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Abstract. We study from a computability perspective static program
analysis, namely detecting sound program assertions, and verification,
namely sound checking of program assertions. We first design a general
computability model for domains of program assertions and correspond-
ing program analysers and verifiers. Next, we formalize and prove an
instantiation of Rice’s theorem for static program analysis and verifica-
tion. Then, within this general model, we provide and show a precise
statement of the popular belief that program analysis is a harder prob-
lem than program verification: we prove that for finite domains of pro-
gram assertions, program analysis and verification are equivalent prob-
lems, while for infinite domains, program analysis is strictly harder than
verification.

1 Introduction

It is common to assume that program analysis is harder than program verifi-
cation (e.g. [1,17,22]). The intuition is that this happens because in program
analysis we need to synthesize a correct program invariant while in program ver-
ification we have just to check whether a given program invariant is correct. The
distinction between checking a proof and computing a witness for that proof can
be traced back to Leibniz [18] in his ars iudicandi and ars inveniendi, respec-
tively representing the analytic and synthetic method. In Leibniz’s ars combina-
toria, the ars inveniendi is defined as the art of discovering “correct” questions
while ars iudicandi is defined as the art of discovering “correct” answers. These
foundational aspects of mathematical reasoning have a peculiar meaning when
dealing with questions and answers concerning the behaviour of computer pro-
grams as objects of our investigation.

Our main goal is to define a general and precise model for reasoning on the
computability aspects of the notions of (sound or complete) static analyser and
verifier for generic programs (viz. Turing machines). Both static analysers and
verifiers assume a given domain A of abstract program assertions, that may range
from synctatic program properties (e.g., program sizes or LOCs) to complexity
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properties (e.g., number of execution steps in some abstract machine) and all the
semantic properties of the program behaviour (e.g., value range of program vari-
ables or shape of program memories). A program analyser is defined to be any
total computable (i.e., total recursive) function that for any program P returns
an assertion ap in A, which is sound when the concrete meaning of the assertion
ap includes P. Instead, a program verifier is a (total) decision procedure which
is capable of checking whether a given program P satisfies a given assertion a
ranging in A, answering “true” or “don’t know”, which is sound when a positive
check of a for P means that the concrete meaning of the assertion a includes
P. Completeness, which coupled with soundness is here called precision, for a
program analyser holds when, for any program P, it returns the strongest asser-
tion in A for P, while a program verifier is called precise if it is able to prove
any true assertion in A for a program P. This general and minimal model allows
us to extend to static program analysis and verification some standard results
and methods of computability theory. We provide an instance of the well-known
Rice’s Theorem [29] for generic analysers and verifiers, by proving that sound
and precise analysers (resp. verifiers) exist only for trivial domains of assertions.
This allows us to generalise known results about undecidability of program anal-
ysis, such as the undecidability of the meet over all paths (MOP) solution for
monotone dataflow analysis frameworks [15], making them independent from the
structure of the domain of assertions. Then, we define a model for comparing the
relative “verification power” of program analysers and verifiers. In this model,
a verifier V on a domain A of assertions is more precise than an analyser A on
the same domain A when any assertion a in A which can be proved by A for a
program P—this means that the output of the analyser A(P) is stronger than
the assertion a—can be also proved by V. Conversely, A is more precise than
VY when any assertion a proved by V can be also proved by A. We prove that
while it is always possible to constructively transform a program analyser into
an equivalent verifier (i.e., with the same verification power), the converse does
not hold in general. In fact, we first show that for finite domains of assertions,
any “reasonable” verifier can be constructively transformed into an equivalent
analyser, where reasonable means that the verifier V is: (i) nontrivial: for any
program, V is capable to prove some assertion, possibly a trivially true asser-
tion; (ii) monotone: if V proves an assertion a and a is stronger than a’ then
V is also capable of proving «’; (iii) logically meet-closed: if V proves both a;
and ae and the logical conjunction a; A as is a representable assertion then V
is also capable of proving it. Next, we prove the following impossibility result:
for any infinite abstract domain of assertions A, no constructive reduction from
reasonable verifiers on A to equivalent analysers on A is possible. This provides,
to the best of our knowledge, the first formalization of the common folklore that
program analysis is harder than program verification.

2 Background

We follow the standard terminology and notation for sets and computable func-
tions in recursion theory (e.g., [12,26,30]). If X and Y are sets then X — Y
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and X -+ Y denote, respectively, the set of all total and partial functions from
XtoY.If f: X +Y then f(x)| and f(z)T mean that f is defined/undefined
on z € X. Hence dom(f) = {z € X | f(z)l }. If S CY then f(x) € S denotes
the implification f(z)] = f(z) € S. If f,g : X + Y then f = ¢g means that
dom(f) = dom(g) and for any x € dom(f) = dom(g), f(z) = g(z). The set of
all partial (total) recursive functions on natural numbers is denoted by N + N
(N 5 N). Recall that A C N is a recursively enumerable (r.e., or semidecidable)
set if A = dom(f) for some f € N - N, while A C N is a recursive (or decidable)
set if both A and its complement A = N~ A are recursively enumerable, and
this happens when there exists f € N = N such that f = .ne€ A7 1:0.

Let Prog denote some deterministic programming language which is Turing
complete. More precisely, this means that for any partial recursive function f :
N - N there exists a program P € Prog such that [P] & f, where [P] : D + D
is a denotational input/output semantics of P on a domain D of input/output
values for Prog, where: undefinedness encodes nontermination and = means
equality up to some recursive encoding enc : D - N and decoding dec : N = D
functions, i.e., f = enc o[ P]odec. We also assume a small-step transition relation
= C (Prog xD) x ((Prog xD) U D) for Prog defining an operational semantics
which is functionally equivalent to the denotational semantics: (P,i) =* o iff
[P]i = o. By an abuse of notation, we will identify the input/output semantics
of a program P with the partial recursive function computed by P, i.e., we will
consider programs P € Prog whose input/output semantics is a partial recursive
function [P] : N + N, so that, by Turing completeness, {[P] : N -+ N | P €
Prog} =N+ N.

3 Abstract Domains

Static program analysis and verification are always defined with respect to a
given (denumerable) domain of program assertions, that we call here abstract
domain [7], where the meaning of assertions is formalized by a function which
induces a logical implication relation between assertions.

Definition 3.1 (Abstract Domain). An abstract domain is a tuple (4, v, <,)
such that:

(1) A is any denumerable set;
(2) v: A— p(Prog) is any function;
(3) <, & {(a1,a2) € Ax A | v(a1) € 7y(az)} is a decidable relation.

An abstract element a € A such that vy(a) = Prog is called an abstract top, while
a is called an abstract bottom when y(a) = @. O

The elements of A are called assertions or abstract values, v is called con-
cretization function (this may also be a nonrecursive function, which is typical
of abstract domains representing semantic program properties), and <., is called
the implication or approximation relation of A. Thus, in this general model,
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a program assertion a € A plays the role of some abstract representation of any
program property y(a) € p(Prog), while the comparison relation a; <. as holds
when a; is a stronger (or more precise) property than as. Let us also observe
that, as a limit case, Definition 3.1 allows an abstract domain to be empty, that
is, the tuple (&, @, &) satisfies the definition of abstract domain, where & denotes
both the empty set, the empty function (i.e., the unique subset of @ x &) and
the empty relation.

Example 3.2. Let us give some simple examples of abstract domains.

(1) Consider A = N with y(n) £ {P € Prog | size(P) < n}, where
size : Prog — N is some computable program size function. Here, <, is
clearly decidable and coincides with the partial order <x on numbers.

(2) Consider A = N with y(n) £ {P € Prog | Vi.30,k.((P,i) =" o) & k < n},
i.e., n represents all the programs which, given any input, terminate in at
most n steps. Here again, n <, m iff n <y m, so that <, is decidable.

(3) Consider A = N with y(n) £ {P € Prog | Vi € [0,n].30. (P,i) =* o}, that
is, n represents all the programs which terminate for any input ¢ < n. Once
again, n <, m iff n <y m.

(4) Consider A = N with v(n) £ {P € Prog | Vi € N.[P](i) = 0 = o < n},
that is, n represents those programs which, in case of termination, give an
output o bounded by n. Again, n <, m iff n <y m.

(5) Consider A =N > N with y(g) £ {P € Prog | Vi.(g(i)] = (3o,k.(P,i) =F
0, k < g(i))) A ((Jo, k.(P,i) =% 0) = g(i)| , k < g(i))}, that is, g represents
those programs whose time complexity is bounded by the function g. Here,
9 <49 I Vi.g())l = (¢'())] A g(i) < g'(4)). 0

Definition 3.1 does not require injectivity of the concretization function -,
thus multiple assertions could have the same meaning. Two abstract values
ay,as € A are called equivalent when v(a1) = y(az). Let us observe that since
<, is required to be decidable, the equivalence y(a1) = y(az2) is decidable as well.
For example, for the well-known numerical abstract domain of convex polyhe-
dra [11] represented through linear constraints between program variables, we
may well have multiple representations P, and P, for the same polyhedron,
eg, P ={z = 2,z <y} and P, = {z = z,2 < y} both represent the
same polyhedron. Thus, in general, an abstract domain A is not required to
be partially ordered by <,. On the other hand, the relation <, is clearly a
preorder on A. The only basic requirement is that for any pair of abstract val-
ues aj,as € A, one can decide if a; is a more precise program assertion than
as, i.e., if y(a1) C ~y(az) holds. In this sense we do not require that a partial
order < is defined a priori on A and that - is monotone w.r.t. <, since for our
purposes it is enough to consider the preorder <, induced by ~. If instead A is
endowed with a partial order <4 and A is defined in abstract interpretation [7,8]
through a Galois insertion based on the concretization map -y, then it turns out
that v(a1) C y(a2) < a; <4 ag holds, so that the decidability of the relation
<,={(a1,a2) € AxA|~(a1) C y(az)} boils down to the decidability of the par-
tial order relation <4. As an example, it is well known that the abstract domain
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of polyhedra does not admit a Galois insertion [11], nevertheless its induced pre-
order relation <, is decidable: for example, for polyhedra represented by linear
constraints, there exist algorithms for deciding if v(Py) C «(P,) for any pair of
convex polyhedra representations P; and P (see e.g. [23, Sect.5.3]).

3.1 Abstract Domains in Abstract Interpretation

An abstract domain in standard abstract interpretation [7-9] is usually defined
by a poset (A, <4) containing a top element T € A and a concretization map y4 :
A — p(Dom), where Dom denotes some concrete semantic domain (e.g., program
stores or program traces), such that: (a) A is machine representable, namely the
abstract elements of A are encoded by some data structures (e.g., tuples, vectors,
lists, matrices, etc.), and some algorithms are available for deciding if a1 <4 as
holds; (b) a1 <4 as < va(a1) C va(az) holds (this equivalence always holds
for Galois insertions); (¢) v4(T) = Dom. Let us point out that Definition 3.1 is
very general since the concretization of an abstract value can be any program
property, possibly a purely syntactic property or some space or time complexity
property, as in the simple cases of Example 3.2 (1)-(2)-(5).

Let 74 : A — p(Dom) and assume that Dom is defined by program stores,
namely Dom £ Var — Val, where Var is a finite set of program variables and Val
is a corresponding denumerable set of values. Since Var — Val has a finite domain
and a denumerable range, we can assume a recursive encoding of finite tuples of
values into natural numbers N, i.e. Var — Val = N, and define v4 : A — p(N).
This is equivalent assuming that programs have one single variable, say =, which
may assume tuples of values in Val. A set of numbers v4(a) € p(N) is meant to
represent a property of the values stored in the program variable x at the end
of the program execution, that is, if the program terminates its execution then
the variable z stores a value in y4(a). Hence, as usual, the property @ € p(N)
means that the program does not correctly terminate its execution either by true
nontermination or by some run-time error, namely, that the exit program point
is not reachable. For simplicity, we do not consider intermediate program points
and assertions in our semantics.

For an abstract domain (A4, v4,<4) in standard abstract interpretation, the
corresponding concretization function v : A — p(Prog) of Definition3.1 is
defined as:

+(a) 2 {P € Prog | ¥i € N. [P](i) € ya(a)}

where we recall that [P](i) € ya(a) means [P](i) = 0 = o € ya(a). Hence, if
A contains top T 4 and bottom L4 such that y4(T4) = N and y4(L4) = @
then (T 4) = Prog and (L a) = {P € Prog | P never terminates}. Moreover,
since y4 is monotonic, we have that v is monotonic as well. The fact that all
the elements in A are machine representable boils down to the requirement that
A is a recursive set, while the binary preorder relation <, is decidable because
a1 <4 az < y(a1) C y(az) holds and <4 is decidable. This therefore defines an
abstract domain according to Definition 3.1.
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In this simple view of the abstract domain A, there is no input property for
the variable z, meaning that at the beginning = may store any value. It is easy
to generalize the above definition by requiring an input abstract property in A
for z, so that the abstract domain is a Cartesian product A x A together with
a concretization 7/ : A x A — p(Prog) defined as follows:

P ((as,a,)) & {P € Prog | Vi € N.i € ya(a;) = [P](i) € va(ao)}.
This is a generalization since, for any a € A, we have that y(a) = 7 ((T 4, a)).

Example 3.3 (Interval Abstract Domain). Let Int be the standard interval
domain [7] restricted to natural numbers in N, endowed with the standard subset
ordering:

Int 2 {[a,b] | a,b €N, a < b} U{Lin} U{[a,+00) | a € N}

with concretization iyt : Int — (N), where Yt (Lint) = &, Yt ([a, b]) = [a, b]
and ymt([0,+00)) = N, so that [0,+00) is also denoted by Trin. Thus, here,
for the concretization function v : Int — p(Prog) we have that: y(T) =
Prog, v(Llmt) = {P € Prog | Vi. [P](i)1}, v([a,+<)) = {P € Prog | Vi €
N.[P](i)| = [P](i) > a}. We also have the input/output concretization % :
Int x Int — p(Prog), where

AP ((I,J)) & {P € Prog | Vi € N.i €yt (I) = [P](i) € yme(J)}- 0

4 Program Analysers and Verifiers

In our model, the notions of program analyser and verifier are as general as
possible.

Definition 4.1 (Program Analyser). Given an abstract domain (4,7, <),
a program analyser on A is any total recursive function A : Prog — A.

The set of analysers on a given abstract domain A will be denoted by A 4.

An analyser A € A 4 is sound if for any P € Prog and a € A,

A(P) <ya = Pe~(a)
while A is precise if it is also complete, i.e., if the reverse implication also holds:
Pe~v(a) = AP) <, a. 0

Notice that this definition of soundness is equivalent to the standard notion
of sound static analysis, namely, for any program P, A(P) always outputs a
program assertion which is satisfied by P, i.e., P € v(A(P)). Let us also note
that on the empty abstract domain &, no analyser can be defined simply because
there exists no function in Prog — &. Instead, for a singleton abstract domain
A, & {e}, if A € Ay, is sound then (o) = Prog, so that e is necessarily
an abstract top. Also, if the abstract domain A contains a top abstract value
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T A € A then, as expected, AP.T 4 is a trivially sound analyser on A. Finally, we
observe that if A; and As are both precise on the same abstract domain then
we have A; =, Aj, meaning that 4, and Ay coincide up to equivalent abstract
values, i.e., yoA; = yoA,. In fact, for any P € Prog, we have that P € y(A2(P))
implies 7(A1(P)) € 7(A2(P)) and P € v(A;(P)) implies v(A2(P)) € v(A1(P)),
so that A; =, As.

Example 4.2. Software metrics static analysers [35] deal with nonsemantic pro-
gram properties, such as the domain in Example 3.2 (1). Bounded model check-
ing [4,34] handles program properties such as those encoded by the domains
of Example3.2 (2)-(3). Complexity bound analysers such as [32,36] cope with
domains of properties such as those in Example 3.2 (4)-(5). Numerical abstract
domains used in program analysis (see [23]) include the interval abstraction
described in Example 3.3. O

Definition 4.3 (Program Verifier). Given an abstract domain (4,v,<,), a
program verifier on A is any total recursive function V : Prog xA — {t, 7}.
The set of verifiers on a given abstract domain A will be denoted by V4.

A verifier V € Vy, is sound if for any P € Prog and a € A,

V(P,a) =t = P € v(a)
while V is precise if it is also complete, i.e., if the reverse implication also holds:
Pevy(a) = V(P,a)=t.

A verifier V € V, is nontrivial if for any program there exists at least one
assertion which V is able to prove, i.e., for any P € Prog there exists some a € A
such that V(P,a) = t. Also, a verifier is defined to be trivial when it is not
nontrivial.

A verifier V € V4 is monotone when the verification algorithm is monotone w.r.t.
< ie, V(Pa)=t AN a<yd) = V(Pd)=t. 0

Remark 4.4. Let us observe some straight consequences of Definition 4.3.

(1) Notice that for all nonempty abstract domains A, A(P,a).? is a legal and
vacuously sound verifier. Also, if A = & is the empty abstract domain then the
empty verifier V : Prog x@ — {t,?} (namely, the function with empty graph) is
trivially precise.

(2) Let us observe that if V is nontrivial and monotone then V is able to prove
any abstract top: in fact, if T € A and v(T) = Prog then, for any P € Prog,
since there exists some a € A such that V(P,a) = t and a <, T, then, by
monotonicity, V(P, T) = t.

(3) Note that if a verifier V is precise then V(P,a) = ? < P ¢ v(a), so that
in this case an output V(P,a) = 7 always means that P does not satisfy the
property a.

(4) Finally, if V; and V5 are precise on the same abstract domain then V1 (P, a) =
t & P eq(a) & Vao(P,a) =t, so that V1 = V. O
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Example 4.5. Program verifiers abund in literature, e.g., [3,21,27]. For exam-
ple, [13] aims at complexity verification on domains like that in Example 3.2 (5)
while reachability verifiers like [33] can check numerical properties of program
variables such as those of Example 3.3. O

5 Rice’s Theorem for Static Program Analysis and
Verification

Classical Rice’s Theorem in computability theory [26,29,30] states that an exten-
sional property I C N of an effective numbering {¢, | n € N} = N -5 N of
partial recursive functions is a recursive set if and only if Il = @ or II = N,
i.e., IT is trivial. Let us recall that IT C N is extensional when ¢,, = ¢,, implies
n € II < m € II. When dealing with program properties rather than indices of
partial recursive functions, i.e., when I C Prog, Rice’s Theorem states that any
nontrivial semantic program property is undecidable (see [28] for a statement
of Rice’s Theorem tailored for program properties). It is worth recalling that
Rice’s Theorem has been extended by Asperti [2] through an interesting gen-
eralization to so-called “complexity cliques”, namely nonextensional program
properties which may take into account the space or time complexity of pro-
grams: for example, the abstract domain of Example 3.2 (5) is not extensional
but when logically “intersected” with an extensional domain (i.e., it is a prod-
uct domain A; x A, where the concretization function is the set intersection
Mai, az).71(a1) Ny2(az)) falls into this generalized version of Rice’s Theorem.

In the following, we provide an instantiation of Rice’s Theorem to sound
static program analysis and verification by introducing a notion of extension-
ality for abstract domains. Abstract domains commonly used in abstract inter-
pretation turn out to be extensional, when they are used for approximating the
input/output behaviour of programs. For example, if a sound abstract interpreta-
tion of a program P in the interval abstract domain computes as abstract output
a program assertion such as z € [1,5] and y € [2,+00) then this assertion is a
sound abstract output for any other program ) having the same input/output
behaviour of P.

Definition 5.1 (Extensional Abstract Domain). An abstract domain
(A,v,<4) is extensional when for any a € A, y(a) C Prog is an extensional
program property, namely, if [P] = [Q] then P € vy(a) < Q € v(a). O

As usual, the intuition is that an extensional program property depends
exclusively on the input/output program semantics [-]. As a simple example,
the domains of Example 3.2 (3)-(4) are extensional while the domains of Exam-
ple3.2 (1)-(2)-(5) are not.

Definition 5.2 (Trivial Abstract Domain). An abstract domain (4, v, <,)
is trivial when A contains abstract bottom or top elements only, i.e., for any
a € A, v(a) € {@,Prog}. O
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Definition 5.2 allows 4 possible types for a trivial abstract domain A: (1)
A = g; (2) A is nonempty and consists of bottom elements only, i.e., A # & and
for all @ € A, v(a) = @; (3) A is nonempty and consists of top elements only,
ie, A# @ and for all a € A, y(a) = Prog; (4) A satisfies (2) and (3), i.e., A
contains both bottom and top elements.

Theorem 5.3 (Rice’s Theorem for Program Analysis). Let (A,v,<,) be
an extensional abstract domain and let A € A4 be a sound analyser. Then, A is
precise iff A is trivial.

Proof. Since we assume the existence of a sound analyser A € A4 on the exten-
sional abstract domain A, observe that necessarily A # &.

Assume that A is trivial. We have to show that for any a € A and P € Prog,
A(P) <, a < P € vy(a). Assume that P € y(a) for some a € A. Then, we have
that v(a) # @, so that, since A is trivial, it must necessarily be that v(a) = Prog.
By soundness of A, P € v(A(P)), so that, since A is trivial, v(A(P)) = Prog.
Hence, we have that v(A(P)) = 7(a), thus implying A(P) <, a. On the other
hand, if A(P) <, a then v(A(P)) C v(a), so that, since, by soundness of A,
P € y(A(P)), we also have that P € v(a).

Conversely, assume now that A is precise, namely, P € v(a) iff A(P) <, a.
Thus, since A is a total recursive function and <, is decidable, we have that, for
any a € A, P €’ y(a) is decidable. Since y(a) is an extensional program property,
by Rice’s Theorem, y(a) must necessarily be trivial, i.e., y(a) € {&, Prog}. This
means that the abstract domain A is trivial. O

Rice’s Theorem for program analysis can be applied to several abstract
domains. Due to lack of space, we just mention that the well-known undecid-
ability of computing the meet over all paths (MOP) solution for a monotone
dataflow analysis problem, proved by Kam and Ullman [15, Sect. 6] by resorting
to undecidability of Post’s Correspondence Problem, can be derived as a simple
consequence of Theorem 5.3.

Along the same lines of Theorem 5.3, Rice’s Theorem can be instantiated to
program verification as follows.

Theorem 5.4 (Rice’s Theorem for Program Verification). Let (4,7, <,)
be an extensional abstract domain and let V € V4 be a sound, nontrivial and
monotone verifier. Then, V is precise iff A is trivial.

Proof. Let A be an extensional abstract domain and V € V4 be sound and non-
trivial. If A = @ then A is trivial while the only possible verifier V : Prog x@ —
{t,?} is the empty verifier, which is vacuously precise but it is not nontrivial.
Thus, A # @ holds.

Assume that V is precise, that is, P € y(a) iff V(P, a) = t. Hence, since V is a
total recursive function, V(P,a) =" t is decidable, so that P €7 y(a) is decidable
as well. As in the proof of Theorem 5.3, since «y(a) is an extensional program
property, by Rice’s Theorem, v(a) € {&, Prog}. Thus, the abstract domain A is
trivial.
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Conversely, let A # @ be a trivial abstract domain. We have to prove that
for any a € A and P € Prog, V(P,a) =t & P € 7(a). Consider any a € A.
Since A is trivial, v(a) € {@, Prog}. If v(a) = @ then, by soundness of V, for
any P € Prog, V(P,a) = 7, so that V(P,a) =t & P € v(a) holds. If, instead,
v(a) = Prog, i.e. a is an abstract top, then, since V is assumed to be nontrivial
and monotone, by Remark 4.4 (2), V is able to prove the abstract top a for any
program, namely, for any P € Prog, V(P,a) = t, so that V(P,a) =t < P € v(a)
holds. ad

Let us remark a noteworthy difference of Theorem 5.4 w.r.t. Rice’s theorem
for static analysis. Let us consider a trivial abstract domain A £ {T} with
~v(T) = Prog. Here, the trivially sound analyser AP.T is also precise, in accor-
dance with Theorem 5.3. Instead, the trivially sound verifier V» = \(P,a).? is
not precise, because P € y(T) < V2(P, T) = t does not hold. The point here is
that V» lacks the property of being nontrivial, and therefore Theorem 5.4 cannot
be applied. On the other hand, V¢ £ A\(P,a).t is nontrivial and precise, because,
in this case, P € v(T) < V¢(P, T) = t holds. Similarly, if we consider the trivial
abstract domain A’ £ {T, T}, with 4(T) = Prog = v(T’), then the verifier

t ifa=T
V'(P,a) &
(P.a) {? ifa=T

is sound and mnontrivial, but still V' is not precise, because P € (T') <
V'(P, T') = t does not hold. The point here is that V' is not monotone, because
VI(P,T) =tand T <, T’ but V(P,T') # t, so that Theorem 5.4 cannot be
applied.

6 Comparing Analysers and Verifiers

Let us now focus on a model for comparing the relative precision of program
analysers and verifiers w.r.t. a common abstract domain (A4,~, <,).

Definition 6.1 (Comparison Relations). Let V,V' € V4, A, A" € Ay, and
X, Y eVaUA4.

(1) VEV' iff VP € Prog Va € A. V'(P,a) =t = V(P,a) =t

(2) AC A" iff VP € Prog. A(P) <, A'(P)

(3) VCAiff YPeProgVaec A AP)<,a = V(P,a)=t

(4) ACV iff YPeProgVa€c A V(Pa)=t = A(P)<,a

(5) X =2Y when XCT )Y and YC X O
Let us comment on the previous definitions, which intuitively take into
account the relative “verification powers” of verifiers and analysers. The rela-
tion ¥V C V' holds when every assertion proved by V' can be also proved by V,
while A C A" means that the output assertion provided by A is more precise
than that produced by A’. Also, a verifier V is more precise than an analyser
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A when the verification power of V is not less than the verification power of
A, namely, any assertion a which can be proved by A for a program P, i.e.
A(P) <, a holds, can be also proved by V. Likewise, A is more precise than
V when any assertion a proved by V can be also proved by A, i.e,, V(P,a) =t
implies A(P) <, a.

Let us observe that (V4,C) turns out to be a poset, while (A4, C) is just a
preordered set (cf. the lattice of abstract interpretations in [8]). We have that
(V4,C) has a greatest element V7 = A(P,a).?, which, in particular, is always
sound although it is trivial. On the other hand, if A includes a top element T
then A+ £ AP.T is a sound analyser which is a maximal element in (A4, C).
Also, V =2 V' means that ¥ = V' as total functions, while A =2 4" means that
~vo A =~ o A'. Moreover, the comparison relation C is transitive even when
considering analysers and verifiers together: if V C A and A C V' then V C V',
and if AC V and V T A’ then A T A’. Also, the relation C shifts soundness
from verifiers to analysers, and from analysers to verifiers as follows (due to lack
of space the proof is omitted).

Lemma 6.2. Let V € V4 and A € Ay. If V is sound and V T A then A is
sound; if A is sound and ATV then V is sound.

As expected, any sound analyser can be used to refine a given sound verifier
(cf. [19,20,24,25]) and this can be formalized and proved in our framework as
follows.

Lemma 6.3. Given A€ Ay and V € V4 which are both sound, let

N t if A(P) <5 a
TA(V)(P,a) = {V(R a) if A(P)¥%4,a

Then, T4(V) € V4 is sound, TA(V) CV and T4(V) =V < VLT A.

Proof. 74(V) € V4 is sound because both A and V are sound. If V(P,a) =t
then 74(V)(P,a) = t, i.e., 74(V) C V. Moreover, 74(V) = V iff A(P) <, a =
V(P,a) =t iff YV C A O

6.1 Optimal and Best Analysers and Verifiers

It makes sense to define optimality by restricting to sound analysers and verifiers
only. Optimality is defined as minimality w.r.t. the precision relation T, while
being the best analyser/verifier means to be the most precise.

Definition 6.4 (Optimal and Best Analysers and Verifiers). A sound
analyser A € A4 is optimal if for any sound A’ € Ay, A'C A= A = A, while
A is a best analyser if for any sound A’ € Ay, AC A'.

A sound verifier V € V4 is optimal if for any V' € V4, V CV =V =Y,
while V is the best verifier if for any V' € V4, VC V. O
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Let us first observe that if a best analyser or verifier exists then this is unique,
while for analysers if 4; and Ay are two best analysers on A then A; = A5 holds.
Of course, the possibility of defining an optimal/best analyser or verifier depends
on the abstract domain A. For example, for a variable sign domain such as
{Z<o,Z>0,Z} just optimal analysers and verifiers could be defined, because for
approximating the set {0} two optimal sound abstract values are available rather
than a best sound abstract value. Here, the expected but interesting property
to remark is that the notion of precise (i.e., sound and complete) analyser turns
out to coincide with the notion of being the best analyser.

Lemma 6.5. Let A € Ay be sound. Then, A is precise iff A is a best analyser.

Proof. (=) Consider any sound A" € A,. Assume, by contradiction, that
A IZ A’, namely, there exists some P € Prog such that v(A(P)) € v(A'(P)).
By soundness of A', [P] € v(A'(P)), so that, by precision of A, v(A(P)) C
v(A'(P)), which is a contradiction. Thus, A C A’ holds. This means that A is a
best analyser on A.

(<) We have to prove that for any P € Prog and a € A, [P] € v(a) =
Y(A(P)) C v(a). Assume, by contradiction, that there exist @ € Prog and b € A
such that [Q] € ~v(b) and v(A(Q)) Z ~(b). Then, we define A’ : Prog — A as
follows:

A(P) 2 {A(P) if P#Q

b iftP=qQ

It turns out that A’ is a total recursive function because P = @Q is decidable.
Moreover, A’ is sound: assume that y(A'(P)) C y(a); if P # Q then A'(P) =
A(P) so that v(A(P)) C v(a), and, by soundness of A, [P] € v(a); if P = Q
then A'(Q) = b %o that 7(b) = 7(A'(Q)) = 1(A'(P)) € +(a), hence, [Q] € (D)
implies [Q] € 7y(a). Since A is a best analyser on A, we have that A C A’, so
that v(A(Q)) € v(A'(Q)) = v(b), which is a contradiction. 0

We therefore derive the following consequence of Rice’s Theorem 5.3 for static
analysis: the best analyser on an extensional abstract domain A exists if and only
if A is trivial. This fact formalizes in our model the common intuition that, given
any abstract domain, the best static analyser (where best means for any input
program) cannot be defined due to Rice’s Theorem. An analogous result can be
given for verifiers.

Lemma 6.6. Let V € Vy be sound. Then V is precise iff V is the best verifier
on A.

Proof. Assume that V is precise and V' € V4 be sound. If V'(P,a) = t then, by
soundness of V', [P] € «(a), and in turn, by completeness of V, V(P,a) = t,
thus proving that ¥V £ V. On the other hand, assume that V is the best verifier
on A. Assume, by contradiction, that V is not complete, namely that there exist
some @ € Prog and b € A such that [Q] € v(b) and V(Q,b) = ?. We then define
V' : Prog x A — {t,?} as follows:
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V’(P,a)é{t ifPEQ/\a:b

V(P,a) otherwise

Then, V' is a total recursive function because P = @Q and a = b are decidable.
Also, V' is sound because [Q] € v(b) and V is sound. Since V is the best verifier,
we have that V C V', so that V'(Q,b) = t implies V(Q,b) = t, which is a
contradiction. O

Thus, similarly to static analysis, as a consequence of Rice’s Theorem 5.4 for
verification, the best nontrivial and monotone verifier on an extensional abstract
domain A exists if and only if A is trivial, which is a common belief in program
verification. Let us also remark that best abstract program semantics, rather
than program analysers, do exist for nontrivial domains (see e.g. [6]). Clearly, this
is not in contradiction with Theorem 5.3 since these abstract program semantics
are not total recursive functions, i.e., they are not program analysers.

7 Reducing Verification to Analysis and Back

As usual in computability and complexity, our comparison between verification
and analysis is made through a many-one reduction, namely by reducing a ver-
ification problem into an analysis problem and vice versa. The minimal require-
ment is that these reduction functions are total recursive. Moreover, we require
that the reduction function does not depend upon a fixed abstract domain. This
allows us to be problem agnostic and to prove a reduction for all possible ver-
ifiers and analysers. Program verification and analysis are therefore equivalent
problems whenever we can reduce one to the other. In the following, we prove
that while it is always possible to transform a program analyser into an equiv-
alent program verifier, the converse does not hold in general, but it can always
be done for finite abstract domains.

7.1 Reducing Verification to Analysis

Theorem 7.1. Let (A,v,<y) be any given abstract domain. There exists a
transform o : Ag — V4 such that:

(1) o is a total recursive function such that for all A € Ay, o(A) 2 A;

(2) if A€ Ay is sound then o(A) is sound;

(3) o is monotonic;
)

(4) o(A )_U(A')iAEA'.
Proof. Given A € A4, we define o(A) : Prog xA — {t, 7} as follows:

At if AP)<,a
o(A)(Pra) = {? it A(P) £, a

(1) Since A is a total recursive function and <, is decidable, we have that
a(A) is a total recursive function, namely o(A) € V4, and o is a total recursive
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function as well. Since, by definition, 0(A)(P,a) = t & A(P) <, a, we have
that o(A) = A. (2) By Lemma6.2, if A is sound then the equivalent verifier
o(A) is sound as well. (3) It turns out that o is monotonic: if A C A’ then
o(A)(Pa) =t & A(P) <, a= AP) <, A(P) <, a & d(A)(P,a) =t, so
that o(A) C o(A’) holds. (4) Assume that o(A) = o(A), hence, for any P €
Prog, o(A)(P, A(P)) = o(A")(P, A(P)), namely, A(P) <, A(P) & A'(P) <,
A(P), so that A'(P) <, A(P) holds. On the other hand, A(P) <, A'(P) can
be dually obtained, therefore y(A(P)) = v(A'(P)) holds, namely A~ A. O

Intuitively, Theorem 7.1 shows that program verification on a given abstract
domain A can always and unconditionally be reduced to program analysis on
A. This means that a solution to the program analysis problem on A, i.e. the
definition of an analyser A, can constructively be transformed into a solution
to the program verification problem on the same domain A, i.e. the design of a
verifier o(A) which is equivalent to .A. The proof of Theorem 7.1 provides this
constructive transform o, which is defined as expected: an analyser A on any
(possibly infinite) abstract domain A can be used as a verifier for any assertion
a € A simply by checking whether A(P) <, a holds or not.

7.2 Reducing Analysis to Verification

It turns out that the converse of Theorem 7.1 does not hold, namely a program
analysis problem in general cannot be reduced to a verification problem. Instead,
this reduction can be always done for finite abstract domains. Given a verifier
V € Vg, for any program P € Prog, let us define V¢ (P) £ {a € A | V(P,a) = t},
namely, Vi (P) is the set of assertions proved by V for P. Also, given an assertion
a € A, we define Ta = {a’ € A | a <, a'} as the set of assertions weaker than a.
The following result provides a useful characterization of the equivalence between
verifiers and analysers.

Lemma 7.2. Let (A,v,<,) be an abstract domain, A € Ay andV € V4. Then,
A2V if and only if for any P € Prog, V¢(P) = TA(P).

Proof. By Definition 6.1, it turns out that A4 C V iff for any P, V¢(P) C TA(P),
while we have that V C A iff for any P, TA(P) C V¢(P). Thus, A =V if and
only if for any P € Prog, V¢(P) = 1A(P). O

A consequence of Lemma 7.2 is that, given V € V4, V can be transformed
into an equivalent analyser 7(V) € A4 if and only if for any program P, an
assertion ap € A exists such that V¢(P) = lap. In this case, one can then define
T(V)(P) £ ap.

Lemma 7.3. Let (A,v,<,) be an abstract domain and V € V. If A € Ay is
such that A2V then: (1) A+# @; (2) V is not trivial; (3) V is monotone.

Proof. (1) We observed just after Definition 4.1 that no analyser can be defined
on the empty abstract domain. (2) If V is trivial then there exists a program
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Q@ € Prog such that for any a € A, V(Q,a) = ?,so that if V = A for some A € A4
then, from V C A we would derive V(Q, . A(Q)) = t, which is a contradiction.
(3) Assume that V is not monotone. Then, there exist @) € Prog and a,a’ € A
such that a € V¢(Q), a <, o but ' & V¢(Q). If V = A, for some A € Ay,
then, by Lemma 7.2, V¢(Q) = TA(Q), so that we would have that a € T.A(Q) but
a’ € 1A(Q), which is a contradiction. O

We also observe that even for a nontrivial and monotone verifier V € V4 on a
finite abstract domain A, it is not guaranteed that an equivalent analyser exists.
In fact, if an equivalent analyser A exists then, by Lemma 7.2, for any program
P, V¢(P) must contain the least element, namely for any program P it must be
the case that there exists a strongest assertion proved by V for P.

Example 7.4. Consider a sign domain such as S £ {Z<o,Z>0,Z} where
Z<o <y Z and Z>¢ <, Z. For a program such as () = z := 0, a sound veri-
fier V € Vg could be able to prove all the assertions in S, namely V¢(Q) = S.
However, there exists no assertion ag € S such that V¢(Q) = Tag. Hence, by
Lemma 7.2, there exists no analyser in Ag which is equivalent to V. Also, if
S" & {Z_y,7<0,Z>0,Z}, so that S’ is a meet-semilattice, and V' € Vg is a
sound verifier such that Vi(Q) = S’ \ {Z—o}, still, by Lemma 7.2, there exists
no analyser in Ag which is equivalent to V'. a

Definition 7.5. A verifier V € Vj is finitely meet-closed when for any P € Prog
and a,a1,a2 € A, if V(P,a1) =t = V(P,az2) and v(a) = v(a1) N y(az) then
V(P, a) = t. The following notation will be used: for any domain A,

Vi £ {V €Vy4 | V is nontrivial, monotone and finitely meet-closed}. ¢

Thus, finitely meet-closed verifiers can prove logical conjunctions of provable
assertions.

Theorem 7.6 (Reduction for Finite Domains). Let (A4,v,<,) be a
nonempty finite abstract domain. There exists a transform T : VX — Ay such
that:

(1) 7 is a total recursive function such that for all V € Vi, 7(V) = V;
(2) if V € VI is sound then 7(V) is sound;

(3) T is monotonic;

(4) (V) = (V):>V%V'.

Proof. (1) Let A = {a1,...,a,} be any enumeration of A, with n > 1. Given
V € Vi, we define 7(V) : Prog — A as follows:

r := undef;
forall i € 1..n do
if (ai €Ve(P) A (r =undef V a; <, T)) then r := a;;

output r

T(V)(P) =
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Then, it turns out that 7 is a total recursive function. Since V is a total recursive
function, A is finite and <, is decidable, we have that 7(V) is a total recursive
function, so that 7(V) € A 4. Since V is not trivial, for any P € Prog, Vi(P) # &.
Also, since A is finite and V is finitely meet-closed there exists some aj € Vi(P)
such that V¢(P) C Tak, so that 7(V)(P) outputs some value in A. Moreover,
since V is monotone, Tar C V¢(P), so that Tay = V¢(P). Thus, the above pro-
cedure defining 7(V)(P) finds and outputs ax. Hence, for any P € Prog and
a€ A V(Pa) =t acVi(P)eacla & ar <yas 7V)(P) <, a, that
is, 7(V) = V holds.

(2) By Lemma6.2, if V is sound then the equivalent analyser 7(V) is sound as
well.

(3) It turns out that 7 is monotonic: if V C V' then, by definition, Vi(P) C
Vi(P), so that, since Vi(P) = 17(V)(P) and Vi(P) = 17(V")(P), we obtain
T(V)(P) <, 7(V")(P), namely 7(V) C 7(V') holds.

(4) Assume that 7(V) = 7(V'). Hence, for any P € Prog, v(r(V)(P)) =
Y(r(V')(P)), so that, since V¢(P) = T7(V)(P) and Vi(P) = 17(V')(P), w
obtain V¢(P) = Vi (P), namely V = V'. D

An example of this reduction of verification to static analysis for finite
domains is dataflow analysis as model checking shown in [31] (excluding Kil-
dall’s constant propagation domain [16]). Let us now focus on infinite domains
of assertions.

Lemma 7.7. There exists a denumerable infinite abstract domain (A,~,<,)
and a verifier V € Vj such that for any analyser A € Ax, AZV.

Proof. Let us consider the infinite domain T = N U {T} together with the fol-
lowing concretization function: v(T) £ Prog and, for any n € N,

v(n) £ {P € Prog | P on input 0 converges in n or fewer steps}

where the number of steps is determined by a small-step operational semantics
=, as recalled in Sect. 2. Thus, we have that if n,m € Nthen n <, miff n <y m,
while n <, T. We define a function V : Prog x T — {t, 7} as follows:

t ifa=T
V(P,a) £ {t if a=mnand P on input 0 converges in n or fewer steps

? if a=mn and P on input 0 does not converge in n or fewer steps

Clearly, for any number n € N, the predicate “P on input 0 converges in n or
fewer steps” is decidable, where the input 0 could be replaced by any other (finite
set of) input value(s). Hence, V turns out to be a total recursive function, that is,
a verifier on the abstract domain T. In particular, let us remark that ) is a sound
verifier. Moreover, V is nontrivial, since, for any P € Prog, V(P,T) = t, and
monotone because if V(P,n) =t and n <, a then either a =T and V(P,T) =t
or a = m, so that n <y m and therefore V(P, m) = t. Clearly, V is also finitely
meet-closed, because if V(P,a1) =t = V(P,a2) and y(a) = vy(a1) Ny(az) then
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either a = a1 or a = as, so that V(P,a) = t. Summing up, it turns out that
V € Vi. Assume now, by contradiction, that there exists an analyser A € Ar
such that A = V. By Lemma 7.2, for any P € Prog, we have that V¢(P) = 1A(P).
Hence, if P on input 0 diverges then V¢ (P) = {T} so that A(P) = T, while if P
on input 0 converges in exactly n steps then V¢(P) = {m € N | m >n} U{T},
so A(P) = n, namely A goes as follows:

A(P) = T if P on input 0 diverges
"~ |n if P on input 0 converges in exactly n steps

Since A is a total recursive function, we would have defined an algorithm A for
deciding if a program P € Prog on input 0 terminates or not. Since Prog is
assumed to be Turing complete with respect to the operational semantics =,
this leads to a contradiction. O

As a straight consequence of Lemma 7.7, the following theorem proves that
for any infinite abstract domain A, no reduction from verifiers in V}; to equivalent
analysers in A 4 is possible.

Theorem 7.8 (Impossibility of the Reduction for Infinite Domains).
For any denumerable infinite abstract domain (A,~, <), there exists no function

7 : Vi — Aa such that T is a total recursive function and for all V € V7,
(V)= V.

Proof. Assume, by contradiction, that 7 : V1 — A 4 is a total recursive function
such that for all V € V}, 7(V) € A4 and 7(V) = V. Then, for the infinite domain
A and verifier V € Vj provided by Lemma 7.7, we would be able to construct an
analyser 7(V) € A4 such that 7(V) = V, which would be in contradiction with
Lemma 7.7. O

Intuitively, this result states that given any infinite abstract domain A, no
general algorithm exists for constructively designing out of a reasonable (i.e.,
nontrivial, monotone and finitely meet-closed) verifier V on A an equivalent
analyser on the same domain A. This can be read as a precise statement proving
the folklore belief that “program analysis is harder than verification”, at least
for infinite domains of program assertions. It is important to remark that the
verifier V € VX on the infinite domain A defined by the proof of Lemma 7.7 is
sound. Thus, even if we restrict the reduction transform 7 : Vi=ommd — pgspund
of Theorem 7.8 to be applied to sound verifiers—so that by Lemma 6.2 the range
would be the sound analysers in A 4—the same proof of Lemma 7.7 could still
be used for proving that such transform 7 cannot exist.

A further consequence of Theorem7.8 is the fact proved in [10] that
abstract interpretation-based program analysis with infinite domains and widen-
ing/narrowing operators is strictly more powerful than with finite domains.
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8 Conclusion and Future Work

We put forward a general model for studying static program analysers and veri-
fiers from a computability perspective. This allowed us to state and prove, with
simple arguments borrowed from standard computability theory, that for infi-
nite abstract domains of program assertions, program analysis is a harder prob-
lem than program verification. This is, to the best of our knowledge, the first
formalization and proof of this popular belief, which also includes the relation-
ship between type inference and type checking. We think that this foundational
model can be extended to study further properties of program analysers and
verifiers. In particular, this opens interesting perspectives in reasoning about
program analysis and verification in a more abstract way towards a theory of
computation that may include approximate methods, such as program analysers
and verifiers, as objects of investigation, as suggested in [5,14]. For instance, the
precision of program analysis and program verification, as well as their computa-
tional complexity, are intensional program properties. Intensionally different but
extensionally equivalent programs may exhibit completely different behaviours
when analysed or verified. In this perspective, new intensional versions of Rice’s
Theorem can be stated for program analysis, similarly to what is known for
Blum’s complexity in [2]. Also, new models for reasoning about the space and
time complexities of program analysis and verification algorithms can be stud-
ied, especially for defining a notion of complexity class of program analysers and
verifiers.
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