersec-
tion [7]. The framework encodes combinations of convex sets of states into LP
(linear programs) which enjoy strong duality with their support function. Simi-
larly, we encode the support function in direction d of any set X into the LP

minimize cTλ
subject to Aλ = Bd,

(14)

over the nonnegative vector of variables λ. The LP is dual to ρX(d), which is
to say that if the LP is infeasible then X is unbounded in direction d, and if
the LP is unbounded then X is the empty set. Moreover, if the LP has bounded
solution so does ρX(d) and the solutions coincide.

The construction is inductive on operations between sets. For the base case,
we recall that from duality of linear programming the support function of a
polyhedron given by a system of inequalities Px ≤ q is dual to the LP over
λ ≥ 0

minimize qTλ
subject to PTλ = d. (15)

Then, inductively, we assume that for the set X ⊆ IRn we are given an LP
with the coefficients AX , BX , and cX , and similarly for the set Y ⊆ IRn. For
the support functions of X ⊕ Y , MX, and X ∩ Y we respectively construct the
following LP over the nonnegative vectors of variables λ, μ, α, and β:

minimize cTXλ + cTY μ
subject to AXλ = BXd and AY μ = BY d,

(16)

minimize cTXλ
subject to AXλ = BXMT d, and (17)

minimize cTXλ + cTY μ
subject to AXλ − BX(α − β) = 0 and

AY μ + BY (α − β) = BY d.
(18)

Such construction follows as a special case of [7], which we extend with the
support function of a map through an interval matrix.

The time abstraction of Sect. 4 additionally requires us to represent the map
of sets of states through interval matrices. Precisely, we are given convex set of
nonnegative values X ⊆ IRn

≥0, the coefficients for the respective LP, an interval
matrix [M,M ] ⊆ IRn×n, and we aim at computing the support function of all
values in X mapped by all matrices in [M,M ]. To this end, we define the LP

minimize cTXλ

subject to AXλ + BX(MTμ − M
T
ν) = 0 and

−μ + ν = d,
(19)

over the vectors λ, μ, and ν of nonnegative variables. This linear program cor-
responds to the the dual of the interval matrix map in Eq. 8.
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5.2 Computing Template Polyhedra

We represent all space abstractions X and Y in our procedure by their support
functions. In particular, whenever set operations are applied, instead of solving
the operation by removing quantifiers, we construct an LP. We delay solving it
until we need to compute a template polyhedron. In that case, we compute the
D-polyhedron of the set X by computing its support function in each of the
directions in D, and constructing the intersection of halfspaces ∩{dTx ≤ ρX(d) |
d ∈ D}.

6 Abstraction Refinement Using Space-Time Interpolants

The reachability analysis of hybrid automata by means of the combination of
interval arithmetic and support functions presented in Sects. 4 and 5 builds an
overapproximation of the system dynamics. It is always sound for safety, but it
may produce spurious counterexamples, due to an inherent lack of precision of
the time abstraction and the polyhedral approximation. The level of precision
is given by two factors, namely the choice of time partitioning and the choice
of template directions, excluding the parameters for approximation of the expo-
nential function, which we assume constant (see Sect. 4.1). In the following, we
present a procedure to extract infeasibility proofs from spurious counterexam-
ples. We produce them in the form of time partitions and bounding polyhedra,
which we call space-time interpolants. Space-time interpolants can then be used
to properly refine time partitioning and template directions.

Consider the bounded path v0, e0, v1, e1, . . . , vk, ek, vk+1 over the control
graph and a sequence of dwell time intervals [t0, t0], [t1, t1], . . . , [tk, tk] emerging
from an abstract trajectory. We aim at extracting a sequence X0,X1, . . . , Xk+1

of (possibly nonconvex) polyhedra and a sequence T0, T1, . . . , Tk of refinements
of the respective dwell times such that Z0 ⊆ X0, jump0 ◦ intflowT0

0 (X0) ⊆ X1,
. . . , jumpk ◦ intflowTk

k (Xk) ⊆ Xk+1, and Xk+1 ∩ Ik+1 is empty. In other words,
we want every Xi+1 to contain all states that can enter mode vi+1 after dwelling
on vi between ti and ti time, and the last to be separated from the invariant
of mode vk+1. Containment is to hold inductively, namely Xi+1 has to contain
what is reachable from Xi, and the time refinements T are to be chosen in such
a way that containment holds in the abstraction. Then, we call the sequence
X0, T0,X1, T1, . . . , Xk, Tk,Xk+1 a sequence of space-time interpolants for the
path and the dwell times above.

We compute a sequence of space-time interpolants by alternating multiple
strategies. First, for the given sequence of dwell times, we attempt to extract a
sequence of halfspace interpolants using linear programming (Sect. 6.1). In case
of failure, we iteratively partition the dwell times in sets of smaller intervals,
separating nonswitching from switching times and until every combination of
intervals along the path admits halfspace interpolants (Sect. 6.2). We accumulate
all halfspaces to form a sequence of unions of convex polyhedra that, together
with the obtained time partitionings, will form a valid sequence of space-time
interpolants. Finally, we refine the abstraction using the time partitionings and



Space-Time Interpolants 479

the outwards pointing directions of all computed halfspaces, in order to eliminate
the spurious counterexample (Sect. 6.3).

6.1 Halfspace Interpolation

Halfspace interpolants are the special case of space-time interpolants where every
polyhedron in the sequence is defined by a single linear inequality [1]. Indeed,
they are the simplest kind of space-time interpolants, and, for the same reason,
the ones that best generalize the reachable states along the path. Unfortunately,
not all paths admit halfspace interpolants, but, if one such sequence exists, then
it can be extrapolated from the solution of a linear program.

Consider a path v0, e0, . . . , vk+1 with the respective dwell times [t0, t0], . . . ,
[tk, tk]. A sequence of halfspace interpolants consists of a sequence of sets
H0, . . . ,Hk+1 among either any halfspace, or the empty set, or the universe, such
that Z0 ⊆ H0, jump0 ◦ intflow[t0,t0]

0 (H0) ⊆ H1, . . . , jumpk ◦ intflow[tk,tk]
k (Hk) ⊆

Hk+1, and Hk+1∩Ik+1 is empty. In contrast with general space-time interpolants,
every time partition consists of a single time interval and therefore the support
function of every post operator jump ◦ intflow[t,t] can be encoded into a single
LP (see Sect. 5). We exploit the encoding for extracting halfspace interpolants,
similarly to a recent interpolation technique for PCD systems [7].

We encode the support function in direction d of the closure of the image of
the post operators along the path, i.e., the set jumpk ◦ intflow[tk,tk]

k ◦ · · · ◦ jump0 ◦
intflow[t0,t0]

0 (Z0), intersected with the invariant Ik+1. We obtain the following
LP over the free vectors α0, . . . , αk+1 and the nonnegative vectors β, δ0, . . . , δk,
γ0, . . . , γk+1, μ0, . . . , μk, and ν0, . . . , νk:

minimize qTZ0
β +

∑k
i=0(q

T
Ii

γi + qTGi
δi + sTi αi+1) + qTIk+1

γk+1

subject to PT
Z0

β = α0,
MT

i μi − M
T
i νi = −αi for each i ∈ [0..k],

−μi + νi + PT
Ii

γi + PT
Gi

δi = RT
i αi+1 for each i ∈ [0..k],

PT
Ik+1

γk+1 = −αk+1 + d,

(20)

where every system of inequalities Px ≤ q corresponds to the constraints of
the respective init, guard, or invariant, every Rix + si is an update equation,
and every interval matrix [M i,M i] = intexp(Ai, ti, ti). In general, one can check
whether the closure is contained in a halfspace aTx ≤ b by setting the direction
to its linear term d = a and checking whether the objective function can equal its
constant term b. In particular, we check for emptiness, which we pose as checking
inclusion in 0x ≤ −1. Therefore, we set d = 0 and the objective function to equal
−1. Upon affirmative answer, from the solution α�

0, α
�
1, . . . , ν

�
k we obtain a valid

sequence of halfspace interpolants whose i-th linear term is given by α�
i and i-th

constant term is given by qTZ0
β� +

∑i−1
j=0(q

T
Ij

γ�
j + qTGj

δ�
j + sTj α�

j+1).
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input : sequence of intervals [u0, u0], . . . , [uj , uj ]

output: set of intervals

1 b ← uj ;

2 while b < uj do
3 a ← b;
4 b ← b + ε;
5 c ← uj ;
6 if [u0, u0], . . . , [uj−1, uj−1], [a, b] does not admit halfspace interpolants then

7 continue;

8 if [u0, u0], . . . , [uj−1, uj−1], [a, c] admits halfspace interpolants then

9 push [a, c] to the output;
10 return;

11 while c − b > ε do

12 if [u0, u0], . . . , [uj−1, uj−1], [a, ε� b+c
2ε �] admits halfspace interpolants then

13 b ← ε� b+c
2ε �;

14 else

15 c ← ε� b+c
2ε �;

16 push [a, b] to the output;

Algorithm 2. Nonswitching time partitioning.

6.2 Time Partitioning

Halfspace interpolation attempts to compute a sequence of enclosures that are
convex for a sequence of sets that are not necessarily convex. Specifically, it
requires each halfspace to enclose the set of solutions of a linear differential
equation, which is nonconvex, by enclosing its convex overapproximation along
a whole time interval. As a result, large time intervals produce large overap-
proximations, on which halfspace interpolation might be impossible. Likewise,
shorter intervals produce tighter overapproximations, which are more likely to
admit halfspace interpolants. In this section, we exploit such observation to
enable interpolation over large time intervals. In particular, we properly parti-
tion the time into smaller subintervals and we treat each of them as a halfspace
interpolation problem. Later, we combine the results to refine the abstraction.

Time partitioning is a delicate task in the whole abstraction refinement loop.
In fact, while template refinement affects linearly the performance of the abstrac-
tor, partitioning time intervals that can switch induces branching in the search,
possibly leading to an exponential blowup. For this reason, we partition time by
narrowing down the switching time, for incremental precision, until no more is
left. In particular, we use Algorithm 2 to compute a set N of maximal intervals
that admit halfspace interpolants, by enlarging or narrowing them of ε amounts.
We embed this procedure in Algorithm 3 which, along the sequence, excludes
the time in N , constructing a set of intervals S that overapproximate the switch-
ing time. In particular, we construct the set with the widest possible intervals
that are disjoint from N . Algorithm 3 succeeds when no more intervals are left,
otherwise we half ε and reapply it to the sequences that are left to process.
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input : sequence of intervals [t0, t0], . . . , [tk, tk]
output: set of sequences of intervals

1 push [t0, t0] to the queue Q;
2 while Q is not empty do
3 pop [u0, u0], . . . , [uj , uj ] from Q;

4 N ← nonswitching time partitioning of [u0, u0], . . . , [uj , uj ];

5 foreach [a, a] ∈ N do
6 push [u0, u0], . . . , [uj−1, uj−1], [a, a] to the output;

7 if j = k then
8 assert [uj , uj ]\ ∪ N = ∅;
9 continue;

10 S ← choose set of intervals that cover [uj , uj ]\ ∪ N ;

11 foreach [b, b] ∈ S do

12 push [u0, u0], . . . , [uj−1, uj−1], [b, b], [tj+1, tj+1] to Q;

Algorithm 3. Dwell time partitioning.

6.3 Abstraction Refinement

The procedures above construct sequences of time intervals [u0, u0], . . . , [uj , uj ]
that are included in [t0, t0], . . . , [tk, tk] and that, with the respective halfspace
interpolants, this constitutes a proof of infeasibility for the counterexample. Yet,
it does not form a sequence of space-time interpolants X0, T0, . . . , Xk+1. We form
each partitioning Ti by splitting [ti, ti] in such a way each element of Ti is either
contained in [ui, ui] or disjoint from it, for all intervals [ui, ui]. Then, we refine
the partitioning of mode vi similarly. Each polyhedron Xi is a union of convex
polyhedra, each of which is the intersection of all halfspaces Hi corresponding
to some sequence [u0, u0], . . . , [ui, ui]. Nevertheless, to refine the abstraction we
do not need to construct Xi, but just to take the outward point directions of all
Hi and add them to the template of vi.

7 Experimental Evaluation

We implemented our method in C++ using GMP and Eigen for multiple pre-
cision linear algebra, Arb for interval arithmetic, and PPL for linear program-
ming [5,23]. In particular, all libraries we are using are meant to provide guaran-
teed solutions, as well as our implementation. We evaluate it on several instances
of a filtered oscillator and a rod reactor, which are both parametric in the number
of variables, and the latter in the number of modes too [15,35]. We record sev-
eral statistics from every execution of our tool: the number #cex of counterex-
amples found during the CEGAR loop, the number #dir of linearly indepen-
dent directions and the average width of the time partitionings extracted from
all space-time interpolants. Moreover, we independently measure three times.
First, the time spent in finding counterexamples, namely the total time taken
by inconclusive abstractions which returned a spurious counterexample. Second,
the refinement time, that is the total time consumed by computing space-time
interpolants. Finally, the verification time, that is the time spend in the last
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abstraction of the CEGAR loop, which terminates with a fixpoint proving the
system safe. We compare the outcome and the performance of our tool against
Ariadne which, to the best of our knowledge, is the only verification tool available
that is numerically sound and time-unbounded [11].

Table 1. Statistics for the benchmark examples (oot when > 1000 s).

The filtered oscillator is hybrid automaton with four modes that smoothens
a signal x into a signal z. It has k + 2 variables and a system of k + 2 affine
ODE, where k is the order of the filter. Table 1 shows the results, for a scal-
ing of k up to the 11-th order. The first observation is that the CEGAR loop
behaves quite similarly on all scalings: number of counterexamples, number of
directions, and time partitionings are almost identical. On the other hand, the
computation times show a growth, particularly in the refinement phase which
dominates over abstraction and verification. This suggests us that our procedure
exploits efficiently the symmetries of the benchmark. In particular, time parti-
tioning seems unaffected. What affects the performance is linear programming,
whose size depends on the number of variables of the system.

The rod reactor consists of a heating reactor tank and k rods each of which
cools the tank for some amount of time, excluding each other. The hybrid
automaton has one variable x for the temperature, k clock variables, one heat-
ing mode, one error mode, and k cooling modes. If the temperature reaches
a critical threshold and no rod can intervene, it goes into an error. For this
benchmark, we start with a simple template, the interval around x, and we dis-
cover further directions. Table 1 highlights two fundamental differences with the
previous benchmark. First, the average width grows with the model size. This
is because the heating mode requires finer time partitioning than the cooling
modes. The cooling modes increase with the number of rods, and so does the
average width over all time partitions. Second, while with the filtered oscillator
the difficulty laid at interpolation, for the rod reactor interpolation is rather easy
as well as finding counterexamples. Most of the time is spent in the verification
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phase, where all fixpoint checks must be concluded, without being interrupted
by a counterexample. This shows the advantage of our lazy approach, which first
processes the counterexamples and finally proves the fixpoint.

Our method outperforms Ariadne on all benchmarks. On the other hand,
tools like Flow* and SpaceEx can be dramatically faster [9]. For instance, they
analyze filtosc 8th ord in resp. 9.1 s and 0.36 s (time horizon of 4 and jump
depth of 10). This is hardly surprising, as our method has primarily been
designed to comply with soundness and time-unboundedness, and pays the price
for that.

8 Related Work

There is a rich literature on CEGAR approaches for hybrid automata, either
abstracting to a purely discrete system [3,10,27,33,34] or to a hybrid automa-
ton with simpler dynamics [22,30]. Both categories exploit the principle that the
verification step is easier to carry out in the abstract domain. The abstraction
entails a considerable loss of precision that can only be counteracted by increas-
ing the number of abstract states. This leads to a state explosion that severely
limits the applicability of such approaches. In contrast, our approach allows us
to increase the precision by adding template directions, which does not increase
the number of abstract states. The only case where we incur additional abstract
states is when partitioning the time domain. This is a direct consequence of the
nonconvexity of flowpipes of affine systems, and therefore seems to be unavoid-
able when using convex sets in abstractions. In [26], the abstraction consists
of removing selected ODE entirely. This reduces the complexity, but does not
achieve any fine-tuning between accuracy and complexity. Template reachability
has been shown to be very effective in both scaling up reachability tasks to more
efficient successor computations [15,31,32] and achieving termination even over
unbounded time horizons [12]. The drawback of templates is the lack of accuracy,
which may lead to an approximation error that accumulates excessively. Efforts
to dynamically refine templates have so far not scaled well for affine dynamics
[14]. A single-step refinement was proposed in [4], but as was illustrated in [7],
the refinement needs to be inductive in order to exclude counterexamples in a
CEGAR scheme.

9 Conclusion

We have developed an abstraction refinement scheme that combines the effi-
ciency and scalability of template reachability with just enough precision to
exclude all detected paths to the bad states. At each iteration of the refine-
ment loop, only one template direction is added per mode and time-step. This
does not increase the number of abstract states. Additional abstract states are
only introduced when required by the nonconvexity of flowpipes of affine sys-
tems, a problem that we consider unavoidable. In contrast, existing CEGAR
approaches for hybrid automata tend to suffer from state explosion, since refining
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the abstraction immediately requires additional abstract states. As our experi-
ments confirm, our approach results in templates over very low complexity and
terminates with an unbounded proof of safety after a relatively small number of
iterations. Further research is required to extend this work to nondeterministic
and nonlinear dynamics.
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15. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

16. Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support
functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
540–554. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-
4 40

17. Halbwachs, N., Proy, Y.-E., Raymond, P.: Verification of linear hybrid systems
by means of convex approximations. In: Le Charlier, B. (ed.) SAS 1994. LNCS,
vol. 864, pp. 223–237. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58485-4 43

18. Henzinger, T., Ho, P.H., Wong-Toi, H.: HyTech: a model checker for hybrid sys-
tems. Softw. Tools Technol. Transf. 1, 110–122 (1997)

19. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid Systems, vol. 170, pp. 265–292. Springer,
Heidelberg (2000). https://doi.org/10.1007/978-3-642-59615-5 13

20. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Algorithmic analysis of nonlinear hybrid
systems. IEEE Trans. Autom. Control 43, 540–554 (1998)

21. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? In: Proceedings of the Twenty-Seventh Annual ACM Sympo-
sium on Theory of Computing, 29 May–1 June 1995, Las Vegas, Nevada, USA, pp.
373–382 (1995)

22. Jha, S.K., Krogh, B.H., Weimer, J.E., Clarke, E.M.: Reachability for linear hybrid
automata using iterative relaxation abstraction. In: Bemporad, A., Bicchi, A., But-
tazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 287–300. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71493-4 24

23. Johansson, F.: Arb: efficient arbitrary-precision midpoint-radius interval arith-
metic. IEEE Trans. Comput. 66, 1281–1292 (2017)

24. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for hybrid
systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–
205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 15

25. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a
matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)
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