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Abstract. We study the reactive synthesis problem for hyperproperties
given as formulas of the temporal logic HyperLTL. Hyperproperties gen-
eralize trace properties, i.e., sets of traces, to sets of sets of traces. Typical
examples are information-flow policies like noninterference, which stipu-
late that no sensitive data must leak into the public domain. Such prop-
erties cannot be expressed in standard linear or branching-time temporal
logics like LTL, CTL, or CTL∗. We show that, while the synthesis prob-
lem is undecidable for full HyperLTL, it remains decidable for the ∃∗,
∃∗∀1, and the linear ∀∗ fragments. Beyond these fragments, the synthesis
problem immediately becomes undecidable. For universal HyperLTL, we
present a semi-decision procedure that constructs implementations and
counterexamples up to a given bound. We report encouraging experimen-
tal results obtained with a prototype implementation on example spec-
ifications with hyperproperties like symmetric responses, secrecy, and
information-flow.

1 Introduction

Hyperproperties [5] generalize trace properties in that they not only check
the correctness of individual computation traces in isolation, but relate mul-
tiple computation traces to each other. HyperLTL [4] is a logic for expressing
temporal hyperproperties, by extending linear-time temporal logic (LTL) with
explicit quantification over traces. HyperLTL has been used to specify a variety
of information-flow and security properties. Examples include classical proper-
ties like non-interference and observational determinism, as well as quantitative
information-flow properties, symmetries in hardware designs, and formally veri-
fied error correcting codes [12]. For example, observational determinism can be
expressed as the HyperLTL formula ∀π∀π′. (Iπ = Iπ′) → (Oπ = Oπ′), stat-
ing that, for every pair of traces, if the observable inputs are the same, then
the observable outputs must be same as well. While the satisfiability [9], model
checking [4,12], and runtime verification [1,10] problem for HyperLTL has been
studied, the reactive synthesis problem of HyperLTL is, so far, still open.
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In reactive synthesis, we automatically construct an implementation that is
guaranteed to satisfy a given specification. A fundamental difference to verifi-
cation is that there is no human programmer involved: in verification, the pro-
grammer would first produce an implementation, which is then verified against
the specification. In synthesis, the implementation is directly constructed from
the specification. Because there is no programmer, it is crucial that the speci-
fication contains all desired properties of the implementation: the synthesized
implementation is guaranteed to satisfy the given specification, but nothing is
guaranteed beyond that. The added expressive power of HyperLTL over LTL is
very attractive for synthesis: with synthesis from hyperproperties, we can guaran-
tee that the implementation does not only accomplish the desired functionality,
but is also free of information leaks, is symmetric, is fault-tolerant with respect
to transmission errors, etc.

More formally, the reactive synthesis problem asks for a strategy, that is a
tree branching on environment inputs whose nodes are labeled by the system
output. Collecting the inputs and outputs along a branch of the tree, we obtain
a trace. If the set of traces collected from the branches of the strategy tree
satisfies the specification, we say that the strategy realizes the specification.
The specification is realizable iff there exists a strategy tree that realizes the
specification. With LTL specifications, we get trees where the trace on each
individual branch satisfies the LTL formula. With HyperLTL, we additionally get
trees where the traces between different branches are in a specified relationship.
This is dramatically more powerful.

Consider, for example, the well-studied distributed version of the reactive
synthesis problem, where the system is split into a set of processes, that each
only see a subset of the inputs. The distributed synthesis problem for LTL can
be expressed as the standard (non-distributed) synthesis problem for HyperLTL,
by adding for each process the requirement that the process output is observa-
tionally deterministic in the process input. HyperLTL synthesis thus subsumes
distributed synthesis. The information-flow requirements realized by HyperLTL
synthesis can, however, be much more sophisticated than the observational deter-
minism needed for distributed synthesis. Consider, for example, the dining cryp-
tographers problem [3]: three cryptographers Ca, Cb, and Cc sit at a table in a
restaurant having dinner and either one of cryptographers or, alternatively, the
NSA must pay for their meal. Is there a protocol where each cryptographer can
find out whether it was a cryptographer who paid or the NSA, but cannot find
out which cryptographer paid the bill?

Synthesis from LTL formulas is known to be decidable in doubly exponential
time. The fact that the distributed synthesis problem is undecidable [21] imme-
diately eliminates the hope for a similar general result for HyperLTL. However,
since LTL is obviously a fragment of HyperLTL, this immediately leads to the
question whether the synthesis problem is still decidable for fragments of Hyper-
LTL that are close to LTL but go beyond LTL: when exactly does the synthesis
problem become undecidable? From a more practical point of view, the interest-
ing question is whether semi-algorithms for distributed synthesis [7,14], which
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have been successful in constructing distributed systems from LTL specifications
despite the undecidability of the general problem, can be extended to HyperLTL?

In this paper, we answer the first question by studying the ∃∗, ∃∗∀1, and the
linear ∀∗ fragment. We show that the synthesis problem for all three fragments
is decidable, and the problem becomes undecidable as soon as we go beyond
these fragments. In particular, the synthesis problem for the full ∀∗ fragment,
which includes observational determinism, is undecidable.

We answer the second question by studying the bounded version of the synthe-
sis problem for the ∀∗ fragment. In order to detect realizability, we ask whether,
for a universal HyperLTL formula ϕ and a given bound n on the number of
states, there exists a representation of the strategy tree as a finite-state machine
with no more than n states that satisfies ϕ. To detect unrealizability, we check
whether there exists a counterexample to realizability of bounded size. We show
that both checks can be effectively reduced to SMT solving.

Related Work. HyperLTL [4] is a successor of the temporal logic SecLTL [6]
used to characterize temporal information-flow. The model-checking [4,12], sat-
isfiability [9], monitoring problem [1,10], and the first-order extension [17] of
HyperLTL has been studied before. To the best of the authors knowledge, this
is the first work that considers the synthesis problem for temporal hyperproper-
ties. We base our algorithms on well-known synthesis algorithms such as bounded
synthesis [14] that itself is an instance of Safraless synthesis [18] for ω-regular
languages. Further techniques that we adapt for hyperproperties are lazy syn-
thesis [11] and the bounded unrealizability method [15,16].

Hyperproperties [5] can be seen as a unifying framework for many differ-
ent properties of interest in multiple distinct areas of research. Information-flow
properties in security and privacy research are hyperproperties [4]. HyperLTL
subsumes logics that reason over knowledge [4]. Information-flow in distributed
systems is another example of hyperproperties, and the HyperLTL realizabil-
ity problem subsumes both the distributed synthesis problem [13,21] as well as
synthesis of fault-tolerant systems [16]. In circuit verification, the semantic inde-
pendence of circuit output signals on a certain set of inputs, enabling a range of
potential optimizations, is a hyperproperty.

2 Preliminaries

HyperLTL. HyperLTL [4] is a temporal logic for specifying hyperproperties.
It extends LTL by quantification over trace variables π and a method to link
atomic propositions to specific traces. The set of trace variables is V. Formulas
in HyperLTL are given by the grammar

ϕ ::= ∀π. ϕ | ∃π. ϕ | ψ , and
ψ ::= aπ | ¬ψ | ψ ∨ ψ | ψ | ψ U ψ ,

where a ∈ AP and π ∈ V. The alphabet of a HyperLTL formula is 2AP . We allow
the standard boolean connectives ∧, →, ↔ as well as the derived LTL operators
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release ϕ R ψ ≡ ¬(¬ϕ U ¬ψ), eventually ϕ ≡ true U ϕ, globally ϕ ≡ ¬ ¬ϕ,
and weak until ϕ W ψ ≡ ϕ ∨ (ϕ U ψ).

The semantics is given by the satisfaction relation �T over a set of traces
T ⊆ (2AP)ω. We define an assignment Π : V → (2AP)ω that maps trace variables
to traces. Π[i,∞] is the trace assignment that is equal to Π(π)[i,∞] for all π
and denotes the assignment where the first i items are removed from each trace.

Π �T aπ if a ∈ Π(π)[0]
Π �T ¬ϕ if Π �T ϕ
Π �T ϕ ∨ ψ if Π �T ϕ or Π �T ψ
Π �T ϕ if Π[1,∞] �T ϕ
Π �T ϕ U ψ if ∃i ≥ 0.Π[i,∞] �T ψ ∧ ∀0 ≤ j < i.Π[j,∞] �T ϕ
Π �T ∃π. ϕ if there is some t ∈ T such that Π[π �→ t] �T ϕ
Π �T ∀π. ϕ if for all t ∈ T holds that Π[π �→ t] �T ϕ

We write T � ϕ for {} �T ϕ where {} denotes the empty assignment. Two
HyperLTL formulas ϕ and ψ are equivalent, written ϕ ≡ ψ if they have the same
models.

(In)dependence is a common hyperproperty for which we define the following
syntactic sugar. Given two disjoint subsets of atomic propositions C ⊆ AP and
A ⊆ AP, we define independence as the following HyperLTL formula

DA �→C := ∀π∀π′.

( ∨
a∈A

(aπ � aπ′)

)
R

( ∧
c∈C

(cπ ↔ cπ′)

)
. (1)

This guarantees that every proposition c ∈ C solely depends on propositions A.

Strategies. A strategy f : (2I)∗ → 2O maps sequences of input valuations 2I

to an output valuation 2O. The behavior of a strategy f : (2I)∗ → 2O is char-
acterized by an infinite tree that branches by the valuations of I and whose
nodes w ∈ (2I)∗ are labeled with the strategic choice f(w). For an infinite
word w = w0w1w2 · · · ∈ (2I)ω, the corresponding labeled path is defined as
(f(ε)∪w0)(f(w0)∪w1)(f(w0w1)∪w2) · · · ∈ (2I∪O)ω. We lift the set containment
operator ∈ to the containment of a labeled path w = w0w1w2 · · · ∈ (2I∪O)ω in a
strategy tree induced by f : (2I)∗ → 2O, i.e., w ∈ f if, and only if, f(ε) = w0 ∩O
and f((w0 ∩ I) · · · (wi ∩ I)) = wi+1 ∩O for all i ≥ 0. We define the satisfaction of
a HyperLTL formula ϕ (over propositions I ∪ O) on strategy f , written f � ϕ,
as {w | w ∈ f} � ϕ. Thus, a strategy f is a model of ϕ if the set of labeled paths
of f is a model of ϕ.

3 HyperLTL Synthesis

In this section, we identify fragments of HyperLTL for which the realizability
problem is decidable. Our findings are summarized in Table 1.

Definition 1 (HyperLTL Realizability). A HyperLTL formula ϕ over
atomic propositions AP = I ∪̇O is realizable if there is a strategy f : (2I)∗ → 2O

that satisfies ϕ.
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Table 1. Summary of decidability results.

∃∗ ∃∗∀1 ∃∗∀>1 ∀∗ ∀∗∃∗ linear ∀∗

PSpace-complete 3ExpTime undecidable decidable

We base our investigation on the structure of the quantifier prefix of the Hyper-
LTL formulas. We call a HyperLTL formula ϕ (quantifier) alternation-free if the
quantifier prefix consists solely of either universal or existential quantifiers. We
denote the corresponding fragments as the (universal) ∀∗ and the (existential)
∃∗ fragment, respectively. A HyperLTL formula is in the ∃∗∀∗ fragment, if it
starts with arbitrarily many existential quantifiers, followed by arbitrarily many
universal quantifiers. Respectively for the ∀∗∃∗ fragment. For a given natural
number n, we refer to a bounded number of quantifiers with ∀n, respectively ∃n.
The ∀1 realizability problem is equivalent to the LTL realizability problem.

∃∗ Fragment. We show that the realizability problem for existential HyperLTL
is PSpace-complete. We reduce the realizability problem to the satisfiability
problem for bounded one-alternating ∃∗∀2HyperLTL [9], i.e., finding a trace set
T such that T � ϕ.

Lemma 1. An existential HyperLTL formula ϕ is realizable if, and only if, ψ :=
ϕ ∧ DI �→O is satisfiable.

Proof. Assume f : (2I)∗ → 2O realizes ϕ, that is f � ϕ. Let T = {w | w ∈ f} be
the set of traces generated by f . It holds that T � ϕ and T � DI �→O. Therefore,
ψ is satisfiable. Assume ψ is satisfiable. Let S be a set of traces that satisfies ψ.
We construct a strategy f : (2I)∗ → 2O as

f(σ) =

{
w|σ| ∩ O if σ is a prefix of some w|I with w ∈ S , and
∅ otherwise .

where w|I denotes the trace restricted to I, formally wi ∩ I for all i ≥ 0. Note
that if there are multiple candidates w ∈ S, then w|σ| ∩ O is the same for all
of them because of the required non-determinism DI �→O. By construction, all
traces in S are contained in f and with S � ϕ it holds that f � ϕ as ϕ is an
existential formula.

Theorem 1. Realizability of existential HyperLTL specifications is decidable.

Proof. The formula ψ from Lemma 1 is in the ∃∗∀2 fragment, for which satisfi-
ability is decidable [9].

Corollary 1. Realizability of ∃∗HyperLTL specifications is PSpace-complete.

Proof. Given an existential HyperLTL formula, we gave a linear reduction to
the satisfiability of the ∃∗∀2 fragment in Lemma 1. The satisfiability problem for
a bounded number of universal quantifiers is in PSpace [9]. Hardness follows
from LTL satisfiability, which is equivalent to the ∃1 fragment.
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env

p1 p2

a b

c d

(a) An architecture of two processes that
specify process p1 to produce c from a and
p2 to produce d from b.

env

p1 p2

a a, b

c d

(b) The same architecture as on the left,
where only the inputs of process p2 are
changed to a and b.

Fig. 1. Distributed architectures

∀∗ Fragment. In the following, we will use the distributed synthesis problem,
i.e., the problem whether there is an implementation of processes in a distributed
architecture that satisfies an LTL formula. Formally, a distributed architecture
A is a tuple 〈P, penv, I,O〉 where P is a finite set of processes with distinguished
environment process penv ∈ P . The functions I : P → 2AP and O : P → 2AP

define the inputs and outputs of processes. While processes may share the same
inputs (in case of broadcasting), the outputs of processes must be pairwise dis-
joint, i.e., for all p �= p′ ∈ P it holds that O(p) ∩ O(p′) = ∅. W.l.o.g. we assume
that I(penv) = ∅. The distributed synthesis problem for architectures without
information forks [13] is decidable. Example architectures are depicted in Fig. 1.
The architecture in Fig. 1a contains an information fork while the architecture
in Fig. 1b does not. Furthermore, the processes in Fig. 1b can be ordered linearly
according to the subset relation on the inputs.

Theorem 2. The synthesis problem for universal HyperLTL is undecidable.

Proof. In the ∀∗ fragment (and thus in the ∃∗∀∗ fragment), we can encode a
distributed architecture [13], for which LTL synthesis is undecidable. In particu-
lar, we can encode the architecture shown in Fig. 1a. This architecture basically
specifies c to depend only on a and analogously d on b. That can be encoded
by D{a}�→{c} and D{b}�→{d}. The LTL synthesis problem for this architecture is
already shown to be undecidable [13], i.e., given an LTL formula over I = {a, b}
and O = {c, d}, we cannot automatically construct processes p1 and p2 that
realize the formula.

Linear ∀∗ Fragment. For characterizing the linear fragment of HyperLTL, we
will present a transformation from a formula with arbitrarily many universal
quantifiers to a formula with only one quantifier. This transformation collapses
the universal quantifier into a single one and renames the path variables accord-
ingly. For example, ∀π1∀π2. aπ1 ∨ aπ2 is transformed into an equivalent ∀1

formula ∀π. aπ ∨ aπ. However, this transformation does not always produce
equivalent formulas as ∀π1∀π2. (aπ1 ↔ aπ2) is not equivalent to its collapsed
form ∀π. (aπ ↔ aπ). Let ϕ be ∀π1 · · · ∀πn. ψ. We define the collapsed formula
of ϕ as collapse(ϕ) := ∀π. ψ[π1 �→ π][π2 �→ π] . . . [πn �→ π] where ψ[πi �→ π]
replaces all occurrences of πi in ψ with π. Although the collapsed term is not
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always equivalent to the original formula, we can use it as an indicator whether
it is possible at all to express a universal formula with only one quantifier as
stated in the following lemma.

Lemma 2. Either ϕ ≡ collapse(ϕ) or ϕ has no equivalent ∀1 formula.

Proof. Suppose there is some ψ ∈ ∀1 with ψ ≡ ϕ. We show that ψ ≡ collapse(ϕ).
Let T be an arbitrary set of traces. Let T = {{w} | w ∈ T}. Because ψ ∈ ∀1,
T � ψ is equivalent to ∀T ′ ∈ T . T ′ � ψ, which is by assumption equivalent to
∀T ′ ∈ T . T ′ � ϕ. Now, ϕ operates on singleton trace sets only. This means that
all quantified paths have to be the same, which yields that we can use the same
path variable for all of them. So ∀T ′ ∈ T . T ′ � ϕ ↔ T ′ � collapse(ϕ) that is
again equivalent to T � collapse(ϕ). Because ψ ≡ collapse(ϕ) and ψ ≡ ϕ it holds
that ϕ ≡ collapse(ϕ).

The LTL realizability problem for distributed architectures without information
forks [13] are decidable. These architectures are in some way linear, i.e., the
processes can be ordered such that lower processes always have a subset of
the information of upper processes. The linear fragment of universal HyperLTL
addresses exactly these architectures.

In the following, we sketch the characterization of the linear fragment of
HyperLTL. Given a formula ϕ, we seek for variable dependencies of the form
DJ �→{o} with J ⊆ I and o ∈ O in the formula. If the part of the formula ϕ
that relates multiple paths consists only of such constraints DJ �→{o} with the
rest being an LTL property, we can interpret ϕ as a description of a distributed
architecture. If furthermore, the DJi �→{oi} constraints can be ordered such that
Ji ⊆ Ji+1 for all i, the architecture is linear. There are three steps to check
whether ϕ is in the linear fragment:

1. First, we have to add input-determinism to the formula ϕdet := ϕ ∧ DI �→O.
This preserves realizability as strategies are input-deterministic.

2. Find for each output variable oi ∈ O possible sets of variables Ji, oi depends
on, such that Ji ⊆ Ji+1. To check whether the choice of J ’s is correct, we test
if collapse(ϕ) ∧

∧
oi∈O DJi �→{oi} is equivalent to ϕdet . This equivalence check

is decidable as both formulas are in the universal fragment [9].
3. Finally, we construct the corresponding distributed realizability problem

with linear architecture. Formally, we define the distributed architecture
A = 〈P, penv, I,O〉 with P = {pi | oi ∈ O}∪{penv}, I(pi) = Ji, O(pi) = {oi},
and O(penv) = I. The LTL specification for the distributed synthesis problem
is collapse(ϕ).

Definition 2 (linear fragment of ∀∗). A formula ϕ is in the linear fragment
of ∀∗ iff for all oi ∈ O there is a Ji ⊆ I such that ϕ ∧ DI �→O ≡ collapse(ϕ) ∧∧

oi∈O DJi �→{oi} and Ji ⊆ Ji+1 for all i.

Note, that each ∀1 formula ϕ (or ϕ is collapsible to a ∀1 formula) is in the linear
fragment because we can set all Ji = I and additionally collapse(ϕ) = ϕ holds.
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As an example of a formula in the linear fragment of ∀∗, consider ϕ =
∀π, π′.D{a}�→{c} ∧ (cπ ↔ dπ)∧ (bπ ↔ eπ) with I = {a, b} and O = {c, d, e}.
The corresponding formula asserting input-deterministism is ϕdet = ϕ ∧ DI �→O.
One possible choice of J ’s is {a, b} for c, {a} for d and {a, b} for e. Note, that
one can use either {a, b} or {a} for c as D{a}�→{d} ∧ (cπ ↔ dπ) implies D{a}�→{c}.
However, the apparent alternative {b} for e would yield an undecidable archi-
tecture. It holds that ϕdet and collapse(ϕ)∧D{a,b}�→{c} ∧D{a}�→{d} ∧D{a,b}�→{e}
are equivalent and, thus, that ϕ is in the linear fragment.

Theorem 3. The linear fragment of universal HyperLTL is decidable.

Proof. It holds that ϕ ≡ collapse(ϕ) ∧
∧

oi∈O DJi �→{oi} for some Ji’s. The LTL
distributed realizability problem for collapse(ϕ) in the constructed architecture
A is equivalent to the HyperLTL realizability of ϕ as the architecture A rep-
resents exactly the input-determinism represented by formula

∧
oi∈O DJi �→{oi}.

The architecture is linear and, thus, the realizability problem is decidable.

∃∗∀1 Fragment. In this fragment, we consider arbitrary many existential path
quantifier followed by a single universal path quantifier. This fragment turns
out to be still decidable. We solve the realizability problem for this fragment by
reducing it to a decidable fragment of the distributed realizability problem.

Theorem 4. Realizability of ∃∗∀1HyperLTL specifications is decidable.

Proof. Let ϕ be ∃π1 . . . ∃πn∀π′. ψ. We reduce the realizability problem of ϕ to the
distributed realizability problem for LTL. For every existential path quantifier
πi, we introduce a copy of the atomic propositions, written aπi

for a ∈ AP.
Intuitively, those select the paths in the strategy tree where the existential path
quantifiers are evaluated. Thus, those propositions (1) have to encode an actual
path in the strategy tree and (2) may not depend on the branching of the strategy
tree. To ensure (1), we add the LTL constraint (Iπi

= Iπ′) → (Oπi
= Oπ′)

that asserts that if the inputs correspond to some path in the strategy tree,
the outputs on those paths have to be the same. Property (2) is guaranteed
by the distributed architecture, the processes generating the propositions aπi

do not depend on the environment output. The resulting architecture Aϕ is
〈{penv, p, p′}, penv, {p �→ ∅, p′ �→ Iπ′}, {penv �→ Iπ′ , p �→

⋃
1≤i≤n Oπi

∪ Iπi
, p′ �→

Oπ′}〉. It is easy to verify that Aϕ does not contain an information fork, thus the
realizability problem is decidable. The LTL specification θ is ψ∧

∧
1≤i≤n (Iπi

=
Iπ′) → (Oπi

= Oπ′). The implementation of process p′ (if it exists) is a model
for the HyperLTL formula (process p producing witness for the ∃ quantifier).
Conversely, a model for ϕ can be used as an implementation of p′. Thus, the
distributed synthesis problem 〈Aϕ, θ〉 has a solution if, and only if, ϕ is realizable.

∀∗∃∗ Fragment. The last fragment to consider are formulas in the ∀∗∃∗ frag-
ment. Whereas the ∃∗∀1 fragment remains decidable, the realizability problem
of ∀∗∃∗ turns out to be undecidable even when restricted to only one quantifier
of both sorts (∀1∃1).
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Theorem 5. Realizability of ∀∗∃∗HyperLTL is undecidable.

Proof. The proof is done via reduction from Post’s Correspondence Problem
(PCP) [22]. The basic idea follows the proof in [9].

4 Bounded Realizability

We propose an algorithm to synthesize strategies from specifications given in
universal HyperLTL by searching for finite generators of realizing strategies. We
encode this search as a satisfiability problem for a decidable constraint system.

Transition Systems. A transition system S is a tuple 〈S, s0, τ, l〉 where S is a
finite set of states, s0 ∈ S is the designated initial state, τ : S × 2I → S is the
transition function, and l : S → 2O is the state-labeling or output function. We
generalize the transition function to sequences over 2I by defining τ∗ : (2I)∗ →
S recursively as τ∗(ε) = s0 and τ∗(w0 · · · wn−1wn) = τ(τ∗(w0 · · · wn−1), wn)
for w0 · · · wn−1wn ∈ (2I)+. A transition system S generates the strategy f if
f(w) = l(τ∗(w)) for every w ∈ (2I)∗. A strategy f is called finite-state if there
exists a transition system that generates f .

Overview. We first sketch the synthesis procedure and then proceed with a
description of the intermediate steps. Let ϕ be a universal HyperLTL formula
∀π1 · · · ∀πn. ψ. We build the automaton Aψ whose language is the set of tuples
of traces that satisfy ψ. We then define the acceptance of a transition system S
on Aψ by means of the self-composition of S. Lastly, we encode the existence of
a transition system accepted by Aψ as an SMT constraint system.

Example 1. Throughout this section, we will use the following (simplified) run-
ning example. Assume we want to synthesize a system that keeps decisions secret
until it is allowed to publish. Thus, our system has three input signals decision,
indicating whether a decision was made, the secret value, and a signal to publish
results. Furthermore, our system has two outputs, a high output internal that
stores the value of the last decision, and a low output result that indicates the
result. No information about decisions should be inferred until publication. To
specify the functionality, we propose the LTL specification

(decision → (value ↔ internal))
∧ (¬decision → (internal ↔ internal))
∧ (publish → (internal ↔ result)) . (2)

The solution produced by the LTL synthesis tool BoSy [8], shown in Fig. 2, clearly
violates our intention that results should be secret until publish: Whenever a
decision is made, the output result changes as well.

We formalize the property that no information about the decision can be
inferred from result until publication as the HyperLTL formula

∀π∀π′. (publishπ ∨ publishπ′) R (resultπ ↔ resultπ′) . (3)
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s0
{res, int}

s1
∅

¬dec ∨ val

dec ∧ ¬val

dec ∧ val

¬dec ∨ ¬val

(a)

s0
{res}

s1
{res, int}

s2
∅

¬pub ∧ (¬dec ∨ ¬val)

dec ∧ val

dec ∧ ¬val ∧ ¬pub

¬dec ∨ val

pub ∧ (¬dec ∨ ¬val)
¬pub ∧ ¬val

pub ∧ ¬val
∨ ¬dec ∧ val

dec ∧ pub ∧ ¬val
dec ∧ val

(b)

Fig. 2. Synthesized solutions for Example 1.

It asserts that for every pair of traces, the result signals have to be the same until
(if ever) there is a publish signal on either trace. A solution satisfying both, the
functional specification and the hyperproperty, is shown in Fig. 2. The system
switches states whenever there is a decision with a different value than before
and only exposes the decision in case there is a prior publish command.

We proceed with introducing the necessary preliminaries for our algorithm.

Automata. A universal co-Büchi automaton A over a finite alphabet Σ is a tuple
〈Q, q0, δ, F 〉, where Q is a finite set of states, q0 ∈ Q is the designated initial state,
δ : Q×2Σ ×Q is the transition relation, and F ⊆ Q is the set of rejecting states.
Given an infinite word σ = σ0σ1σ2 · · · ∈ (2Σ)ω, a run of σ on A is an infinite
path q0q1q2 · · · ∈ Qω where for all i ≥ 0 it holds that (qi, σi, qi+1) ∈ δ. A run
is accepting, if it contains only finitely many rejecting states. A accepts a word
σ, if all runs of σ on A are accepting. The language of A, written L(A), is
the set {σ ∈ (2Σ)ω | A accepts σ}. We represent automata as directed graphs
with vertex set Q and a symbolic representation of the transition relation δ
as propositional boolean formulas B(Σ). The rejecting states in F are marked
by double lines. The automata for the LTL and HyperLTL specifications from
Example 1 are depicted in Fig. 3.

Run Graph. The run graph of a transition system S = 〈S, s0, τ, l〉 on a universal
co-Büchi automaton A = 〈Q, q0, δ, F 〉 is a directed graph 〈V,E〉 where V = S×Q
is the set of vertices and E ⊆ V × V is the edge relation with

((s, q), (s′, q′)) ∈ E iff

∃i ∈ 2I .∃o ∈ 2O. (τ(s, i) = s′) ∧ (l(s) = o) ∧ (q, i ∪ o, q′) ∈ δ .

A run graph is accepting if every path (starting at the initial vertex (s0, q0)) has
only finitely many visits of rejecting states. To show acceptance, we annotate
every reachable node in the run graph with a natural number m, such that any
path, starting in the initial state, contains less than m visits of rejecting states.
Such an annotation exists if, and only if, the run graph is accepting [14].
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q0

q1 q2

q3

qe

�

¬dec ∧ ¬int
∨ dec ∧ ¬val

int

¬dec ∧ internal
∨ dec ∧ val

¬int

pub

(int � res)

�

(a) Automaton accepting language defined
by LTL formula in (2)

q0 qe

¬pubπ ∧ ¬pubπ′
∧ resπ resπ′

resπ � resπ′

�
(b) Automaton accepting language defined
by HyperLTL formula in (3)

Fig. 3. Universal co-Büchi automata recognizing the languages from Example 1.

Self-composition. The model checking of universal HyperLTL formulas [12] is
based on self-composition. Let prj i be the projection to the i-th element of a
tuple. Let zip denote the usual function that maps a n-tuple of sequences to a sin-
gle sequence of n-tuples, for example, zip([1, 2, 3], [4, 5, 6]) = [(1, 4), (2, 5), (3, 6)],
and let unzip denote its inverse. The transition system Sn is the n-fold self-
composition of S = 〈S, s0, τ, l〉, if Sn = 〈Sn, sn

0 , τ ′, ln〉 and for all s, s′ ∈ Sn,
α ∈ (2I)n, and β ∈ (2O)n we have that τ ′(s, α) = s′ and ln(s) = β iff for all
1 ≤ i ≤ n, it hold that τ(prj i(s), prj i(α)) = prj i(s′) and l(prj i(s)) = prj i(β).
If T is the set of traces generated by S, then {zip(t1, . . . , tn) | t1, . . . , tn ∈ T} is
the set of traces generated by Sn.

We construct the universal co-Büchi automaton Aψ such that the language
of Aψ is the set of words w such that unzip(w) = Π and Π �∅ ψ, i.e., the tuple of
traces that satisfy ψ. We get this automaton by dualizing the non-deterministic
Büchi automaton for ¬ψ [4], i.e., changing the branching from non-deterministic
to universal and the acceptance condition from Büchi to co-Büchi. Hence, S
satisfies a universal HyperLTL formula ϕ = ∀π1 . . . ∀πk. ψ if the traces generated
by self-composition Sn are a subset of L(Aψ).

Lemma 3. A transition system S satisfies the universal HyperLTL formula ϕ =
∀π1 · · · ∀πn. ψ, if the run graph of Sn and Aψ is accepting.

Synthesis. Let S = 〈S, s0, τ, l〉 and Aψ = 〈Q, q0, δ, F 〉. We encode the synthesis
problem as an SMT constraint system. Therefore, we use uninterpreted function
symbols to encode the transition system and the annotation. For the transition
system, those functions are the transition function τ : S × 2I → S and the
labeling function l : S → 2O. The annotation is split into two parts, a reachability
constraint λB : Sn × Q → B indicating whether a state in the run graph is
reachable and a counter λ# : Sn × Q → N that maps every reachable vertex
to the maximal number of rejecting states visited by any path starting in the
initial vertex. The resulting constraint asserts that there is a transition system
with accepting run graph.
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∀s, s′ ∈ Sn. ∀q, q′ ∈ Q. ∀i ∈ (2I)n.(
λB(s, q) ∧ τ ′(s, i) = s′ ∧ (q, i ∪ l(s), q′) ∈ δ

)
→ λB(s′, q′) ∧ λ#(s′, q′) � λ#(s, q)

where � is > if q′ ∈ F and ≥ otherwise.

Theorem 6. The constraint system is satisfiable with bound b if, and only if,
there is a transition system S of size b that realizes the HyperLTL formula.

We extract a realizing implementation by asking the satisfiability solver to gen-
erate a model for the uninterpreted functions that encode the transition system.

5 Bounded Unrealizability

So far, we focused on the positive case, providing an algorithm for finding small
solutions, if they exist. In this section, we shift to the case of detecting if a
universal HyperLTL formula is unrealizable. We adapt the definition of coun-
terexamples to realizability for LTL [15] to HyperLTL in the following. Let ϕ
be a universal HyperLTL formula ∀π1 · · · ∀πn. ψ over inputs I and outputs O,
a counterexample to realizability is a set of input traces P ⊆ (2I)ω such that
for every strategy f : (2I)∗ → 2O the labeled traces Pf ⊆ (2I∪O)ω satisfy
¬ϕ = ∃π1 · · · ∃πn.¬ψ.

Proposition 1. A universal HyperLTL formula ϕ = ∀π1 · · · ∀πn. ψ is unrealiz-
able if there is a counterexample P to realizability.

Proof. For contradiction, we assume ϕ is realizable by a strategy f . As P is
a counterexample to realizability, we know Pf � ∃π1 · · · ∃πn.¬ψ. This means
that there exists an assignment ΠP ∈ V → Pf with ΠP �Pf ¬ψ. Equivalently
ΠP �Pf ψ. Therefore, not all assignments Π ∈ V → Pf satisfy Π �Pf ψ. Which
implies Pf

� ∀π1 · · · ∀πn. ψ = ϕ. Since ϕ is universal, we can defer f � ϕ, which
concludes the contradiction. Thus, ϕ is unrealizable.

Despite being independent of strategy trees, there are in many cases finite
representations of P. Consider, for example, the unrealizable specification ϕ1 =
∀π∀π′. (iπ ↔ iπ′), where the set P1 = {∅ω, {i}ω} is a counterexample to realiz-
ability. As a second example, consider ϕ2 = ∀π∀π′. (oπ ↔ oπ′) ∧ (iπ ↔ oπ)
with conflicting requirements on o. P1 is a counterexample to realizability for
ϕ2 as well: By choosing a different valuation of i in the first step, the system is
forced to either react with different valuations of o (violating first conjunct), or
not correctly repeating the initial value of i (violating second conjunct).

There are, however, already linear specifications where the set of counterex-
ample paths is not finite and depends on the strategy tree [16]. For example, the
specification ∀π. (iπ ↔ oπ) is unrealizable as the system cannot predict future
values of the environment. There is no finite set of traces witnessing this: For
every finite set of traces, there is a strategy tree such that (iπ ↔ oπ) holds on
every such trace. On the other hand, there is a simple counterexample strategy,
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that is a strategy that observes output sequences and produces inputs. In this
example, the counterexample strategy inverts the outputs given by the system,
thus it is guaranteed that (i � o) for any system strategy.

We combine those two approaches, selecting counterexample paths and using
strategic behavior. A k-counterexample strategy for HyperLTL observes k output
sequences and produces k inputs, where k is a new parameter (k ≥ n). The
counterexample strategy is winning if (1) either the traces given by the system
player do not correspond to a strategy, or (2) the body of the HyperLTL is
violated for any n subset of the k traces. Regarding property (1), consider the
two traces where the system player produces different outputs initially. Clearly,
those two traces cannot be generated by any system strategy since the initial
state (root labeling) is fixed.

The search for a k-counterexample strategy can be reduced to LTL synthesis
using k-tuple input propositions Ok, k-tuple output propositions Ik, and the
specification

¬DIk �→Ok ∨
∨

P⊆{1,...,k} with |P |=n

¬ψ[P ] ,

where ψ[P ] denotes the replacement of aπi
by the Pith position of the combined

input/output k-tuple.

Theorem 7. A universal HyperLTL formula ϕ = ∀π1 · · · ∀πn. ψ is unrealizable
if there is a k-counterexample strategy for some k ≥ n.

6 Evaluation

We implemented a prototype synthesis tool, called BoSyHyper1, for universal
HyperLTL based on the bounded synthesis algorithm described in Sect. 4. Fur-
thermore, we implemented the search for counterexamples proposed in Sect. 5.
Thus, BoSyHyper is able to characterize realizability and unrealizability of uni-
versal HyperLTL formulas.

We base our implementation on the LTL synthesis tool BoSy [8]. For effi-
ciency, we split the specifications into two parts, a part containing the linear
(LTL) specification, and a part containing the hyperproperty given as HyperLTL
formula. Consequently, we build two constraint systems, one using the standard
bounded synthesis approach [14] and one using the approach described in Sect. 4.
Before solving, those constraints are combined into a single SMT query. This
results in a much more concise constraint system compared to the one where
the complete specification is interpreted as a HyperLTL formula. For solving the
SMT queries, we use the Z3 solver [20]. We continue by describing the bench-
marks used in our experiments.

1 BoSyHyper is available at https://www.react.uni-saarland.de/tools/bosy/.

https://www.react.uni-saarland.de/tools/bosy/


302 B. Finkbeiner et al.

g1 g2

�

�

(a) Non-symmetric solu-
tion

�/r1πr2πr1π′r2π′

(b) Counterexample to
symmetry

g1 g2

tie ¬tie
�

�

(c) Symmetry breaking
solution

Fig. 4. Synthesized solution of the mutual exclusion protocols.

Symmetric Mutual Exclusion. Our first example demonstrates the ability to
specify symmetry in HyperLTL for a simple mutual exclusion protocol. Let
r1 and r2 be input signals representing mutual exclusive requests to a criti-
cal section and g1/g2 the respective grant to enter the section. Every request
should be answered eventually (ri → gi) for i ∈ {1, 2}, but not at the
same time ¬(g1 ∧ g2). The minimal LTL solution is depicted in Fig. 4a.
It is well known that no mutex protocol can ensure perfect symmetry [19],
thus when adding the symmetry constraint specified by the HyperLTL formula
∀π∀π′. (r1π � r2π′) R (g1π ↔ g2π′) the formula becomes unrealizable. Our tool
produces the counterexample shown in Fig. 4b. By adding another input signal
tie that breaks the symmetry in case of simultaneous requests and modifying
the symmetry constraint ∀π∀π′. ((r1π � r2π′) ∨ (tieπ � ¬tieπ′))R (g1π ↔ g2π′)
we obtain the solution depicted in Fig. 4c. We further evaluated the same prop-
erties on a version that forbids spurious grants, which are reported in Table 2
with prefix full.

Distributed and Fault-Tolerant Systems. In Sect. 3 we presented a reduction of
arbitrary distributed architectures to HyperLTL. As an example for our evalu-
ation, consider a setting with two processes, one for encoding input signals and
one for decoding. Both processes can be synthesized simultaneously using a sin-
gle HyperLTL specification. The (linear) correctness condition states that the
decoded signal is always equal to the inputs given to the encoder. Furthermore,
the encoder and decoder should solely depend on the inputs and the encoded
signal, respectively. Additionally, we can specify desired properties about the
encoding like fault-tolerance [16] or Hamming distance of code words [12]. The
results are reported in Table 2 where i-j-x means i input bits, j encoded bits,
and x represents the property. The property is either tolerance against a single
Byzantine signal failure or a guaranteed Hamming distance of code words.

CAP Theorem. The CAP Theorem due to Brewer [2] states that it is impossi-
ble to design a distributed system that provides Consistency, Availability, and
Partition tolerance (CAP) simultaneously. This example has been considered
before [16] to evaluate a technique that could automatically detect unrealizabil-
ity. However, when we drop either Consistency, Availability, or Partition toler-
ance, the corresponding instances (AP, CP, and CA) become realizable, which
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the previous work was not able to prove. We show that our implementation
can show both, unrealizability of CAP and realizability of AP, CP, and CA. In
contrast to the previous encoding [16] we are not limited to acyclic architectures.

Long-term Information-flow. Previous work on model-checking hyperproper-
ties [12] found that an implementation for the commonly used I2C bus protocol
could remember input values ad infinitum. For example, it could not be veri-
fied that information given to the implementation eventually leaves it, i.e., is
forgotten. This is especially unfortunate in high security contexts. We consider
a simple bus protocol which is inspired by the widely used I2C protocol. Our
example protocol has the inputs send for initiating a transmission, in for the
value that should be transferred, and an acknowledgment bit indicating success-
ful transmission. The bus master waits in an idle state until a send is received.
Afterwards, it transmits a header sequence, followed by the value of in, waits for
an acknowledgement and then indicates success or failure to the sender before
returning to the idle state. We specify the property that the input has no influ-
ence on the data that is send, which is obviously violated (instance NI1). As a
second property, we check that this information leak cannot happen arbitrary
long (NI2) for which there is a realizing implementation.

Dining Cryptographers. Recap the dining cryptographers problem introduced
earlier. This benchmark is interesting as it contains two types of hyperproper-
ties. First, there is information-flow between the three cryptographers, where
some secrets (sab, sac, sbc) are shared between pairs of cryptographers. In the
formalization, we have 4 entities: three processes describing the 3 cryptogra-
phers (outi) and one process computing the result (pg), i.e., whether the group
has paid or not, from outi. Second, the final result should only disclose whether
one of the cryptographers has paid or the NSA. This can be formalized as a
indistinguishability property between different executions. For example, when
we compare the two traces π and π′ where Ca has paid on π and Cb has paid
on π′. Then the outputs of both have to be the same, if their common secret
sab is different on those two traces (while all other secrets sac and sbc are the
same). This ensures that from an outside observer, a flipped output can be either
result of a different shared secret or due to the announcement. Lastly, the linear
specification asserts that pg ↔ ¬pNSA.

Results. Table 2 reports on the results of the benchmarks. We distinguish
between state-labeled (Moore) and transition-labeled (Mealy) transition sys-
tems. Note that the counterexample strategies use the opposite transition sys-
tem, i.e., a Mealy system strategy corresponds to a state-labeled (Moore)
environment strategy. Typically, Mealy strategies are more compact, i.e., need
smaller transition systems and this is confirmed by our experiments. BoSyHyper
is able to solve most of the examples, providing realizing implementations or
counterexamples. Regrading the unrealizable benchmarks we observe that usu-
ally two simultaneously generated paths (k = 2) are enough with the exception



304 B. Finkbeiner et al.

Table 2. Results of BoSyHyper on the benchmarks sets described in Sect. 6. They ran
on a machine with a dual-core Core i7, 3.3 GHz, and 16 GB memory.

Benchmark Instance Result States Time[sec.]

Moore Mealy Moore Mealy

Symmetric Mutex non-sym realizable 2 2 1.4 1.3

sym unrealizable (k = 2) 1 1 1.9 2.0

tie realizable 3 3 1.7 1.6

full-non-sym realizable 4 4 1.4 1.4

full-sym unrealizable (k = 2) 1 1 4.3 6.2

full-tie realizable 9 5 1 802.7 5.2

Encoder/Decoder 1-2-hamming-2 realizable 4 1 1.6 1.3

1-2-fault-tolerant unrealizable (k = 2) 1 - 54.9 -

1-3-fault-tolerant realizable 4 1 151.7 1.7

2-2-hamming-2 unrealizable (k = 3) - 1 - 10.6

2-3-hamming-2 realizable 16 1 >1 h 1.5

2-3-hamming-3 unrealizable (k = 3) - 1 - 126.7

CAP Theorem cap-2-linear realizable 8 1 7.0 1.3

cap-2 unrealizable (k = 2) 1 - 1 823.9 -

ca-2 realizable - 1 - 4.4

ca-3 realizable - 1 - 15.0

cp-2 realizable 1 1 1.8 1.6

cp-3 realizable 1 1 3.2 10.6

ap-2 realizable - 1 - 2.0

ap-3 realizable - 1 - 43.4

Bus Protocol NI1 unrealizable (k = 2) 1 1 75.2 69.6

NI2 realizable 8 8 24.1 33.9

Dining Cryptographers secrecy realizable - 1 - 82.4

of the encoder example. Overall the results are encouraging showing that we can
solve a variety of instances with non-trivial information-flow.

7 Conclusion

In this paper, we have considered the reactive realizability problem for specifica-
tions given in the temporal logic HyperLTL. We gave a complete characterization
of the decidable fragments based on the quantifier prefix and, additionally, iden-
tified a decidable fragment in the, in general undecidable, universal fragment of
HyperLTL. Furthermore, we presented two algorithms to detect realizable and
unrealizable HyperLTL specifications, one based on bounding the system imple-
mentation and one based on bounding the number of counterexample paths. Our
prototype implementation shows that our approach is able to synthesize systems
with complex information-flow properties.
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