®

Check for
updates

Fast Numerical Program Analysis
with Reinforcement Learning

Gagandeep Singh®™) | Markus Piischel,
and Martin Vechev

Department of Computer Science, ETH Ziirich,
Ziirich, Switzerland
{gsingh,pueschel ,martin.vechev}@inf.ethz.ch

Abstract. We show how to leverage reinforcement learning (RL) in
order to speed up static program analysis. The key insight is to estab-
lish a correspondence between concepts in RL and those in analysis: a
state in RL maps to an abstract program state in analysis, an action
maps to an abstract transformer, and at every state, we have a set of
sound transformers (actions) that represent different trade-offs between
precision and performance. At each iteration, the agent (analysis) uses a
policy learned offline by RL to decide on the transformer which minimizes
loss of precision at fixpoint while improving analysis performance. Our
approach leverages the idea of online decomposition (applicable to pop-
ular numerical abstract domains) to define a space of new approximate
transformers with varying degrees of precision and performance. Using a
suitably designed set of features that capture key properties of abstract
program states and available actions, we then apply Q-learning with lin-
ear function approximation to compute an optimized context-sensitive
policy that chooses transformers during analysis. We implemented our
approach for the notoriously expensive Polyhedra domain and evaluated
it on a set of Linux device drivers that are expensive to analyze. The
results show that our approach can yield massive speedups of up to two
orders of magnitude while maintaining precision at fixpoint.

1 Introduction

Static analyzers that scale to real-world programs yet maintain high precision are
difficult to design. Recent approaches to attacking this problem have focused on
two complementary methods. On one hand is work that designs clever algorithms
that exploits the special structure of particular abstract domains to speed up
analysis [5,10,15,16,20,21]. These works tackle specific types of analyses but the
gains in performance can be substantial. On the other hand are approaches that
introduce creative mechanisms to trade off precision loss for gains in speed [9,12,
18,19]. While promising, these methods typically do not take into account the
particular abstract states arising during analysis which determine the precision
of abstract transformers (e.g., join), resulting in suboptimal analysis precision
or performance. A key challenge then is coming up with effective and general
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approaches that can decide where and how to lose precision during analysis for
best tradeoff between performance and precision.

Our Work. We address the above challenge by offering a new approach for
dynamically losing precision based on reinforcement learning (RL) [24]. The key
idea is to learn a policy that determines when and how the analyzer should
lose the least precision at an abstract state to achieve best performance gains.
Towards that, we establish a correspondence between concepts in static analysis
and RL, which demonstrates that RL is a viable approach for handling choices
in the inner workings of a static analyzer.

To illustrate the basic idea, imagine that a static analyzer has at each pro-
gram state two available abstract transformers: the precise but slow 7}, and the
fast but less precise 1. Ideally, the analyzer would decide adaptively at each
step on the best choice that maximizes speed while producing a final result of
sufficient precision. Such a policy is difficult to craft by hand and hence we
propose to leverage RL to discover the policy automatically.

To explain the connection with RL intuitively, we think of abstract states
and transformers as analogous to states of a Go board and moves made by
the Go player, respectively. In Go, the goal is to learn a policy that at each
state decides on the next player action (transformer to use) which maximizes
the chances of eventually winning the game (obtaining a precise fixpoint while
improving performance in our case). Note that the reward to be maximized
in Go is long-term and not an immediate gain in position, which is similar to
iterative static analysis. To learn the policy with RL, one typically extracts a
set of features ¢ from a given state and action, and uses those features to define
a so-called Q-function, which is then learned, determining the desired policy.

In the example above, a learned policy would determine at each step whether
to choose action T}, or T. To do that, for a given state and action, the analyzer
computes the value of the Q-function using the features ¢. Querying the Q-
function returns the suggested action from that state. Eventually, such a policy
would ideally lead to a fixpoint of sufficient precision but be computed quicker.

While the overall connection between static analysis and reinforcement learn-
ing is conceptually clean, the details of making it work in practice pose significant
challenges. The first is the design of suitable approximations to actually be able
to gain performance when precision is lost. The second is the design of features
¢ that are cheap to compute yet expressive enough to capture key properties
of abstract states. Finally, a suitable reward function combining both precision
and performance is needed. We show how to solve these challenges for Polyhedra
analysis.

Main Contributions. Our main contributions are:

— A space of sound, approximate Polyhedra transformers spanning different pre-
cision/performance trade-offs. The new transformers combine online decom-
position with different constraint removal and merge strategies for approxi-
mations (Sect. 3).
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— A set of feature functions which capture key properties of abstract states and
transformers, yet are efficient to extract (Sect.4).

— A complete instantiation of RL for Polyhedra analysis based on Q-learning
with linear function approximation (i.e., actions, reward function, Q-
function).

— An end-to-end implementation and evaluation of our approach. Given a train-
ing dataset of programs, we first learn a policy (based on the Q-function)
over analysis runs of these programs. We then use the resulting policy during
analysis of new, unseen programs. The experimental results on a set of realis-
tic programs (e.g., Linux device drivers) show that our RL-based Polyhedra
analysis achieves substantial speed-ups (up to 515x) over a heavily optimized
state-of-the-art Polyhedra library.

We believe the reinforcement learning based approach outlined in this work
can be applied to speed up other program analyzers (beyond Polyhedra).

2 Reinforcement Learning for Static Analysis

In this section we first introduce the general framework of reinforcement learning
and then discuss its instantiation for static analysis.

2.1 Reinforcement Learning

Reinforcement learning (RL) [24] involves an agent learning to achieve a goal by
interacting with its environment. The agent starts from an initial representation
of its environment in the form of an initial state so € S where S is the set of
possible states. Then, at each time step t = 0,1,2,..., the agent performs an
action a; € A in state s; (A is the set of possible actions) and moves to the next
state s;11. The agent receives a numerical reward r(s¢, at, $¢+1) € R for moving
from the state s; to s;y1 through action a;. The agent repeats this process until
it reaches a final state. Each sequence of states and actions from an initial state
to the final state is called an episode.

In RL, state transitions typically satisfy the Markov property: the next state
s¢+1 depends only on the current state s; and the action a; taken from s;. A policy
p: S — A is a mapping from states to actions: it specifies the action a; = p(s;)
that the agent will take when in state s;. The agent’s goal is to learn a policy that
maximizes not an immediate but a cumulative reward for its actions in the long
term. The agent does this by selecting the action with the highest expected long-
term reward in a given state. The quality function (Q-function) @: S x A — R
specifies the long term cumulative reward associated with choosing an action a;
in state s;. Learning this function, which is not available a priori, is essential for
determining the best policy and is explained next.
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Algorithm 1. Q-learning algorithm

1: function Q-LEARN(S, A, 7,7, @, ¢)

2: Input:

3: S « set of states, A < set of actions, r < reward function
4: 7 «— discount factor, o « learning rate

5: ¢ < set of feature functions over S and A

6: Output: parameters 0

7 0 = Initialize arbitrarily (which also initializes Q)

8: for each episode do

9: Start with an initial state s € S

10: for t =0,1,2,...,length(episode) do

11: Take action a¢, observe next state siy1 and r(st, at, St+1)
12: 0 := 0+ (r(se, ar, se11) + 7 maxa, ,, Q(Se41, arg1) — Q(st, ar)) - d(se, ar)
13: return 0

Q-learning and Approximating the Q-function. Q-learning [25] can be
used to learn the Q-function over state-action pairs. Typically the size of the
state space is so large that it is not feasible to explicitly compute the Q-function
for each state-action pair and thus the function is approximated. In this paper, we
consider a linear function approximation of the Q-function for three reasons: (i)
effectiveness: the approach is efficient, can handle large state spaces, and works
well in practice [6]; (ii) it leverages our application domain: in our setting, it is
possible to choose meaningful features (e.g., approximation of volume and cost
of transformer) that relate to precision and performance of the static analysis
and thus it is not necessary to uncover them automatically (as done, e.g., by
training a neural net); and (iii) interpretability of policy: once the Q-function
and associated policy are learned they can be inspected and interpreted.

The Q-function is described as a linear combination of ¢ basis functions
¢i: Sx A — R, i=1,...,L Fach ¢; is a feature that assigns a value to a
(state, action) pair and £ is the total number of chosen features. The choice of
features is important and depends on the application domain. We collect the
feature functions into a vector ¢(s,a) = (d1(s,a), pa(s,a),...,de(s,a)); doing
so, the Q-function has the form:

14
Q(S;a) = Zej ’ (,25]‘(5,(1) = ¢(5aa) : 0T7 (1)

where 6 = (01,65,...,0;) is the parameter vector. The goal of Q-learning with
linear function approximation is thus to estimate (learn) 6.

Algorithm 1 shows the Q-learning procedure. In the algorithm, 0 < v < 1
is the discount factor which represents the difference in importance between
immediate and future rewards. v = 0 makes the agent only consider immediate
rewards while v ~ 1 gives more importance to future rewards. The parameter
0 < a < 1 is the learning rate that determines the extent to which the newly
acquired information overrides the old information. The algorithm first initializes
0 randomly. Then, for each step ¢ in an episode, the agent takes an action ay,
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Table 1. Mapping of RL concepts to Static analysis concepts.

RL concept Static analysis concept
Agent Static analyzer

State s € S Features of abstract state
Action a € A Abstract transformer

Reward function r | Transformer precision and runtime

Feature Value associated with abstract state features and transformer

moves to the next state s;11 and receives a reward 7(s;,a, S¢+1). Line 12 in
the algorithm shows the equation for updating the parameters 6. Notice that Q-
learning is an off-policy learning algorithm as the update in the equation assumes
that the agent follows a greedy policy (from state s;11) while the action (a)
taken by the agent (in s;) need not be greedy.

Once the Q-function is learned, a policy p* for maximizing the agent’s cumu-
lative reward is obtained as:

p*(s) = argmax,. 4Q(s,a). (2)

In the application, p* is computed on the fly at each stage s by computing @Q for
each action a and choosing the one with maximal Q(s, a). Since the number of
actions is typically small, this incurs little overhead.

2.2 Instantiation of RL to Static Analysis

We now discuss a general recipe for instantiating the RL framework described
above to the domain of static analysis. The precise formal instantiation to the
specific numerical (Polyhedra) analysis is provided later.

In Table 1, we show a mapping between RL and program analysis concepts.
Here, the analyzer is the agent that observes its environment, which is the
abstract program state (e.g., polyhedron) arising at every iteration of the anal-
ysis. In general, the number of possible abstract states can be very large (or
infinite) and thus, to enable RL in this setting, we abstract the state through
a set of features (Table2). An example of a feature could be the number of
bounded program variables or the volume of a polyhedron. The challenge is
to define the features to be fast to evaluate, yet sufficiently representative so
the policy derived through learning generalizes well to unseen abstract program
states.

Further, at every abstract state, the analyzer should have the choice between
different actions corresponding to different abstract transformers. The trans-
formers should range from expensive and precise to cheap and approximate.
The reward function r is thus composed of a measure of precision and speed and
should encourage approximations that are both precise and fast.

The goal of our agent is to then learn an approximation policy that at each
step selects an action that tries to minimize the loss of analysis precision at fix-
point, while gaining overall performance. Learning such a policy is typically done
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offline using a given dataset D of programs (discussed in evaluation). However,
this is computationally challenging because the dataset D can contain many
programs and each program will need to be analyzed many times over during
training: even a single run of the analysis can contain many (e.g., thousands) calls
to abstract transformers. Thus, a good heuristic may be a complicated function
of the chosen features. Hence, to improve the efficiency of learning in practice,
one would typically exercise the choice for multiple transformers/actions only
at certain program points. A good choice, and one we employ, are join points,
where the most expensive transformer in numerical domains usually occurs.

Another key challenge lies in defining a suitable space of transformers. As we
will see later, we accomplish this by leveraging recent advances in online decom-
position for numerical domains [20-22]. We show how to do that for the notori-
ously expensive Polyhedra analysis; however, the approach is easily extendable
to other popular numerical domains, which all benefit from decomposition.

3 Polyhedra Analysis and Approximate Transformers

In this section we first provide brief background on polyhedra analysis and online
decomposition, a recent technique to speed up analysis without losing precision
and applicable to all popular numerical domains [22]. Then we leverage online
decomposition to define a flexible approximation framework that loses precision
in a way that directly translates into performance gains. This framework forms
the basis for our RL approach discussed in Sect. 4.

3.1 Polyhedra Analysis

Let X = {x1,x2,...,2,} be the set of n (numerical) program variables where
each variable x; € Q takes a rational value. An abstract element P C Q™ in the
Polyhedra domain is a conjunction of linear constraints Y ., a;,z; < ¢ between
the program variables where a; € Z,c € Q. This is called the constraint repre-
sentation of the polyhedron.

Constraints and Generator Represen- (1.0)
tation. For efficiency, it is common to Poga %20
maintain besides the constraint represen- i
tations also the generator representation, x, | @9
which encodes a polyhedron as the convex =2
hull of a finite set of vertices, rays, and lines. 22)
Rays and lines are represented by their direc- (.0

tion. Thus, by abuse of prior notation we X,

write P = (Cp,Gp) where Cp is the con-

straints representation (before just called P) Fig.1. Two representations of

and Gp is the generator representation. polyhedron P: As conjunction of 4
constraints Cp, and as convex hull
of 3 vertices and 2 rays Gp.
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Example 1. Figure I shows an example of the two representations of an abstract
element P in the Polyhedra domain. Cp is the intersection of 4 linear constraints:

Cp = {—xl S —2, —x2 é —2,902 S ].073%2 - 5(E1 S 5}
Gp s the convex hull of 3 vertices and 2 rays:
Gp — {vertices, rays, lines} = {{(2,2), (2,5), (5,10)},{(1,0), (1,0)}, 0}.

Notice that Gp contains two rays in the same direction (1,0); thus one of them
could be removed without changing the set of points in P.

During analysis, the abstract elements are manipulated with abstract trans-
formers that model the effect of statements and control flow in the program such
as assignment, conditional, join, and others. Upon termination of the analysis,
each program statement has an associated subsequent P containing all possible
variable values after this statement. The main bottleneck for the Polyhedra anal-
ysis is the join transformer (L), and thus it is the focus for our approximations.

Recently, Polyhedra domain analysis was sped up by orders of magnitude,
without approximation, using the idea of online decomposition [21]. The basic
idea is to dynamically decompose the occurring abstract elements into indepen-
dent components (in essence abstract elements on smaller variable sets) based on
the connectivity between variables in the constraints, and to maintain this (per-
manently changing) decomposition during analysis. The finer the decomposition,
the faster the analysis.

Our approximation framework builds on online decomposition. The basic idea
is simple: we approximate by dropping constraints to reduce connectivity among
constraints and thus to yield finer decompositions of abstract elements. These
directly translate into speedup. We consider various options of such approxima-
tion; reinforcement learning (in Sect. 4) will then learn a proper, context-sensitive
strategy that stipulates when and which approximation option to apply.

Next, we provide brief background on the ingredients of online decomposition
and explain our mechanisms for soundly approximating the join transformer.

3.2 Online Decomposition

Online decomposition is based on the observation that during analysis, the set
of variables X in a given polyhedron P can be partitioned as mp = {Xy,..., X}
into blocks Xy, such that constraints exist only between variables in the same
block. Each unconstrained variable z; € X yields a singleton block {z;}. Using
this partition, P can be decomposed into a set of smaller Polyhedra P(A}) called
factors. As a consequence, the abstract transformer can now be applied only on
the small subset of factors relevant to the program statement, which translates
into better performance.

Example 2. Consider the set X = {x1,x2, 3,24, %5, 26} and the polyhedron:

P ={2x1 —3zy + 23+ x4 < 0,25 = 0}.
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Here, mp = {{x1,22, 23,24}, {25}, {x6}} is a possible partition of X with factors
P(Xl) = {21‘1 — 3z + 23+ 14 < 0}, P(XQ) = {LL‘5 = 0}, P(X:;) = 0.

The set of partitions of X forms a lattice with the ordering m C 7’ iff every block
of 7 is a subset of a block of 7’. Upper and lower bound of two partitions 1, s,
i.e., m Uy and 71 M7y are defined accordingly.

The optimal (finest) partition for an element P is denoted with 7p. Ideally,
one would always determine and maintain this finest partition for each output Z
of a transformer but it may be too expensive to compute. Thus, the online
decomposition in [20,21] often computes a (cheaply computable) permissible
partition 7z J 7z. Note that making the output partition coarser (while keeping
the same constraints) does not change the precision of the abstract transformer.

3.3 Approximating the Polyhedra Join

Let Teom = Tp, UTp, be a common permissible partition for the inputs P, P»
of the join transformer. Then, from [21], a permissible partition for the (not
approximated) output is obtained by keeping all blocks X} € Tcom for which
Py (X;) = Py(X;) in the output partition 7z, and fusing all remaining blocks
into one. Formally, 77 = {N} UU, where

N = J{ X € Feom : Pr(Xi) # Po(Xn)}, U = {Xp € Teom : Pi(&) = Pa(Xp)}.

The join transformer computes the generators Gz for the output Z as Gz =
Gp (x\W) X (Gp, vy UGp,(ny) where x is the Cartesian product. The constraint
representation Cz is computed as Cz = Cp, (x\n)Uconversion(Gp, (v)UGp,))-
The conversion algorithm has worst-case exponential complexity and is the most
expensive step of the join. Note that the decomposed join applies it only on the
generators Gp, (ny U Gp,(v) corresponding to the block N

The cost of the decomposed join transformer depends on the size of the block
N. Thus, it is desirable to bound this size by a threshold € N. Let B = {X} €
Teom : e NN # 0} be the set of blocks that merge into A/ in the output 7z and
By = {X) € B:|Xy| > threshold} be the set of blocks in B with size > threshold.

Splitting of Large Blocks. For each block X; € B;, we apply the join on
the associated factors: Z(X;) = P1(X;) U Py(X;). We then remove constraints
from Z(A};) until it decomposes into blocks of sizes < threshold. Since we only
remove constraints from Z(AX}), the resulting transformer remains sound. There
are many choices for removing constraints as shown in the next example.

Example 3. Consider the following polyhedron and threshold = 4

Xy = {x1, 22, 73,24, %5, 76 },
Z(X) ={x1 —vo+ 23 < 0,00+ 23 + 24 < 0,22 + 23 <0,
23+ x4 < 0,24 — a5 < 0,24 — 26 < 0}.
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We can remove M = {x4 — x5 < 0,24 — 26 < 0} from Z(X:) to obtain the
constraint set {x1 —xo+x3 < 0,20+ x3+ 24 < 0,20+ 23 < 0,23+ 24 <0} with
partition {{x1,x2, 3,24}, {x5},{x6}}, which obeys the threshold.

We could also remove M' = {xo + x5 + x4 < 0,23 + 24 < 0} from Z(X;) to
get the constraint set {x1 — xo + 23 < 0,20 + x5 < 0,24 — 25 < 0,24 — 26 < 0}
with partition {{x1, 2,3}, {x4, 25, x6}}, which also obeys the threshold.

We next discuss our choices for the constraint removal algorithm.

Stoer-Wagner min-cut. The first basic idea is to remove a minimal number
of constraints in Z(A;) that decomposes the block X; into two blocks. To do
so, we associate with Z(X;) a weighted undirected graph G = (V, &), where
V = A;. Further, there is an edge between z; and x;, if there is a constraint
containing both; its weight m,; is the number of such constraints. We then
apply the standard Stoer-Wagner min-cut algorithm [23] to obtain a partition
of Xy into X/ and X}’. M collects all constraints that need to be removed, i.e.,
those that contain at least one variable from both X/ and X/’

Example 4. Figure 2 shows the graph G for Z(X;) in Ezample 3. Applying the
Stoer- Wagner min-cut on G once will cut off x5 or xg by removing the constraint
T4—T5 Or T4 —Tg, TEspectively. In either case a block of size 5 remains, exceeding
the threshold of 4. After two applications, both constraints have been removed
and the resulting block structure is given by {{x1,x9, 3,24}, {x5}, {x6}}. The
associated factors are {z1—x9+x3 < 0,29+ w3+x4 < 0,20+23 < 0,25+24 < 0}
and x5, xg become unconstrained.

Weighted Constraint Removal.
Our second approach for constraints
removal does not associate weights
with edges but with constraints. It
then removes greedily edges with high
weights. Specifically, we consider the
following two choices of constraint
weights, yielding two different con-  Fig. 2. Graph G for Z(&;) in Example 3
straint removal policies:

— For each variable z; € A}, we first compute the number n; of constraints
containing x;. The weight of a constraint is then the sum of the n; over all
variables occurring in the constraint.

— For each pair of variables z;,z; € &, we first compute the number n;; of
constraints containing both x; and ;. The weight of a constraint is then the
sum of the n;; over all pairs x;, x; occurring in the constraint.

Once the weights are computed, we remove the constraint with maximum weight.
The intuition is that variables in this constraint most likely occur in other
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constraints in Z(X;) and thus they do not become unconstrained upon con-
straint removal. This reduces the loss of information.

Example 5. Applying the first definition of weights in Example 3, we get n; =
1,no =3,n3 =4,n4 =4,n5 = 1,n6 = 1. The constraint o+ x3+ x4 < 0 has the
mazximum weight of ng +n3+mny = 11 and thus is chosen for removal. Removing
this constraint from Z(X;) does not yet yield a decomposition; thus we have to
repeat. Doing so {x3 + x4 < 0} is chosen. Now, Z(X;) \ M = {x1 — 25 + 23 <
0,204x3 <0,24—2x5 < 0,24 —x6 < 0} which can be decomposed into two factors
{zx1 — 2o+ 23 < 0,20 + 23 <0} and {z4 — x5 < 0,24 — 26 < 0} corresponding
to blocks {x1,xo, x5} and {x4, 5,26}, respectively, each of size < threshold.

Merging Blocks. The sizes of all blocks in B\ B; are < threshold and we can
apply merging to obtain larger blocks X, < threshold to increase the precision
of the subsequent join. The join is then applied on the factors Py(Xy,), Pa(X:m)
and the result is added to the output Z. We consider the following three merging
strategies. To simplify the explanation, we assume that the blocks in B\ B, are
ordered by ascending size:

1. No merge: None of the blocks are merged.

2. Merge smallest first: We start merging the smallest blocks as long as the size
stays below the threshold. These blocks are then removed and the procedure
is repeated on the remaining set.

3. Merge large with small: We start to merge the largest block with the smallest
blocks as long as the size stays below the threshold. These blocks are then
removed and the procedure is repeated on the remaining set.

Example 6. Consider threshold = 5 and B \ By with block sizes
{1,1,2,2,2,2,3,5,7,10}. Merging smallest first yields blocks 1 + 1+ 2, 2 + 2,
2 + 3 leaving the rest unchanged. The resulting sizes are {4,4,5,5,7,10}. Merg-
ing large with small leaves 10,7,5 unchanged and merges 3+ 1+ 1, 242, and
2+ 2. The resulting sizes are also {4,4,5,5,7,10} but the associated factors are
different (since different blocks are merged), which will yield different results in
following transformations.

Need for RL. Algorithm 2 shows how to approximate the join transformer.
Different choices of threshold, splitting, and merge strategies yield a range of
transformers with different performance and precision depending on the inputs.
All of the transformers are non-monotonic, however the analysis always converges
to a fixpoint when combined with widening [2]. Determining the suitability of a
given choice on an input is highly non-trivial and thus we use RL to learn it.
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Algorithm 2. Approximation algorithm for Polyhedra join

1: function APPROXIMATE_JOIN((Tp,, P1), (T Py, P2), threshold)

2: Input:
3: (7p,, P1), (Wpy, P2) < decomposed inputs to the join
4: threshold <+ Upper bound on size of A/
5: Output: decomposed output (7z, Z) of the join
6:  Z:=|J{Pi(Xk): P (Xk) = Po(Xp)}, 77 :=U > initialize output
7: Bi={Xk €Tp, UTp, : Xix NN # 0}, By := {X, € B: |X;| > threshold}
> join factors for blocks in By and split the outputs via a split algorithm
8: for X € B do
9: P = P1(Xt) LJ PQ(Xt)
10: s-algo := split_alg(X:,Cpr), (C,T) := split(Xy,Cpr,threshold, s_algo)
11: for Xy €T do
12: G(Xy) := conversion(C(Xy)), Z = Z U (C(Xy),G(Xy))
13: Tz =Tz UT

> merge blocks € B\ B: via a merge algorithm and apply join
14: m_algo := merge_alg(B\ B), Bm := merge(B \ B, threshold, m_algo)

15: for X, € B, do

16: Z:=ZU(Pi(Xn) U Py(Xp)), Tz =Tz U{Xn}

return (Tz,Z)

Table 2. Features for describing RL state s (m € {1,2},0<;j <8,0<h <3).

Feature v; Extraction |Typical |n;|Buckets for feature v;

complexity |range
5] o() 110 [10[{[j + L,j + 1]} U{[10,00)}
min(|Xy| : Xy € B) Oo(|B]) 1-100 |10|{[10-5+ 1,10 (7 + 1)]} U {[91,00)}
max(| Xy | : X € B) o(|B]) 1-100 |10|{[10-5+ 1,10 (7 + 1)]} U {[91,00)}
avg(| X | : Xk € B) o(|B|) 1-100 [10/{[10-5 +1,10- (j 4+ 1)]} U {[91, c0)}
min(‘Ung(XM‘ : X, € B) Oo(|B]) 1-1000 |10[{[100 -5 + 1,100 - (§ + 1)]} U {[901, c0)}
max(\ngm(Xk>\ : X € B) o(|B)) 1-1000 [10|{[100-j 4+ 1,100 - (§ + 1)]} U {[901, o)}
avg(\ngm(Xk)\ : X, € B) Oo(|B|) 1-1000 |10|{[100-j 4+ 1,100 - (j + 1)]} U {[901, c0)}
Hz: € X :z; € [lyn, um] in Py} |O(ng) 1-25 5 {[6-h+1,5-(h+1)]}U{[21,00)}
Hz; € X : z; € [lyy,,00) in P} + |O(ng) 1-25 5 {6-h+1,5-(h+1)]}U{[21,00)}

{zi € X : x; € (—00, um] in Pp, }|

4 Reinforcement Learning for Polyhedra Analysis

We now describe how to instantiate reinforcement learning for approximating
Polyhedra domain analysis. The instantiation consists of the following steps:

— Extracting the RL state s from the abstract program state numerically using

a set of features.

— Defining actions a as the choices among the threshold, merge and split meth-

ods defined in the previous section.

— Defining a reward function r favoring both high precision and fast execution.
— Defining the feature functions ¢(s,a) to enable Q-learning.
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States. We consider nine features for defining a state s for RL. The features
1, their extraction complexity and their typical range on our benchmarks are
shown in Table 2. The first seven features capture the asymptotic complexity of
the join [21] on the input polyhedra P, and P,. These are the number of blocks,
the distribution (using maximum, minimum and average) of their sizes, and the
number of generators. The precision of the inputs is captured by considering the
number of variables x; € X with finite upper and lower bound, and the number
of those with only a finite upper or lower bound in both P; and Ps.

As shown in Table2, each state feature 1; returns a natural number, how-
ever, its range can be rather large, resulting in a massive state space. To ensure
scalability and generalization of learning, we use bucketing to reduce the state
space size by clustering states with similar precision and expected join cost. The
number n; of buckets for each v; and their definition are shown in the last two
columns of Table 2. Using bucketing, the RL state s is then a 9-tuple consisting
of the indices of buckets where each index indicates the bucket that 1;’s return
value falls into.

Actions. An action a is a 3-tuple (th, r-algo, m_algo) consisting of:

— th € {1,2,3,4} depending on threshold € [5,9], [10,14], [15,19], or [20, c0).
— r_algo € {1,2,3}: the choice of a constraint removal, i.e., splitting method.
— malgo € {1,2,3}: the choice of merge algorithm.

All three of these have been discussed in detail in Sect. 3. The threshold values
were chosen based on performance characterization on our benchmarks. With
the above, we have 36 possible actions per state.

Reward. After applying the (approximated join transformer) according to
action a; in state s¢, we compute the precision of the output polyhedron P; LI P,
by first computing the smallest (often unbounded) box! covering P; LI P, which
has complexity O(ng). We then compute the following quantities from this box:

— ng: number of variables z; with singleton interval, i.e., 2; € [l,u],l = u.

— np: number of variables z; with finite upper and lower bounds, i.e., z; €
[, u],l # u.

— npp: number of variables z; with either finite upper or finite lower bounds,
ie., x; € (—oo,u] or x; € [I,00).

Further, we measure the runtime in CPU cycles cyc for the approximate join
transformer. The reward is then defined by
7(st, e, S141) = 3 s + 24 + npp — logyg(cyc). 3)

As the order of precision for different types of intervals is: singleton >
bounded > half bounded interval, the reward function in (3) weighs their num-
bers by 3,2,1. The reward function in (3) favors both high performance and

1A natural measure of precision is the volume of P; LI P,. However, calculating it is
very expensive and P; U P» is often unbounded.
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Table 3. Instantiation of Q-learning to Polyhedra static analysis.

RL concept Polyhedra analysis instantiation
Agent Polyhedra analysis

State s € S As described in Table 2

Action a € A Tuple (th, r_algo, m_algo)
Reward function r | Shown in (3)

Feature ¢ Defined in (4)

Q-function Q-function from (5)

precision. It also ensures that the precision part (3-ng + 2np + npp) has a similar
magnitude range as the performance part (log,(cyc))?.

Q-function. As mentioned before, we approximate the Q-function by a linear
function (1). We define binary feature functions ¢, for each (state, action) pair.
®ijk(s,a) = 1 if the tuple s(4) lies in j-th bucket and action a = ay,

Gijk(s,a) =1 <= s(i) =j and a = a;, (4)
The Q-function is a linear combination of state action features ¢;;

Uz 36

9
Q(s,a) = ZZ Zeijk “Qijr(s,a). (5)

i=1 j=1k=1

Q-learning. During the training phase, we are given a dataset of programs
D and we use Q-LEARN from Algorithm 1 on each program in D to perform
Q-learning. Q-learning is performed with input parameters instantiated as
explained above and summarized in Table 3. Each episode consists of a run of
Polyhedra analysis on a benchmark in D. We run the analysis multiple times on
each program in D and update the Q-function after each join by calling Q-LEARN.

A Q-function is typically learned using an e-greedy policy [24] where the
agent takes greedy actions by exploiting the current Q-estimates while also
exploring randomly. The policy requires initial random exploration to learn good
Q-estimates that can be later exploited. This is infeasible for the Polyhedra anal-
ysis as a typical episode contains thousands of join calls. Therefore, we gener-
ate actions for Q-learning by exploiting the optimal policy for precision (which
always selects the precise join) and explore performance by choosing a random
approximate join: both with a probability of 0.53.

2 The log is used since the join has exponential complexity.
3 We also tried exploitation probabilities of 0.7 and 0.9, however the resulting policies
had suboptimal performance during testing due to limited exploration.
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Formally, the action a; := p(s;) selected in state s; during learning is given
by a; = (th, r_algo, m_algo) where

b

_ Jrand(O) % 4+1 with probability 0.5
" \min(4, (X8 |2%])/5) with probability 0.5
r_algo = rand() % 3+ 1,m_algo = rand() % 3 + 1.

(6)

Obtaining the Learned Policy. After learning over the dataset D, the learned
approximating join transformer in state s; chooses an action according to (2)
by selecting the maximal value over all actions. The value of th = 1,2,3,4 is
decoded as threshold = 5,10, 15, 20 respectively.

5 Experimental Evaluation

We implemented our approach in the form of a C-library for Polyhedra analysis,
called Poly-RL. We compare the performance and precision of Poly-RL against
the state-of-the-art ELINA [1], which uses online decomposition for Polyhedra
analysis without losing precision. In addition, we implemented two Polyhedra
analysis approximations (baselines) based on the following heuristics:

— Poly-Fixed: uses a fized strategy based on the results of Q-learning. Namely,
we selected the threshold, split and merge algorithm most frequently chosen
by our (adaptive) learned policy during testing.

— Poly-Init: uses an approximate join with probability 0.5 based on (6).

All Polyhedra implementations use 64-bit integers to encode rational num-
bers. In the case of overflow, the corresponding polyhedron is set to top.

Experimental Setup. All our experiments including learning the parameters 6
for the Q-function and the evaluation of the learned policy on unseen benchmarks
were carried out on a 2.13 GHz Intel Xeon ET7- 4830 Haswell CPU with 24 MB
L3 cache and 256 GB memory. All Polyhedra implementations were compiled
with gee 5.4.0 using the flags -03 -m64 -march=native.

Analyzer. For both learning and evaluation, we used the crab-llum analyzer
for C-programs, part of the larger SeaHorn [7] verification framework. The ana-
lyzer performs intra-procedural analysis of llvm-bitcode to generate Polyhedra
invariants which can be used for verifying assertions using an SMT solver [11].

Benchmarks. SVCOMP [3] contains thousands of challenging benchmarks in
different categories suited for different kinds of analysis. We chose the Linux
Device Drivers (LD) category, known to be challenging for Polyhedra analysis
[21] as to prove properties in these programs one requires Polyhedra invariants
(and not say Octagon invariants which are weaker).
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Training Dataset. We chose 70 large benchmarks for Q-learning. We ran each
benchmark a thousand times over a period of three days to generate sample
traces of Polyhedra analysis containing thousands of calls to the join transformer.
We set a timeout of 5 minutes per run and discarded incomplete traces in case
of a timeout. In total, we performed Q-learning over 110811 traces.

Evaluation Method. For evaluating the effectiveness of our learned policy, we
then chose benchmarks based on the following criteria:

— No overfitting: the benchmark was not used for learning the policy.

— Challenging: ELINA takes > 5s on the benchmark.

— Fair: there is no integer overflow in the expensive functions in the benchmark.
Because in the case of an overflow, the polyhedron is set to top resulting in
a trivial fixpoint at no cost and thus in a speedup that is due to overflow.

Based on these criteria, we found 11 benchmarks on which we present our results.
We used a timeout of 1h and memory limit of 100 GB for our experiments.

Inspecting the Learned Policy. Our learned policy chooses in the major-
ity of cases threshold=20, the binary weighted constraint removal algorithm for
splitting, and the merge smallest first algorithm for merging. Poly-Fixed always
uses these values for defining an approximate transformer, i.e., it follows a fixed
strategy. Our experimental results show that following this fixed strategy results
in suboptimal performance compared to our learned policy that makes adaptive,
context-sensitive decisions to improve performance.

Results. We measure the precision as a fraction of program points at which
the Polyhedra invariants generated by approximate analysis are semantically the
same or stronger than the ones generated by ELINA. This is a less biased and
more challenging measure than the number of discharged assertions [4,18,19]
where one can write weak assertions that even a weaker domain can prove.

Table 4 shows the number of program points*, timings (in seconds), and the
precision (in %) of Poly-RL, Poly-Fixed, and Poly-Init w.r.t. ELINA on all 11
benchmarks. In the table, the entry TO (MO) means that the analysis did not
finish within 1h (exceeded the memory limit). For an incomplete analysis, we
compute the precision by comparing program points for which the incomplete
analysis can produce invariants.

Poly-RL vs ELINA. In Table4, Poly-RL obtains > 7x speed-up over ELINA
on 6 of the 11 benchmarks with a maximum of 515x speedup for the mfd_sm501
benchmark. It also obtains the same or stronger invariants on > 87% of program

4 The benchmarks contain up to 50K LOC but SeaHorn encodes each basic block as
one program point, thus the number of points in Table 4 is significantly reduced.
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Table 4. Timings (seconds) and precision of approximations (%) w.r.t. ELINA.

Benchmark #Program | ELINA | Poly-RL Poly-Fixed Poly-Init
Points Time Time | Precision | Time | Precision | Time | Precision
wireless_airo |2372 877 6.6 100 6.7 100 5.2 74
net_ppp 680 2220 9.1 87 TO 34 7.7 55
mfd_smb01 369 1596 3.1 97 1421 | 97 2 64
ideapad-laptop | 461 172 2.9 100 157 | 100 MO 41
pata_legacy 262 41 2.8 41 2.5 41 MO 27
usb_ohci 1520 22 29 100 34 100 MO 50
usb_gadget 1843 66 37 60 35 60 TO 40
wireless_b43 3226 19 13 66 TO 28 83 34
lustre_1lite 211 5.7 4.9 98 5.4 98 6.1 54
usb_cx231xx 4752 7.3 3.9 ~100 3.7 ~100 3.9 94
netfilter_ipvs | 5238 20 17 ~100 9.8 ~100 11 94

points on 8 benchmarks. Note that Poly-RL obtains both large speedups and
the same invariants at all program points on 3 benchmarks.

The widening transformer removes many constraints produced by the precise
join transformer from ELINA which allows Poly-RL to obtain the same invari-
ants as ELINA despite the loss of precision during join in most cases. Poly-RL
produces large number of non-comparable fixpoints on 3 benchmarks in Table 4
due to non-monotonic join transformers.

We also tested Poly-RL on 17 benchmarks from the product lines category.
ELINA did not finish within an hour on any of these benchmarks whereas Poly-
RL finished within 1s. Poly-RL had 100% precision on the subset of program
points at which ELINA produces invariants. With Poly-RL, SeaHorn successfully
discharged the assertions. We did not include these results in Table4 as the
precision w.r.t. ELINA cannot be completely compared.

Poly-RL vs Poly-Fixed. Poly-Fixed is never significantly more precise than
Poly-RL in Table 4. Poly-Fixed is faster than Poly-RL on 4 benchmarks, however
the speedups are small. Poly-Fixed is slower than ELINA on 3 benchmarks
and times out on 2 of these. This is due to the overhead of the binary weight
constraints removal algorithm and the exponential number of generators in the
output.

Poly-RL vs Poly-Init. From (6), Poly-Init takes random actions and thus the
quality of its result varies depending on the run. Table4 shows the results on a
sample run. Poly-RL is more precise than Poly-Init on all benchmarks in Table 4.
Poly-Init also does not finish on 4 benchmarks.
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6 Related Work

Our work can be seen as part of the general research direction on parametric
program analysis [4,9,14,18,19], where one tunes the precision and cost of the
analysis by adapting it to the analyzed program. The main difference is that prior
approaches fix the learning parameters for a given program while our method
is adaptive and can select parameters dynamically based on the abstract states
encountered during analysis, yielding better cost/precision tradeoffs. Further,
prior work measures precision by the number of assertions proved whereas we
target the stronger notion of fixpoint equivalence.

The work of [20,21] improve the performance of Octagon and Polyhedra
domain analysis respectively based on online decomposition without losing pre-
cision. We compared against [21] in this paper. As our results suggest, the perfor-
mance of Polyhedra analysis can be significantly improved with RL. We believe
that our approach can be easily extended to the Octagon domain for achieving
speedups over the work of [20] as the idea of online decomposition applies to all
sub-polyhedra domains [22].

Reinforcement learning based on linear function approximation of the Q-
function has been applied to learn branching rules for SAT solvers in [13].
The learned policies achieve performance similar to those of the best branching
rules. We believe that more powerful techniques for RL such as deep Q-networks
(DQN) [17] or double Q-learning [8] can be investigated to potentially improve
the quality of results produced by our approach.

7 Conclusion

Polyhedra analysis is notoriously expensive and has worst-case exponential com-
plexity. We showed how to gain significant speedups by adaptively trading preci-
sion for performance during analysis, using an automatically learned policy. Two
key insights underlie our approach. First, we identify reinforcement learning as a
conceptual match to the learning problem at hand: deciding which transformers
to select at each analysis step so to achieve the eventual goal of high preci-
sion and fast convergence to fixpoint. Second, we build on the concept of online
decomposition, and offer an effective method to directly translate precision loss
into significant speed-ups. Our work focused on polyhedra analysis for which we
provide a complete implementation and evaluation. We believe the approach can
be instantiated to other forms of static analysis in future work.
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